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Abstract. General properties of local quantum field theories (QFT) without
positivity are discussed in connection with their euclidean formulation.
Modified euclidean axioms for local QFT's without positivity are presented,
which allow us to recover by analytic continuation Wightman functions
satisfying the modified Wightman axioms for indefinite metric QFT's.

1. Introduction

With the advent of gauge theories it became clear that it was natural (if not
necessary) to consider QFT in which not all the Wightman axioms are satisfied.
In particular, it appeared that the introduction of "charged" fields was in conflict
with either locality or positivity [1-4]. On the other hand, the success of
(perturbative) renormalization theory (also for gauge theories) [5,6] and the
usefulness of keeping a relation with the wisdom gathered from conventional
perturbation theory made clear that it could be better, at least at a technical level,
to keep locality rather than positivity [3,4]. Actually, it turned out that even the
solution of a long-standing problem like the infrared problem [7] and the
construction of charged states in QED was made possible by exploiting the local
structure, in a spirit close to the standard Wightman formulation [8]. Even the
recent deep results about the geometrical understanding of anomalies in QFT
have been made possible by a formulation which kept locality as a basic structure
[9,10]. Also recent attempts of a quantum field theory formulation of string theories
with emphasis on the "covariant gauges" suggest that it may be of some interest
to investigate the general properties of indefinite metric quantum field theories.
Finally, it need not be emphasized here that most of the wisdom gained (on a
heuristic level) about "non-perturbative" treatment of covariant gauge field theories
and/or covariant string theories heavily rely on the use of the so-called "functional
integral techniques," namely of the euclidean formulation of the theory. To our
knowledge, a careful discussion of the euclidean formulation of quantum field
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theories which do not satisfy positivity seems to be lacking in the literature. This
general question is also at the basis of recent results on the existence of a gauge
symmetry breaking order parameter in Higgs models in the so-called α-gauges
[24], which do not satisfy Wightman positivity. The aim of this note is to discuss
the general properties of local quantum field theories without positivity, in
particular their associated Hubert structures (modified Wightman axioms) [2-4,11],
in connection with their analytic continuation to euclidean points. Modified
euclidean axioms are presented which allow us to discuss theories whose infrared
singularities violate positivity and lead to a euclidean semigroup for time translation
which is not contractive. The modified euclidean axioms allow us to recover by
analytic continuation Wightman functions which satisfy the modified Wightman
axioms, in particular the Hubert space structure condition and the Poincare
covariance, compatible with the possible non-unitarity of the space-time translation
(and the Lorentz boosts).

To simplify the exposition, we collect here the notation and definitions for which
we largely follow ref. [12]:

^Q(U4n) = {/ey([R4"): / together with all its partial derivatives vanish if xt = xj for
some 1 ̂  i<j ^ ή},

<f+(U4n) = {fe^0(U4n): f together with all its partial derivatives vanish unless

= {fe£?(M) with supp/cz U +

\ with supp/c {χ:χ ^ 0}},

We also introduce the Borchers algebras 3t, ffl + and J*([R4) over 6f{U% y + ((R 4 )
and £f(U4) respectively, as the algebras generated through sums and products of
elements F = {fo,fl9. ..,/„,...} which are terminating sequences of elements / o eC,
fneSf{U*n)=_®Sf(U% fne^+(U4n) and fneSf(U%n) = ®Sf(U%) respectively. <#,
J*+ and 3#(M\) are equipped with the direct sum topologies induced by the
topologies of ^(U4% Sf + (R4") and ^(U%n) respectively. The mapping d is defined by
fd(xi>x2 - X I 5 . ^ B ~ X B - I ) = / ( ^ I V ^ B ) a n d ^ i s a n isomorphism of 6f + (M4n)
onto y([R4"). The mapping v,F->Foϊ^+ onto a subset J + oϊOS(M%) is defined by

where

- Σ (<ik

denotes the Fourier-Laplace transform of ge£f(U4"). The mapping F^F is
continuous with dense range and trivial kernel [12,17].

2. Wightman and Schwinger Functions for Indefinite Metric QFT
Local Structure

We start by discussing QFT's which satisfy all Wightman axioms except positivity
[2-4,11]. For a hermitian scalar field theory they read:
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Wl (Temperedness): The rc-point Wightman function Wn(xl9...,xn) are distri-
butions, for simplicity taken of tempered type.1 They also satisfy the standard
hermiticity condition.

W2 (Poincare covariance): For any n, Wn(xi,...,nn)=W(Λx1—a9...9Λxn — a)9

W4 {Weak spectral condition)'. By W2, for any n, Wn(xl9...,xn) is actually a
distribution in the difference variables

Wn(xί,...9xn)=Wd

n-1(x2-xl9x3-x2,...9xn-xn-1),

which is assumed to have a Fourier transform Wd

n_ι (qι,...,qn^ι) with support

in F ( Γ 1 }

W5 (Locality): W n ( x l 9 . . . 9 x i 9 x i + l 9 . . . 9 x n ) = W n ( x l 9 . . . 9 x i + l 9 x l 9 . . . 9 x n ) w h e n e v e r

( X i - x i + 1 ) 2 < 0 .

As anticipated, the positivity axiom W3 is not assumed, and furthermore the
spectral condition is kept in the weak form (W4) compatible with space-time
translations described by operators which are not unitary [11]. In contrast with
the standard case therefore, the weak spectral condition is not strictly required by
general physical principles (unbroken space-time translations and relativity). Such
a condition, which is supported by the perturbative analysis, is essentially the
condition which allows an euclidean formulation, and in our opinion this is one
of its main motivations2. A further axiom which cannot be kept is the clustering
behaviour (cluster property); for the relation between the so emerging structure
and the essential uniqueness of the vacuum see [11].

We have thus the indefinite metric axioms. Proceeding as in the standard case
[16] one can then introduce the Borchers algebra $9 the sesquilinear form

= W(F* x G ) = Σ
n,m

(2.1)

where ~ denotes Fourier transform, f*(xχ,..., xn) =fn(xn, ,X\\ and the vector
space

2tw = 8IJrw, (2.2)

where Jίw is the kernel of <, }W9 namely the set of elements F oϊffl, with < F, G > w = 0
for every G e ^ . In general, the inner product <,>^ will not be semidefinite and it
cannot make Q)w a pre-Hilbert space. One can then recover the fields as
operator-valued distributions on the vector space <2)w. The Poincare invariance
of Wightman functions defines a representation of the Poincare group by linear
operators %(a9Λ) in Q)w which preserve the inner product.

The above modified axioms in Minkowski space still allow the euclidean

1 A similar formulation can also be done for a larger class of distributions like those of Jaffe type [13,14]
2 The relevance of this condition has been stressed in [3,4]. See also the recent review by A. S.
Wightman [15] for a discussion of this condition
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continuation and the definition of the Schwinger functions [12,17,18]. They satisfy
the following properties (for simplicity we consider the scalar field case):

OS1 (Temperedness): For each n, Sn(xl9...,xn) belongs to £fo(M4n\ and obey the

following hermiticity property:

Sn(f) = Sn(θf*)9 (2.3)

where θf(xu...,xn)= f(rxx,...,rxn); r(x°,x) = ( - x°,x).

052 (Euclidean covariance): For each w, Sn(/) = S n ( / M } ) for all KeS0(4),

where / { β ) Λ }(x!,...,xπ) =f(R~1(x1 -a),...,K"M^-J)-

7' (Laplace transform condition): By OS2, for each n, SM is a distribution in the
difference variables

Sn(xί9...9xH) = Sd

n..ί(x2-xu...,xn-xn-1) (2.4)

and the condition reads

- 1 *), (2.5)

where || | |^ is a Schwartz seminorm on 5(i+ ( n ~ 1 } ); this implies that

054 (Symmetry): Sn(xπ(ί)9..., xπ(n)) = iSll(x1 ,...,xn) for all n and all permutations π of
n elements.

Similarly to the Minkowski case we do not have either the analog of the
Wightman positivity (i.e. the OS-positivity or OS3 in the notation of ref. [17]) or
the cluster property (OS5) in [17].

As in the Minkowski case, the euclidean axioms OS1, OS2, OS4 allow the
construction of a vector space, and of a representation of three dimensional
rotations, space and time translations.

Theorem 2.1. Let the set {Sn} of Schwinger functions be given satisfying OS1, OS2
and OS4. Then there exist a vector space &s with a hermitian non-degenerate inner
product <,>s; a group %(a,R), ~aeU3, (R = three dimensional rotation) of inner
product preserving operators on Q)s, representing three dimensional space translations
and three dimensional rotations; a semigroup P(t\ t ^ 0 o/<, }s-symmetric operators on
&)s representing time translations for t ^ 0.

Proof. The proof is a simple adaptation of the standard argument. Let 0β + be the
Borchers algebra over ^+(U4n). Given F, Ge<%+ we define

< F , G > s EE S(ΘF* x G ) Ξ χ Sn + m(θf*n x gm\ (2.6)
n,m

where ΘF is the element with components (θ/)Π(xi,...,x f I)=/n(rx 1,...,rxM) <,>s

is a sesquilinear form on J + x f + which is hermitian as a consequence of (2.3):

< F, G ) s = S(Θ(F* xθG)) = S(ΘG* x F) = < G, F >5.

Let JTS be the kernel of <,>s, i.e. J^s = {Fe^+:(F,G)S = 0 , V G E ^ + }. Then
Q)s = & + IJfs is a linear space. If [ F ] s denotes the class in @s containing
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then

<ίF]S9LG']s>s = <F9G)s (2.7)

defines a hermitian, non-degenerate inner product on Θs. For "3ΈIR3 and 5 a three
dimensional rotation, we define

(2.8)

By OS2, (2.8) is well defined and

For ί ^ O w e define

P(t)[Fls = [F f ] β , /Bf(X!,..., xn) =/ π (x 1 - ί,..., χπ - ί). (2.9)

Since <F f, G> s = (F9Gt)s, the mapping F-+Ft maps yF s into yΓ^ and (2.9) is well
defined. Moreover, for ί l9 ί 2 ^ 0 P(ί x)P(ί 2) = P(ίx + ί2). Hence P(ί), ί ^ 0 is a
semigroup of operators on the inner product space (Q)s, <>>s) which is <,>s-
symmetric, i.e. <P(t)lF\s> [ G ] s > s = <[F] s ,P(ί)[G] s > s .

Remark. For the boosts one can essentially reproduce the results of [19] namely
get the analogue of the virtual representation. In our case, the lack of positivity
makes the domain problem more delicate. Actually, Sect. 4 will somewhat clarify
this problem.

Proposition 2.2. For a given set of Schwinger functions {Sn} satisfying OSl, OS2,
OSΓ and OS4, there exist Wightman functions {Wn} satisfying Wl, W2, W4 and W5.
Moreover, one can establish a one-to-one mapping between S)s and a subspace

Φ = 3# + /J^wd> where $+ is the image of &+ under the mapping v and Jί^ is
the kernel o / ( , ) ^ (Eg. (2.1)). Q) is dense in @w with respect to the quotient topology
induced by the topology of £%(U\). Furthermore, this mapping preserves the
corresponding inner products.

Proof. As a consequence of the Laplace transform condition the Schwinger
functions of the difference variables Sd

n are the Fourier-Laplace transforms of
distributions Wd

ne^(U%n\ [17,18]:

Sί_ 1 (ξ 1 , . . . ,ξ I I _ 1 ) = K 1 WU1(qu...An^)dq^-1\ (2.10)

The Wightman functions are then defined by [12]:

Wn(xί9...,xn) = $e ' k = Λ + 1 XkqkWd

n-1(ql9...,qn-1)dq«»-1\ (2.11)

The so-defined Wightman functions are Poincare covariant (as a consequence of
OS2) and by the support properties of Wd

n-ι, Wn satisfy the spectral condition in
the weak form. Similarly, locality follows from OS4 (see Sect. 4 of ref. [12]).
Furthermore, as in [12], for any F+, G + e^+ we have

S(ΘF* xG + )
n,m

"HxG + ). (2.12)
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It is then natural to consider the vector space Q) = ^ + /JΓ^d. Since $ + is dense
in 3t(ΰ\) in the j p * )-topology [12], Q) is dense in <%{M\)/J^^ in the induced
quotient topology. We then define the map wof J + onto 3)s by [12]

w(F + ) = [F + ] 5 . (2.13)

Actually w maps equivalent elements in ώ + /Jί^d into the same vectors of £^s,
hence it defines a mapping of Q) onto @s. Furthermore, for any F+, G+e&+ by
(2.10) we have

and the last equality defines the inner product on Θ which is preserved by the map w.

3. The Hubert Space Structure Condition and Its Implications
for Schwinger Functions

The structure discussed above does not require the Osterwalder-Schrader positivity
of the Schwinger functions and as such it applies also to theories for which this
property is not fulfilled. However, when one looks for a physical interpretation of
the theory the identification of the physical states becomes a crucial issue. In
general, they do not belong to the vector spaces Q)w or £^5, and therefore it becomes
a crucial physical problem to find a Hubert topology on Θw or on Θs such that
the physical states can be approximated as closely as we like by states of 3>w or
3)s, i.e. they belong to the closures @w, 2)s with respect to such topologies. This
problem arises in particular in gauge quantum field theories, where the physical
charged states do not belong [1] to the vector space Q)w of local states. The
construction of the physical charged states crucially relies on the use of a Hubert
topology or Hubert structure [8]; this shows the relevance of the Hubert space
structure, which can be associated to a set of Wightman functions. They
"parametrize" the possible "infrared behaviour" of the states which can be obtained
by closures of the local states through Hubert topologies, i.e. they parametrize the
possible charge content of the physical states. It is well-known that in interacting
QED the standard choice of Hubert topology leads to a physical set of states with
zero charge [20], and to get physical charged states one needs a careful choice of
Hubert topology [8].3

3 The claim appeared in the literature [21] that actually the physical subspace is independent of the

choice of the Hubert topology is contradicted by many examples. The point is that the construction

of non-local gauge invariant fields (from local fields), a basic step in the approach of ref. [21,22],

requires to make reference to a Hubert topology. The class of non-local gauge invariant fields which

can be constructed in terms of a local field depends on the (sometimes implicit) choice of a Hubert

topology. The requirement of gauge invariance for the above non-local fields is not enough to uniquely

identify a set of states corresponding to irreducible representations of the local observable algebra (see

ref. [8], Sect. 4). In general, in attempting to construct a sufficiently large set of non-local gauge

invariant fields one ends up with highly reducible representations of the local observable algebra, as

in ref. [22]
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As discussed in [11] a necessary and sufficient condition for the existence of
a Hubert space topology in Minkowski QFT is that the Wightman functions
satisfy the following property4 which replaces the axiom of positivity:

W3' (Hubert space structure condition): There exists a Hubert seminorm pw on &
such that

W(F*xG)\^pw(F)pw(G).

From a distributional point of view it is usually better and practically more
convenient (to avoid pathologies which do not seem to occur in QFT, at least at
the perturbative level) to have that the above seminorm is continuous on $ with
respect to the ^-topology (briefly &-continuous). In the following we will always
consider W3' with such an additional requirement.

From W3' it follows that the Hubert seminorm pw defines a semi-definite inner
product (, V on J*. Clearly the kernel of such a product is contained in Jίw as a
consequence of W3' but there may be elements FeJίw such that pw(F)Φθ
(degenerate metric). However, one may define [11] a new seminorm p'w

p'w(F)= Inf pw(F + N), (3.1)
NeJTw

such that if FeJίw, p'w(F) = 0; hence keΐp'w = Jίw (non-degenerate seminorm).
Furthermore, the Hubert space structure condition W3' remains true also for the
new seminorm p'w, since obviously VΛf, MeJίw, F,

W((F + ΛO* x (G + M)) = W(F* x G).

Moreover, if pw is a & continuous Hubert seminorm, so is p'w. In fact, if (F,G)
denotes the Hubert product which defines pw on J* the sesquilinear form

(F,G)' = Inf

also defines a Hubert product on ^ ,

p'w(F)2 = (F,F)'^pw(F)2

and

\(F9G)'\£pw(F)Pw(G).

Hence, & continuity of p'w follows from $ continuity of pw and (.,.)' is jointly
^-continuous, and therefore it defines a tempered distribution on & x $.
Summarizing we have:

Proposition 3.1. If p is a &-continuous Hubert seminorm fulfilling W3', then we can
always construct a non-degenerate seminorm p' still fulfilling W3' which is also a
^-continuous Hilbert seminorm. Furthermore the Hubert scalar product defining a
^-continuous seminorm is defined by a kernel which is a tempered distribution.

From now on we will always assume that pw is non-degenerate. The
non-degeneracy of the seminorm pw implies that the extension of <v>w to the

See also [23] for the algebraic formulation of a stronger condition
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closure Kw oi^jJίw with respect to the Hubert topology of pw, defines a metric η

which is non-degenerate.
By a standard procedure [11] we can also obtain a metric with bounded inverse

so that ctCw is actually a Krein space, but this will not be used in the following.
We will now discuss the implication of W3' for the Schwinger functions in

analogy with the correspondence between Wightman positivity and OS-positivity
in the standard case [12].

To this purpose, we note that for any F, Ge&, putting F = Fd \ {qk ^ 0} and
by using the weak spectral condition we have

Wd(F$ x Gd) = Wd{F* x G). (3.2)

Proposition 3.2. The Hubert space structure condition W3' with Hubert seminorm
pw which is a ^-continuous and non-degenerate (namely kεrpw = Jίw) implies that
there exists seminorm p on &(U%) which is continuous in the £f(M4

+)-topology
{briefly @{U\)-continuous) such that for any F, Ge @(U\)

\Wd(F*xG)\^p(F)p(G). (3.3)

Proof. For a given seminorm pw on J* which is ^-continuous one defines a new
seminorm pd on & by

Since d,d~ι are ̂ -continuous maps, pd is also ^-continuous and one may define
a seminorm pd on the Fourier transforms by

(3.5)

One also has that if pw is a Hubert seminorm derived from the Hubert scalar
product (i7, G) on ̂ , then also

[_F,G-] = (Fά^,Gά^) (3.6)

is a Hubert scalar product on J* and

pd(F)2 = [F,Fl (3.7)

Furthermore, the non-degeneracy of pw implies that

(3.8)

In fact, if Fekevpd, then by the above definition Fd_1ekevpw = Jfw and by
(3.2) FεJίwd Conversely if FEJV^^ then by (3.2) Fd_1eJ^w = kerpw, and
therefore by (3.4) Fekeτpd. Hence, by (3.5) Fekevpd. Now the Hubert product [,]
corresponding to pd defines a tempered distribution o n l x J with support in
{q%^0} (by the weak spectral condition and (3.8)), i.e. a Hubert product on
dSφ.%) which is ^ ( R + )-continuous. Thus it defines a J*(β + )-continuous
seminorm p on ${ΰ\\

P(Fd\{q°k £ 0}) = pd(Fd\{q°k £ 0}). (3.9)
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In conclusion, since the set {Fd\{q%^0}:Fe@} coincides with 0β(U\) [12], p
is defined for any Fe&(M%) and (3.3) is satisfied.

Proposition 3.3. Given a set of Wightman functions satisfying the Hilbert space
structure condition W3' with non-degenerate ^-continuous seminorm pw, there exists
a non-degenerate Hilbert seminorm ps on $ + such that for any F + &+,

Ps(F+)^\\F+\\r, (3.10)

where \\'\\y is some Schwartz seminorm, and furthermore the corresponding Schwinger
function satisfy the following Hilbert space structure condition: VF+G+e&+

\S(ΘF*xG+)\^ps(F+)ps(G + ). (3.11)

Proof By Eq. (2.12), the fact that for every F + e ^ + , F+=FF

+

L

d \{q%^0
and Proposition 3.2 we have

So_putting ps(F + ) = p(F + l we have (3.11). The bound (3.10) follows from
J>([R + )-continuity of p\ the 08 + -continuity of ps follows from the continuity of
the mapping F+->F+.

4. Modified Euclidean Axioms for Indefinite Metric OFT

The above discussion allows us to solve the problem of characterizing the euclidean
formulation of indefinite metric quantum field theories beyond the vector space
(or local) structure discussed in Sect. 2. (For the need of a Hilbert space structure
and its relation with the construction of "charged" states see [8] and the brief
discussion in Sect. 3.) It should be remarked that, as discussed above, the weak
spectral condition allows us to get the euclidean formulation of QFT (by analytic
continuation) even in the case in which the infrared singularities are so severe (e.g.
of so-called confining type [3,11]) that the Fourier transform of the Wightman
functions < Ψ9 U(x) Ψ}9 Ψ a local state, are no longer measures and therefore the
space-time translations cannot be described by unitary operators (unbounded
representations of space-time translations) [3,11]. The problem however arises for
the converse way, namely the problem of characterizing those properties of the
Schwinger functions which allows us to recover the Wightman functions and the
possibly unbounded representations of the space-time translations. In particular,
in this general case, the standard treatment based on the existence of a contractive
semi-group in the euclidean space of states can no longer be used, since the latter
property characterizes the existence of a unitary group in Minkowski space. The
purpose of this section is to provide a solution for this problem.

As a consequence of the result of Sect. 3 we are led to consider the following
modified euclidean axioms for indefinite metric QFT's:

051 (Temperedness): For each n9 Sne^0([R4 n) and obeys the hermicity property

SJf) = Sn(θf*).

052 (Euclidean covariance): Sn(f) = Sn(f{aR}) for all ReSO(4), aeU*.
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OSS' (Hilbert space structure): There exists non-degenerate Hubert seminorm ps

on & + such that for every F + e ^ + ,

Ps(F+)^\\FF

+

L

d\{qo

k^0}\\^=\\F+\\^ (4.1)

for some Schwartz seminorm || | |^ on J*([R +) (briefly: ps is 88 (U\ )-continuous) and
furthermore, for any F+, G+ e&+,

|S(ΘF*xG + )| = (4.2)

OS4 (Symmetry): SΛ(xπ ( 1 ),...,xπ { n )) = S ^ , . . . , x j for all w and all permutations π
of n elements.
Now we have:

Proposition 4.1. The Hilbert space structure condition OS3' implies the Laplace
transform condition OSΓ.

Proof. We start by considering the case in which F+ = 1, G + has only the
^-component g+n non-vanishing and it is of the form

g + n(Xl>'- ,Xn) = gi(Xl)9n-l{X2-Xl> '>Xn-~Xn-l) ( 4 3)

with ^ ( 0 ) = l and g^e^iUW ^ - l e ^ t R ^ " " 1 ^ . Clearly such functions define
elements in Jf+. Then the @(U\)-conύmx\\.y (4.1) gives

and (4.2) yields

Since ^(0) = 1 we have

\sd

n-Λgn-i)\^Ui\\Agn-ih. (4.4)

This means that condition OSΓ holds.

Now we can establish the link between the Euclidean and the Minkowski space

formulation.

Theorem 4.2. 1. Given a set of Schwinger function satisfying OS1, OS2, OS3' and
OS4, we can associate to them a Hilbert space of states Jf's with a positive scalar
product (,)s and a non-degenerate metric operator has such that

where [ ] s is the equivalence class with respect to the Schwinger ideal.

ii) the set of euclidean "local" state Q)s is dense in JΓS.

2. The Wightman functions corresponding to the Schwinger functions via Laplace
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transform ((2.10), (2.11)) satisfy the modified Wightman axioms Wl, W2, W3', W4

and W5 (Sect. 2 and 3) with pw defined in terms of ps.

3. The Hubert topologies defined by ps and pw turn S)s and Q)w into Hilbert spaces
Xs and $ΓW with a natural identification between them, which preserves the inner
product structures.

Proof. 1. By OS3', the Hilbert product which defines ps can be used to define a
positive scalar product and therefore a norm on <3S. Hence by completing £$s with
respect to such a norm, we get a Hilbert space Jf s and i) and ii) follow.

2. The existence of Wightman functions satisfying Wl, W2, W4 and W5 is
guaranteed by the Laplace transform condition which is implied by OS3'
(Proposition 4.1), so Proposition 2.2 applies. As far as W3' is concerned we remark
that the mapping w defined by (2.13) is &(R% )-continuous, since

^ | | F + | | ^ . (4.5)

Hence, the continuous extension w maps &(M\) onto a dense subspace Θs of JΓ5;
furthermore since 0β + is dense in ̂ (U\) and Wd is a distribution in 38(U\)\ the
continuous extension of the equation

W\F% xG + ) = (w(F + )MG + )>s (4.6)

gives for any Hl9 H2e0β{U\)

W\H* x H2) = <w(H1),w(H2)> s, (4.7)

i.e. by Eqs. (2.1) and (3.2), for F, GeB,

W(F*xG) = (w(F),w(G))s (4.8)

(see [12] Sect. 4). Condition OS3' then gives

where pw(F) = ps(w(F)). One has that
a) pw is a Hilbert seminorm
b) pw is J'-continuous as a consequence of the ^+-continuity of pS9 the
continuity of w and the ̂ -continuity of the mapping F^>F.
c) pw is non-degenerate, i.e. ker pw = Jίw, in fact if FeJfw, then by (4.8) and the
non-degeneracy of ps we have w(F)ekerp s, and furthermore pw(F) = ps(w(F)) = 0,
i.e.

3. We remark that the seminorm p on &(M +) constructed from pw (Proposition 3.2)
has the form

= ps(w(F)). (4.10)

Since (4.10) is SS{U\ )_-continuous, 2 = J + /^K^ is p-dense in 08{U\ )jJί^ = @w.
By Proposition 2.2 ώp = Xw can be naturally identified with §s = Jfs, and this
identification preserves the inner product structures.

Remark. As a consequence of the lack of OS-positivity, the euclidean invariance
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of the Schwinger functions does not give rise in general to unitary representations
of the three dimensional space translations and rotations, nor to a contractive
semi-group for time translations. Actually, for the three dimensional euclidean
group we get representation by operators °l/i^a,R) which preserve the indefinite
inner product <(,)s (^-unitary representation). For the time translation we get a
semigroup P(ή, t ^ 0 of operators which are symmetric with respect to the inner
product <, >s (^-symmetric semi-group). Also for the boosts the situation is in general
different from the standard case and strictly speaking one does not get the same type
of virtual representations of ref. [19]. The counterpart of these phenomena for the
Poincare group is that the Poincare covariance of the Wightman functions only
guarantees the existence of ^-unitary representation of the Poincare group; in
general one expects that the operator °l/(a\ aeU4 as well as the °lί(A) (Λ-Lorentz
boost) are unbounded.
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