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Abstract. We consider a family of maps in a Banach space E near the situation
when the derivative at the fixed point has two pairs of complex eigenvalues
lying on the unit circle, the other part of the spectrum being strictly inside the
unit disc. We focus our attention on the region of the parameter space where
the truncated normal form of the maps shows a bifurcation of a family of
invariant T1 -circles into a family of invariant T2-tori. We show that this
problem needs a 3 dimensional parameter unfolding and that, for the complete
maps, bifurcation occurs at points yω>Ω, where ω is the rotation number on the
non-normally hyperbolic ^-circle, and e±2ιπΩ are the eigenvalues of the con-
stant matrix conjugated to the non-contracting part of the linearization on the
normal fiber bundle over T1. Making some non-resonance and diophantine
assumptions on (ω, Ω) leading to a positive measure Cantor set in T2, we show
that in paraboloϊdal regions of the 3 dim. parameter space we have "clean"
bifurcations as for the truncated normal form. The complement of these
regions forms a set of bubbles such as the ones obtained by Chenciner in
[Chen] for a codimension 2 problem for maps in IRA The main tool here is a
generalization for a matrix function on T1, close to a constant, of the quasi-
conjugacy to a constant, modulo a minimum of additional parameters
("moved" quasi-conjugacy). For the infinite dimensional case we use a C00

decoupling result on the angular dependent linear parts into a contraction, still
angular dependent, and another part quasi-conjugated to a constant matrix.
This type of analysis applies for a wide range of problems, where truncated
normal forms of the maps give bifurcations from Tn to Tn + 1 tori, and this needs
a (n + l)-dimensional parameter unfolding.
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1. Introduction

Bifurcations of invariant tori of dimension larger than one for families of maps, or
larger than two for families of vector fields in dissipative systems is a puzzling
problem. There are experimental evidences of the existence of such tori, for
instance in the Benard convection problem [Go-Be] and in the Taylor Couette
problem [GRS]. First mathematical attempts to study such bifurcations appeared
in the papers by Sell [Sell] and Chenciner and Iooss [Ch-Io], where under very
strong assumptions, they prove the bifurcation result. Weakest assumptions
[Ch-Io] were mainly that there exists a T"-torus invariant under the mapping at
criticality (non-normal hyperbolicity), where the non-contracting part of the
linearization on the normal fiber bundle (over the torus) is conjugated to a constant
matrix with eigenvalues of modulus one. Adding more assumptions on the rotation
vector of the map along the invariant torus and on the arguments of the eigenvalues
of the constant matrix, they proved that, under a transversality condition in
the parameter space, a family of TΓ2-tori persists near criticality and a family of
invariant T"+ ^tori bifurcates. All those assumptions made people think that these
bifurcations are infinite codimension phenomena and then occurs rarely!

Another way to obtain high dimensional invariant tori is to study high
codimension singularities. For instance, if we consider the very popular codimen-
sion 2 problem of a two parameter family of vector fields with a fixed point at the
origin, such that at criticality, two pairs of complex conjugate eigenvalues are on
the imaginary axis (Hopf-Hopf interaction), then under non-strong resonance
conditions ([Gu-Ho] Sect. 7.5, [Io-La], [Io 81]) one can easily show, depending on
some coefficients, that invariant T3-tori can bifurcate from the secondary branch
of invariant T2-tori. In fact, this bifurcation is only clear on the truncated normal
form of the vector fields. If we consider the true vector field family (a generic one),
one could only prove that the T2-tori and TΓ3-tori families exist outside of a little
neighborhood (called a "black hole" on [Io 81]) in the parameter space, of the set
where precisely bifurcation occurs for the normal form. This is due to the lack of
normal hyperbolicity in this neighborhood as in [Chen], [Los 1].

In this paper, we show that such codimension 2 problems have to be unfolded,
using an additional parameter, in the neighborhood of the bifurcation manifold. In
this three dimensional parameter space, there is now a Cantor set of points where
the ideal situation (assumed in [Ch-Io]) occurs. This leads to a Cantor set of little
paraboloidal regions where we know what happens for the dynamics (Fig. 1), and a
complementary region ("bubbles") where we don't know yet.
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Fig. la-d. The parameter space with the Cantor set of paraboloidal regions and the bubbles, a The
non-normal hyperbolicity region in the 3 dimensional space b. Section view c. Paraboloidal region
and one bubble in the plane section d. One paraboloidal region in the 3 dimensional parameter
space

A strong analogue of such a situation with one parameter less, was obtained by
Chenciner [Chen] in the neighborhood of a degenerate Hopf bifurcation for maps,
where such bubbles and parabolic regions in the parameter plane occur, near the
circle saddle-node bifurcation curve, obtained with the normal form. In the same
spirit, Los [Los 1,2] obtained also bubbles and parabolic regions in a codimension
2 problem involving a doubling of invariant TMori. A similar phenomenon was
also obtained by Braaksma and Broer [Bra-B] in the study of a quasi-periodically
forced Hopf bifurcation, leading to a bifurcation T ->TF + 1 . Their study is however
simplified by the fact that the flows on the T"-tori are linear in such a problem while
this is not the case in our study for generic families. Another result of the same
type was obtained by Scheurle [Sch] in the study of reversible vector fields where
he shows how high dimensional invariant tori bifurcate.

The techniques developed below are directly adapted from the one used by
Herman [Her] in his proof of the invariant curve theorem. This one is the main
tool in the works of Chenciner [Chen] and Los [Los 1] for bifurcation problems.
Namely, to prove the persistence of T^tori, we extensively use the strong implicit
function theorem in Frechet spaces in the version of Hamilton [Ham]. The
translated curve theorem of Russman [Russ] in the Herman formulation [Her],
[Bost], or its adaptations [Chen], [Losl] are now completed with a quasi-
conjugacy theorem for matrices near a constant one, generalizing a result obtained
on a particular case in [Los 2]. An analogous result, for vector fields and in the case
when matrices are close to a diagonal one with simple eigenvalues on the
imaginary axis, is obtained by Moser [Mos]. He was the first to show the necessity
of adding parameters to obtain the quasi-conjugacy to a constant. Our result gives
the exact number of additional parameters, necessary in any case for the quasi-
conjugacy and this allows our system to satisfy the conditions described in
[Ch-Io]. Finally the bifurcation result follows quite easily from the [Ch-Io]
results, using these additional parameters defining new parameter space coordi-
nates. The bifurcation to rc-dimensional invariant tori occurs generically on a
Cantor set which is defined by an n parameters set having an rc-dimensional
positive measure. So we say that in some sense it is "quasi-generic."
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2. Position of the Problem

2.1. Center Manifold and Normal Form

To motivate our study, let us show several so-called codimension 2 singularities
where we obtain a situation on which the techniques developed in this paper
directly applies. We restrict our examples to families of maps, since analogous
techniques could as well be adapted for singularities of vector fields (like the Hopf-
Hopf interaction).

Let us consider a family of maps in a Banach space E:

Z->Z' = ̂ μ(Z), μeWLk

9ZeE9 (1)

where & is C00 in a neighborhood of 0, and: ^Γ

o(0) = 0 and Dz&
r

0{0) = &'0 is such
that ^o has a spectrum separated into one part σ_, inside the open unit disc in the
complex plane, and another part σ0 on the unit circle, which is assumed to be a
finite union of isolated eigenvalues of finite multiplicities. The space E is then
decomposed as follows [Kato]:

£ = £ 0 © £ _ , (2)

where the projections P0,P- respectively on Eo and E_ commute with «̂ "θ5 and the
restriction TOt _ of 2Γ0 on £ O j _ has exactly the spectrum σ0> _.

A first very useful result is the center manifold theorem (see for instance
[Ma-Cr], [Io 79]), which says that all the dynamics of the iterates of 3Fμ is locally
attracted towards an invariant manifold Jίμ of class Ck (for any fixed k, Jίμ exists in
some neighborhood of 0) described as follows:

Z = X + Φμ(X);XeE0,
w h e r e φ o ( 0 H 0 and DxΦo(0) =

We might build Φμ in E _, but it is much better to be free to allow a part of Φμ in Eθ9

since this allows us to choose the nicest possible coordinates in Eo to obtain the
trace of the map !Fμ on Jίμ written in normal form. Since it is clear that the
interesting dynamics lie on a center manifold, we need to study such a normal form.
The very simple result shown in [Io81], see also [Bel], is that we can find Φ
such that the map on Mμ takes the form:

X^X' = Fμ(X) = T0X + Nμ(X) + O(|| X Π 1

No(0) = 0; DxNo(0) = 0; P is arbitrary and) [ }

Nμ(TfX)=TfNμ(X)9 (5)

To* being the adjoint of To in the finite dimensional space Eo.

2.2. Hopf-Saddle-Node Interaction

Here we assume σo = {l}ί7{>ί,o}(7{Xo}, where λo = e2iπω°; all these eigenvalues
being simple, we write:

X = X'ξo + Z'ζo + z ζoeEo, (6)
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where ξθ9 ζ0, and ζ0 are the eigenvectors of To belonging respectively to the
eigenvalues 1, λ0 and λ0. We consider the map in 1R x C : (x, z)-*(x', z'). Let us make
a little remark here due to the imposibility to check numerically or physically
whether ω0 is rational or not. The right way to do, in order to have a generic family,

Y

is to consider ω0 = — (m ̂  3) and play with a "detuning" parameter to allow the

argument of the perturbed eigenvalue λ (close to λ0) to vary in a neighborhood of
2πω0. The idea is to compute the normal form in the worst case (ω 0 rational) to
have smooth dependency of the coefficients in the parameters. Hence, by essence
we need here 3 parameters (defined below) to unfold the singularity. Using the
characterization (5) it is easy to show that the normal form is given by:

where φ, ψ0, ψί are polynomials in their arguments, φ being real and: φ(0) = ψo(0)

= ^—(0) = 0. After rena
ox

the principal part of (7):

= ^—(0) = 0. After renaming the parameters, we only need (μ, v) e 1R x C given by
ox

z\z\2 + ci z m ~ 1 +h.o.t . ;

Im(v) is the "detuning parameter" discussed above, and all the coefficients ao,...,cί

are C00 functions of the parameters (μ, v).
The study of all bifurcations for the family of maps (8) in the case m > 3 is

exactly the same as the one for vector fields derived in ([Gu-Ho], Sect. 7.4). One
sees on the truncated normal form at quadratic order that there are many cases
(case II and III of [Gu-Ho] Sect. 7.4) where bifurcation of a family of invariant
circles to invariant T2-tori occurs. These T2-tori here appear as a Hopf bifurcation
of fixed points to invariant circles for the map in polar coordinates when we forget
the argument of z. In fact, if we take account of the full map (7), it is not possible to
prove directly the occurrence of such a bifurcation, but just prove the tori exist
outside a little neighborhood of the bifurcation surface (obtained with the normal
form) which is cylindrical here (independent of Imv) in the parameter space.

23. Hopf-FHp Interaction

Here we assume σo = { —1} U{λo}U{λo}!> where λo = e2ίπω°, all eigenvalues being
simple, we write (6) again where the eigenvector ξ0 belongs now to — 1. Derivation
of the normal form is as in Sect. 2.2. The characterization (5) of the normal form

v
gives a functional equation easy to solve: when ω0 = — we have the following map
i n R x C : m

χ'=-χ + χφo(μ,χ2,\z\2,zm,zm) +

+ x z<m'2> + ίψ2(μ,x2, \z\2,zm) + z<""/2>"1 ψ3(μ,x\ \z\2,z») + 0[||X||

(9)
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where terms in zw / 2 disappear when m is odd, and φj9 ψj are polynomials in their
arguments, φ 0 being real.

If m even ^ 8 or odd ^ 5, the truncated normal form at cubic order has the same
symmetry as the codimension two problem studied in [La-Io] whose phase
diagram are related to the problem studied in [Gu-Ho] Sect. 7.5.

In this case we recover the circle doubling phenomenon studied in [Lost ]
which already leads to complicated results for the full map (9), but only needs two
parameters. Now, as in the case considered in Sect. 2.2 there are many cases where
bifurcation T 1 ->T 2 takes place on the truncated normal form. In fact here there is
not only the T 1 ->T2-bifurcation but also, in some parameter space region, a
family of invariant couples of circles T 1 bifurcating into invariant couples of
T2-tori (inside a couple each element is mapped to the other) [Io 84]. Here again, if
we take account of the full map (9) we shall need the three real parameters (μ, Rev,
Imv) as in Sect. 2.2 to obtain similar results as will be described below in Sects. 4
and 5, with the same techniques.

2.4. Hopf-Pitchfork Interaction

Another interesting case which occurs quite frequently is the one considered in
Sect. 2.2 but in a presence of a symmetry S which commutes with #^( ). We assume
that S acts trivially on ζ0 but not on ξ0. Since the symmetry property propagates
on the center manifold [Ruel] and on the normal form [Elp & al], we have a map
(7) such that φ is odd in x and tp0, ip1 are even in x. Hence we recover a mapping
(nearly) like (9), with no terms in zm/2, and + x instead of — x in x'. As a result, here
again we have T1—•T2-bifurcations and also TΓ1-pitchfork bifurcations on the
truncated normal form. The proofs for the full map are the same as in case 2.3 (same
"bubbles" in the same parameter space).

3. Hopf-Hopf Interaction for Maps

3Λ. Normal Form

We now consider the case when σo = {λo}U{Xo}U{λ1}U{X1}, where λj = e2iπωj,
j = 0,1, all eigenvalues being simple, and we write:

X = zo.ζo + zo.ζo + z1.ζ1+z1.ζ1eEo, (10)

where (,- is the eigenvector of To belonging to λpj = O, 1. This normal form was
studied by Jost and Zehnder [Jo-Ze] with a two dimensional parameter space. As
indicated in 2.1 the map reduces to a map in (C2: (zOί zi)~Kz'o> ZΊ) of the form (μ is a
parameter in Rfc not yet precised):

where n.{μ,0) = 0, ^ - ( 0 ) = 0, j , fc = 0,1, and (5) gives here:
dzk

Πj{μ, λozo, I o z o , λίzu Xίzι) = λjnJ{μ, z0, z0, zu zλ), 7 = 0,1, (12)
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i.e. the normal form is equivariant under the group (00,0J-K0O + ωo> θi-\-ω1) of
T 2 , which is discrete if ( ω o ^ ^ e Q 2 , and is the complete group of rotation of T 2 if
ω 0 and ω1 are both irrational and not rationally related. The monomials zp

oz%z\z\,
of n0 and nί which are not identically 0 satisfy:

ϊoτn0,

ωo(p — q) + ω1(r — s — l)eΈ for nι.

It is natural, as explained in 2.2, to take ω 0 and ω1 both rational, paying this fact by
the occurrence of at most two "detuning parameters" for the two perturbed
eigenvalues near λ0 and λv As a consequence we need 4 real parameters to derive
the normal form in its full unfolding: 2 parameters represent the moduli and 2
others the arguments of the perturbed eigenvalues. For the following study we do
not need the global writting of the normal form, it is sufficient to assume:

moωo + mιωι GZ, has no solution for Imol + lmJrgΛΓ, (14)

then the truncated normal form Pμ of Fμ, at order N — 2 reads:

where xp0 and ψι are polynomials in their two last arguments, depending smoothly

on μ, each of them have valuation larger than one and degree in
(|zo|

2, |z x |
2). The integer N will be fixed latter. L 2 J

3.2. Primary Bifurcation. Normal Hyperbolicity Region

Since we are only interested in the T1-^T2-bifurcation we write the normal form
(15) in an easier form for computation. The writing (15) is symmetric in z0 and z1? so
there are two equivalent Hopf bifurcations, the first one stands in the z 0 = 0 plane
and the second in the z 1 = 0 plane; we choose this last one as the primary
bifurcation, the other choice leading to equivalent results.

We can now define the primary bifurcating invariant curve for Pμ which, by the
rotational invariance is a circle Γo provided that N^5 in Sect. 3.1. This circle is
defined by:

z x = 0 , zo = Qoe
2i*θo,θoeT1

9 (16)

where

2 ,0) | . (17)

Equation (17) is solvable with respect to ρ0, provided that:

ar = Re - ~ (0,0,0) + 0, (generic hypothesis), (18)

denoting by X the second argument of ψ0. We then obtain:

^ where μOr = Re(μo). (19)
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We assume in what follows, that:

α r <0, (20)

then μOr > 0 when Γo exists (supercritical bifurcation).
The restriction of Pμ on Γo is simply a rotation:

and

9o -> θ'o = θo + ωμ; where

1
μ 2π

1
0 2π

a^Im^. (0,0,0),
oX

(21)

(22)

The normal hyperbolicity of Γo under P^ is easily defined with the following change
of variables from C 2 t o T ' x K x ( C :

(zo,zi)^φ,x,z), with z = zι,zo = ρo(i+x)e2iπθ, x close to 0, (23)

Pμ is now a map i n T ' x R x C : (θ,x,z)->(6>,X,Z),

(24)

where we define the parameters ε, v, σ by:

gfe
(25)

the map:

(26)

is clearly a local diffeomorphism and then defines new coordinates in the
parameter space. From now on we shall write:

= (ε,v,σ,ωo-ωμ). (27)

The terms Rb Qh Sh i = 0,1, are polynomials in their last arguments depending
smoothly on the parameters, the valuation is one in (x, \z\2) and two for Qu the
degree being N — 3 in (|z|, x).
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When we consider the full family Fμ we expect to have problems near ε = 0 and
near v = 0. In the new variables (θ,x,z) the map Fμ takes the form:

θ = θ + ωμ + R{μ, x, \z\2) + R(μ, θ, x, z, z)

(28)

-Ru and similarly for Q, S, as defined by (26), and:

\A\\ _ι_ ιeι _ n(p(N- i)/2 _• - I Λ Γ - U /9Q\

where R =

where we used the estimate: (r + s)N 1 ^ C ^ 1 +sN *), C >0. In (28) all functions
are smooth in their variables, and estimate (29) says at what order the dependency
in θ (or the breaking of the rotational invariance) arrives.

To prove the persistence of a normal hyperbolic invariant closed curve near Γo

under the map Fμ, we can use the Ruelle-Takens technique [Ru-Ta] (see also
[Lan]). By making the change of variables:

(30)

we obtain a new form of the map where it is easy to see that the condition:

ε — 0{V), {ji)

gives us the right size for the perturbations of the hyperbolic linear part of (28),
since the perturbations have to be of smaller size than the rate of normal
hyperbolicity of Γo, here min(ε, v). This result (31) follows from the identity:

maxmin
JV —4 N-4 \ N (
^ α , — β J =j~l (take α = j

N
= — -

Figure 2 shows the region of the parameter plane (ε, v) corresponding to (31).
In Sect. 4 we study what happens in the region V of Fig. 2 not covered by

estimate (31). We shall see that we need the parameter σ to be able to obtain a
persisting T 1 .

primary Hopf
bifurcation

neighborhood 'V
of non normal
hyperbolicity

Fig. 2. Persistence of invariant T 1 through normal hyperbolicity, JV ̂  5
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3.3. Secondary Bifurcation. Normal Hyperbolicίty Region

On the truncated normal form Pμ the secondary branch is obtained by looking for

(Qo>Qι) solution of the system:

(32)

where ψ0 and ψγ are defined by (15) and

7 — n P2iπθo 7 —n p
z Q e z Q e

Here we are only interested in what happens near the bifurcation point when v
changes its sign. The solution of (32) can be written as follows:

dr brcr

Q\=-
 α'\αrdr-brcr

(33)

where we defined:

and where we assume

αr + 0 , α A - b Λ Φ 0 , (34)

Y being the last argument of xp0 and \pί. Conditions (34) are generic. Let us now
consider the region of the (ε, v) plane where:

and define x and y by:

v = o(ε),

zo = βo-(i+x-εηe2

(35)

then the map Fμ written in R 2 x T 2 as (x,y,θQ,Θι)-*{X, Y,Θ0,0t) satisfies:

X = x + 2arρ
2(l + O(\μ\))x + 2crρ\(\ + O(\μ\))y + 0,

Y = y + 2brρ
2(\ +O(\μ\))x + 2drρ

2(l+O(\μ\))y + O2

where ωjijx) is defined by

ω/μ) = ( , + — arg [1 + μj + Ψj(μ, ρ2, ρ2)] ,

and

O-O^ε
-α + (Λί-l)/2

, 1 = 1,2,3,4.
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Boundary of Fig. 2

Fig. 3. Persistence of bifurcating invariant TΓ2 through normal hyperbolicity. For the figure we
assumed ardr — brcr>0, hence v>0 by (33)

Since the eigenvalues of the matrix:

ίlarρl 2crρl

\2brQl 2drQ\
(38)

are — ε + o(ε) and — 2v + o(v), the normal hyperbolicity argument will give
persisting invariant tori, provided that:

? - α + (JV-2)/2_
? - α + (JV-l)/2

= o(v).

This condition is compatible with (35) since we can find: α = min 2,
N-4

(39)

, and

the corresponding region where (35) and (39) hold is indicated at Fig. 3 (for N = 5
we have ε6/5 = o(v)).

In Sect. 5 we study what happens for these T2-tori in the region close to the
ε-axis, touching the shaded region of Fig. 3. We shall see that for this bifurcation we
need an additional parameter (in fact σ).

3.4. Remark on Tertiary Bifurcation

We do not study here the eventual tertiary bifurcation TΓ2->T3, which might be
computed again on the truncated normal form, provided that JV^7 in (15), if the
matrix (38) undergoes a Hopf bifurcation in the (ε, v) plane. The idea is exactly the
same as here, except that there is a degeneracy at cubic order which gives a few
more technicalities for the estimates of the normal hyperbolicity region (see the
same kind of computations in [La-Io]). For the study inside the non-sufficiently
normal hyperbolic region, we need the full unfolding of the family involving the 4
dimensional parameter space defined by (15), to show the persistence of T2-tori as
well as for the bifurcating TΓ3-tori. We do not derive this here since this could be
done exactly as the case studied in this paper.
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4. Persistence of an Invariant Curve

4.1. First Idea of the Problem

In this part and the next one we consider, for more clarity, the problem in a 4
dimensional space E. This restriction is due to the fact that if we consider the most
general family restricted to the center manifold (of dimension 4) this would not
allow us to consider a C00 mapping (see for instance [Ma-Cr], [Io 79]). In Sect. 6
we give a mean to avoid such an assumption. Not making this restriction here
should introduce too many inessential complications.

Here we prove the existence of C00 invariant curves when the parameters lie on
some paths going through the region Ψ* where the normal hyperbolicity fails. This
family of paths is parametrized by a set which has a Cantor x Cantor structure,
each of these Cantor sets having a positive density of measure in R, near the origin.
To prove the persistence of invariant curves Braaksma and Broer [Bra-B] and
Broer et al. [BHT], used the Zehnder formulation [Ze] of the strong implicit
function theorem. We don't know whether here this would give the full Cantor
structure described at the end of this chapter (see the invariant curve theorem).

The method for our proof is similar to the ones in [Chen], [Los 1,2] and is in
the spirit of Moser's and Russmann's approaches [Mos], [Russ], i.e. we introduce
some parameters leading to a "moved" curve theorem, using Herman's formul-
ation [Her], [Bost]. In this case we need to introduce two new parameters, the first
one is a rotation parameter as introduced in [Los l ] and the second one
corresponds to the "twisted" quasi-conjugacy result obtained in the appendix
(Corollary 5 of Theorem A2).

Once this result is obtained we prove that the family of paths described above is
given by cancelling these two parameters.

4.2. Position of the Problem

We consider the generic family of C00 diffeomorphisms (28) of T 1 x (R, 0) x (C, 0)
obtained in Sect. 3.2, after the change of variables z = ε1/2z' and suppressing the
primes:

(40)

+ v)z + εzAl(x, |z|2) + Q3

μ(θ, x, z, z); ,

where Aι

μ, i= 1,2,3 are polynomials of degree N — 3 in (x, \z\) and of valuation 1 in
(x, \z\2) while A2 has valuation 2, with coefficients depending smoothly on the
parameter μe(R 4 ,0). The Q\, i= 1,2,3 are C00 perturbations of order O(ε{NI2)'ιl
where C00 stands for the parameter and phase space dependencies.

The truncated normal form iVμ defined by βj, = O, ί = l , 2 , 3 has a trivial
invariant circle:

* o = T 1 x { 0 , 0 } , (41)
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and Nμ\<$0 is simply a rotation of angle ωμ. We look for a C0 0 invariant closed curve,
C1-close to ^ 0 for sufficiently small Qι

μ. If this curve exists it is described as a graph:

9 (42)

where ψ,τ are C00 functions on a neighborhood of the origin in 1R and (C. The
invariance of # under F μ is made explicit by the following functional equation:

Fμ(θ, ψ(θ), τ(θ)) = {Θ(θ, ψ(θ), τ(θ))9 ψ(θ)9 τ(Θ)}. (43)

This kind of equations cannot be solved directly in the non normal hyperbolicity
region Ψ* of the parameter space (see Fig. 1). We need, as in the KAM theorem,
some assumptions on the rotation properties. Let us first precise some notations
which will be used in what follows:

i) ΊV^ if<£ are neighborhoods of the origin, respectively in IR and (C. ΊV is a
neighborhood of T 1 x {0,0} in T 1 x R x (C. The study of the family Fμ is now
restricted to these neighborhoods.

iϊ) We introduce the spaces:

where C°°(X, Y) is the space of C00 maps from X to Y both being compact
manifolds. By [Ham] these spaces are tame Frechet spaces for the C00 topology
defined by the countable family of Ck uniform convergence norms.

iii) Rω is the rotation by ω in TΓ1: θ^θ + ω.
iv) Diff+fT1) is the group of C00 diffeomorphisms of the circle preserving the

orientation.

4.3. The Rotated-Twίsted Theorem (R-T)

In this part we prove the key result of the paper in the sense that we define the
rotation and the twist parameters which will be cancelled later. Let us define the
map:

(λ ήeT2. ι ( 4 4 )

For the purpose of this part it is sufficient to consider the following form of the
family Fμ:

(45)

+ V ) Z + P3(θ, X, Z, z)

where PJ = εAμ + Qμ9 j=ί,2,3. We write Π = (P\P2,P3)ε^ in which we have
suppressed, for more clarity, the parameter dependencies, even if it is clear that all
quantities in what follows depend on μ.
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R-T Theorem. Let (ω,Ω) be in T 2 and satisfy the diophantine condition:

3 C > 0 , 3 / ? ^ 0 / V - e Q , \rΩ — qω — p\^ — Γ T ^ - , r = 0,2. (46)

If Πe^ is sufficiently small, there exists (λ; ήeTΓ2, (ψ,τ)eS>, (α,fc)e(R2,0) and
/zGDiffϊΠΓ1) such that: the closed curve <g = {(θ,ψ(θ), τ(0)); θeΈ1} CT 1 x R x (C is
invariant under &λ;t° Fμ. The first projection (πι: T 1 x R x (C—•TΓ1) of {&λ;t ° Fμ)^
is C00 conjugated by h to the rotation Rω. The linear part of (&χ;t° Fμ)^ on the
normal bundle over <$ is quasi-conjugated (see appendix) to the constant matrix:

'ί-ε + a 0

0 e2iπΩ{\+v + b);

Moreover the map:

Π^(ψ, τ, λ, ί, h, a, b): ( ^ , 0 ) ^ [ l x T 2 x DiffϊfT1) x R2,(0,0) x (λ0, t0) x (Id) x (0)]

is tame, where:

= Ω — ωx — σj

We remark that condition (46) with r = 2 implies the same condition with r = 1 (the
constant C being different), i.e.:

, (ψ, τ), P1) (0) = 0 + ωμ + 1 + P\θ, ψ(θ), τ(θ\ τ(0)), J ( }

These three conditions (r = 0,1,2) are needed for the quasi-conjugacy result
obtained in Corollary 5 of the appendix.

4.4. Proof of the R-T Theorem

We first define the following functional operators:

and:

(50)

To prove the theorem we have to find ((λ; t), (ψ, τ), h) in T 2 x g x DiffίflΓ1) so
that:

(51)

(52)
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For the truncated normal form, which is reduced here to the linear part, i.e. 77ΞΞO

we have trivially:
Φ(λo,(090),0) = Rω \

),0) = 0, for any t.) { }

The proof of the R-T theorem is based on the implicit function theorem on Frechet
spaces in the formulation of Hamilton [Ham]. There are two main steps:

- The conjugacy to the rotation Rω;

- The local inversion of the partial derivative — *-— which needs the twisted
8{t9xp,τ)

quasi-conjugacy to a diagonal constant matrix whose complex eigenvalues have
arguments + 2πΩ (see the appendix, Corollary 5).

4.4.1. The Conjugacy to the Rotation Rω. The first part of the proof only concerns
the map Φ:

Proposition 1. Let ω be a diophantine number (satisfying (46) with r = 0). There
exists a neighborhood J^ofOinS'x C00(/#^,T1) such that for every ((ψ, τ), P1) in Jί
there exists: λωeΎ1 and /^eDiff+fΓ1) satisfying:

ί) = h-ίoRωohω, (54)

the map: £ x Cco(1T,Tί)3((xp,τ\Pl)->(λω,hω)eτ1 x Diff^fΓ1) is C1 tame.

This proposition is a direct consequence of a result by Herman (see [Her 79], Sect.
IΠ.4.2) and the Herman-Yoccoz theorem [Yoc]; the C1 nature of the map is
explicitly proved in [Los 1].

4.4.2. Partial Derivative of the Map #C We study now the map Jf where λ is given
by Proposition 1. In order to apply the theorem of Hamilton to this map we have
to prove that the Gateaux partial derivative:

admits a local tame inverse. (55)D^.ΞΞ ,
d(t,\p,τ)

This means that for every K in $ and every ((ψ, τ), Π) in some neighborhood of 0 in
S x *§ the following linear equation:

ψ,Aτ,Aτ) = K, (56)

has a unique tame solution: (A^A
By a direct computation we obtain:

Aτ o Φ + (Dτ o Φ)AΦ + A21Aψ + A22Aτ + A23Aτ + RAt)'

where {A^} is the Jacobian of the map (x,z,z)->(X,Z,Z), calculated at
{(ψ(θ), τ(θ), τ(θ)), θ G T 1 } , for every (ψ, τ) in some neighborhood of the origin. This
matrix is close to the diagonal matrix with eigenvalues:

(1 - ε, e2iπ{ωi +σ + t\l + v), e~ 2ίπ(ωi + σ + t\\ + v)).
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By Proposition 1, λ(ψ,τ) is a C 1 tame map, then its derivative:

Δλ = — [Δψ, Δτ,Δτ] is well defined as a linear functional in [Δψ, ΔτΛ .
d{ψ, τ)

(58)

By (49) and (54) we have:

dP1 _ dP1 dP1

ΔΦ = Δλ+ - ^ i ,ψ,τ,τ~]Δ\p+ -j- [• ,ψ,τ,τ]Δτ+-^r[ ,ψ,τ,τ~]Δτ. (59)

Gathering (57) and (59) we get:

iψ, τ, Π) (Δt, Δψ, Δτ, Δτ)

Δτ + M^Δτ + LiΔλ \

The realness of the original problem leads to the following relationships:

dP1 f&P^λ _
—— = , since P is real, and Δτ = Δτ. (61)

dz \dz J

Equation (56) can be written in a vectorial form:

To φ(0) + M(θ) - T(θ) + L(θ)Δλ + R(θ)Δt = K(θ),
(62)where T=^\M = {Mij},L={Li},R = {O9R,K},K

and Mί2

The complex conjugate of the second component is not written here again, for
simplicity.

Let us compose relation (62) with h~ι which is given in Diff+fΊΓ1) by
Proposition 1. We then obtain:

where (T,Kf) = (T,K)oh~\(M\L\R')= -(M,L,R)oh~ι j ' ^

and where Δλ is a linear functional of T. By Proposition 1 h is in a neighborhood of
the identity and is a tame map, then the map T-> T is a tame isomorphism and the
matrix Mr is in a neighborhood of:

ίl-ε 0

M0=l 0 e2iπΩ(l+v) 0 | , (64)

\ 0 0 e~

where Ω = ω1+σ + t0 satisfies condition (46). Then we can apply to the above
matrix M' the "twisted" quasi-conjugacy result of Corollary 5 of the appendix.
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Thus there exists an He[M*(T\(C),id], D,e[Diag3((C),0],
Dφ e [Diag3 (<C), 0] such that:

H ~ \Θ + ω) [M'(0) - Dφ] H{θ) = M0 + Dr = M'o, with,

la 0 0 \

A. = 0 fce2/πΩ 0 , (α, fc) e (R2,0),

\o o for2iπ7
/0 0 0

Dφ = 0 (1 + v) (1 - e 2 ί πη e 2 ι π Ω 0 , φ e (R, 0).

\0 0 ( l + v ) ( l - e " 2 ί π < p ) e " 2 ι

We remark that as (2 = ω1 + σ +1 0 , then the quantity ί0 + φ, where φ is given by (65)
is exactly the parameter t we are looking for. We fix now t to this value which
depends functionally on (ψ, τ, Π). The matrix M'(θ) + Dφ appearing in the quasi-
conjugacy relation (65) is precisely the new matrix M' with the parameter t fixed as
above.

The matrix H given by (65) enables us to make the following change of
variables (which is tame by Theorem A2 of the appendix):

) = H{Θ)'T"{Θ), (66)

which transforms (63) into:

T"(θ + ω) = M'o T"{θ) + U{θ)Aλ + R"(θ)At + K"{θ),

where (L", R\ K") (θ) = H~ι(θ + ω) (M\ L, R') (θ).TT—1(Ω i s-.ΛSΛ/Γ' Ji T>l\(O\ ( ^ '

This new equation in T" is now solvable, for each At, Aλ due to the fact that M'o is a
constant diagonal matrix whose complex eigenvalue argument satisfies condition
(48).

4.4.3. Inversion of the Derivative. Let us be more precise in writing the preceding
equation as:

T"(θ)= Aτ'\θ) with Jτ"(0) = Λτ"(0), by (65) we have:

Aτ'XΘ),

a)Λ,n"<m+T".<mΛl + R.ίff\Λt + K".(Π\ ^

with L'ί, R'i K'[ in C"°iJ\Wi) and U2, R'^ K"2 in C 0 0 ^ 1 , ^ ) .
We now want to study the eventual bifurcation TΓ1 —•TΓ2 in the region Ψ" of the

parameter space shown in Fig. 2. In this region the dynamics along the x-direction
is still normally hyperbolic, while this is not the case in the z-plane. In parameter
space this can be interpreted by the fact that v can change its sign (v = 0 being the
locus of the secondary bifurcation for the normal form) while ε is bounded away
from ε = 0.
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For our purpose this means that the new hyperbolicity parameter, defined by
(65) as (1 — ε + a), is bounded by (1 — ε + a) < 1, if the perturbation Π is small enough
in C 1 topology (a similar result is proved in [Los 2]). This implies that Eq. (68)
admits a unique solution in Δψ" e C ^ f T ^ R ) .

For the second Eq. (68) the estimate (48) on ω and Ω implies the existence of a
solution zk"eC°°(TΓ2,C) (see [Ch-Io]), for every (v, b, Δλ, Δt) in R 4 , the
dependency in Δλ and Δt is clearly affϊne.

We have transformed the initial Eq. (62) into (68) by a finite sequence of tame
isomorphisms each of which being close to the identity; solving (68) is then
"tamely" equivalent to solve (62), this proves the following:

Proposition 2. Let (ω, Ω) satisfy the hypothesis of the R-T theorem. Then for every
reals Δλ,Δt there exists a tame solution to Eq. (62) which is an affine function in Δλ,
Δt.

The above proposition means that for every reals Δλ and Δt there exist fu f2, / 3

in C ^ f l ^ R ) and gi9 g2, g3 in C ^ f l ^ C ) SO that:

θ)At')

(θ)Δλ + g3(θ)Δtj l }

is solution of Eq. (62) and then of (56).
We now fix the dependencies of Δλ and At in (Δψ, Δτ) which, in turn will prove

the existence of a unique Δψ,Δτ. We begin by the relation of conjugacy to the
rotation Rω which can be rewritten as:

(70)

composing (70) with h~ι, which is a tame isomorphism, we obtain:

with the notation X' = Xoh 1 for X = AhΔψ,Δτ,Δh. (

This equation admits a solution if and only if (ω satisfying (46)) the following
condition is verified:

(72)

This gives immediately the linear dependency of Δλ in (Aψ, Δτ). Let us remark that
we obtain Δλ by projecting the relation (71) on the kernel of the commutator
Δh! — Δh' oRω. This is precisely the method used in the appendix for the quasi-
conjugacy theorem. By the same method we fix the linear dependency of At in
(Aψ, Δτ). The matrix M considered in Theorem A2 depends, in our case on (ψ, τ),
then the partial derivative (A10) is linear in (Aψ,Aτ). The term At is the partial
derivative:
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defined by the matrix ADφ (see Sect. A.3.1 of the appendix), which then depends
linearly on (Aψ, Aτ) by a relation similar to (72). Finally we have a relation of the
form:

Δλ = &{ΔψΔτΔτ)^
[ j

where S£b i=\,2 are linear functionals continuous for the C° topology.
Let us observe that the C° norms of f2, /3, g2, g3 in (69) are of the same order as

the C1 norm of ψ and τ (see (57)), hence they are small. Replacing Aψ and Aτ by
their expressions (69) in (73) we obtain a linear inhomogeneous 2 dimensional
system in (Aλ,At) which is, by the above remark, a small perturbation of an
invertible system. In this way we obtain a unique (Aλ,At), which leads to a unique
(Aψ,Aτ) by (69).

This means that the partial derivative Dxffl admits a local tame inverse for
every (ψ, τ, Π) in some small neighborhood of the origin. This ends the proof of the
R-T theorem by applying the theorem of Hamilton.

4.5. Persistence of C00-Invariant Curves

To prove the existence of an invariant curve under Fμ9 it is sufficient to prove that
the rotation and the twist parameters may vanish simultaneously. The method for
the proof is based on the tame-Lipschitz estimates obtained as consequences of the
theorem of Hamilton (see [Ham]). This method has been previously used by
Chenciner [Chen] and Los [Los 1,2], for similar problems. We only point out here
the difficulties and the results since all details of the estimates can be found in the
above-mentioned works.

4.5.1. The Genericity Problem. As defined by the R-T theorem the parameters λ
and t depend functionally on (ψ, τ) ξ $. If (ψ, τ) is fixed by the R-T theorem we have
in fact two maps λ(μ) and t(μ). Our goal is to show that equations:

WHO,
define two local manifolds intersecting transversally, for a given couple (ω, Ω)
satisfying (46).

Let us recall that λ belongs to a neighborhood of λ0 = ω — ωμ and t to a
neighborhood of t0 = Ω — ωx — σ. Then λ = 0 and t = 0 are in these neighborhoods if
λ0 and t0 are sufficiently small, which implies:

-ωo| = 0(|ωo-ωμ|),j

But (74) is not always compatible with the diophantine condition (46) since ω 0 is
allowed to be rational and ω 1 can be in ω0Q in order to obtain a generic result. Then
we need a more restrictive diophantine condition which has been called "with
small constant" in [Los 2]:
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Definition ί. The set DCa(ω0) of diophantine numbers of "order α" close to ω 0 is
defined by:

DCJίωo) =

(75)

Definition 2. For a fixed ω in R —Q and α^O, we define the set DCΩa(ωγ) of
diophantine numbers of "order α" close to ω1 by

(76)

The first set has been introduced in [Los 2], it generalizes the standard
diophantine set DC0 and DCU the Siegel-Moser one [Si-Mo]. The density of
measure of DCα(ω0) goes to 1 when ω goes to ω0, for every α e ]0,1], and the same
holds for DCΩJ^ω^ when Ω goes to ωι.

Let us now precise the sizes of the neighborhoods defined in the application of
the theorem of Hamilton. This is a very technical problem because the new
diophantine conditions (75), (76) combined with the estimates (74) introduce some
"bad" parameter dependencies for the inverses of operators like (D^y1. This is
due to the fact that each resolution of a difference equation introduces a factor

or in the estimates of the norms. These estimates only allow us
| ω - ω o | β \Ω-ωX
to define exponentially small neighborhoods (with respect to the parameters) on
which the theorem of Hamilton is valid (see [Ham], [Chen], [Los 1]). The sizes of
these neighborhoods are then much too small for the size O^^ 2 *" 1 ) of our
perturbation. A trick due to Herman allowed Chenciner [Chen] to overcome this
difficulty. The general form of the result can be found in ([Los 2], Sect. IV,
Lemma 1). In order to apply this result to our case we need the tame estimates of
Dt Jίft, D\jtft, (DιJft}~1. Let us show the way to obtain the last one, since others are
standard.

4.5.2. Estimates of (D2^)~1 and {D^t)~ι. The proof of Sect. 4.4 used twice the
theorem of Hamilton. The first one was for the quasi-conjugacy result proved in
the appendix and the second was for the mapping #?. We then need to consider
these two problems independently.

A) Estimate for the Quasi-Conjugacy. We assume that (ω, Ω) eTΓ2 which is needed
to define the quasi-conjugacy (Corollary 5 of the appendix) satisfies conditions
(75), (76). We have noted $F (see A9) the tame map defining the quasi-conjugacy
relationship, then we need the tame estimates of D2.#", Ώ\3F^ (D2^)~ \ in order to
apply the result of [Los 2], we only consider the last one since the two others are
standard.

The diophantine conditions are used to bound expression (A19') for the proof
of Theorem A2.



Invariant Tori for Maps 473

Proposition 3. Let (ω, Ω)eT2 satisfy condition (75), (76). The map ^ is defined by
(A9) and its Gateaux partial derivative (All). There exists a positive integer
R > 1 + β, and for every integer m, a positive constant Cm (which may depend on m),
such that (D2^)~1, whose existence is proved in Sect. A3, satisfies:

^ ^ } , (77)

where

ί = min( |ω-ω 0 Γ, |Ω-ω 1 | α ) . (78)

This kind of estimate is proved in [Chen], [Los 1].

B) The map jtft and the conjugacy to the rotation Rω. We use the same arguments
for the map J^t defined by (50) and for the map:

μ (79)

defining the conjugacy to the rotation Rω. For these two maps we obtain:

Proposition 4. Let (ω, Ω) eTΓ2 satisfy condition (75), (76). The inverses of the partial
derivatives D1^

?

t and DxJf whose existence is proved in Sect. 4.4 satisfy:

\\(p^y\w,τ,n)u\\m<,^f {IML+L+IML+L+ lltfL+L+ IML+L}> (80)

| | (D 1 ^Γ 1 (λ,Λ,Pi)ϋL^^{ | |Λ-Id | | ι n + s +| | i ;L + s }, (81)

where Cm is a positive constant, L and S are the losses of differentiability, where L and
S >\+β.

4.5.3. Complement to the R-T Theorem. The Rotated-Twisted theorem has been
proved for the simplified form of Fβ (45) which is sufficient for the existence part of
the theorem, but here we want to obtain the estimates for the true family (40). We
therefore define precisely the maps J^t and Jf in which we only transform, in (50)
and (79), the perturbation Π by:

μ μ (82)

where ε(N/2)~ιζμ^^ and ξ is bounded for all Ck-topologies. The truncated normal
form corresponds to ξ = 0. As for the quasi-conjugacy map J* in (A9) we define the
matrix M by:

M(θ)^M0 + εN(θ), (83)

with N e M^cCΓ1, R), which is also bounded for all Cfe-topologies. In fact by (57) the
perturbation matrix JV depends on (ip,τ) in the following way:

(83;)

We precise first the quasi-conjugacy Corollary 5 of the appendix by applying
Lemma 1 of [Los 2]. The estimate (77) enables us to define a neighborhood % of
the matrix M o where the quasi-conjugacy relation holds:

- { M E M ? C ( T \ ] R ) / | | M - M J κ S C δ \ K ^ R } . (84)



474 G. Iooss and J. E. Los

i) Complement to Corollary 5 of the Appendix. Let us assume that (ω, Ω) is in
DCa(ω0) x DCΩJ^ωγ), then the maps H, D n Dφ associated by Corollary 5 with the
matrix M in (83) satisfy:

δH

dμ

M TJ

II X i

m

dDr

dμ
+

dDφ

dμ m + ki

dN

dμ

(85)

(86)

Constants Cm are positive and may depend on m; the loss of differentiability is
represented by k0 and kί^R.

Remember that, by (65), the parameter t is related to φ by: φ = t — 10. The above
result is obtained directly from the estimate (77) and from Lemma 1 of [Los 2] it
contains in particular the estimate we need about the size of the ί0-neighborhood.
We have the same type of result for the maps 2tft and JΓ, the goal being to estimate
the size of the ^-neighborhood and also the derivative of λ with respect to
parameters. Since λ depends functionally on (ψ, τ) we first need to estimate their
sizes which are given by the map J^:

ii) Complement 1 to the R-T Theorem. Let (ω, Ω) be in DCa{ω0) x DCΩ^ωJ. The
map (ψ, τ)eS associated by the R-T theorem with the perturbation Π in (82)
satisfies:

llτll < (87)

dψ

Jμ
(88)

We obtain the same kind of estimates for the map Jf".

iii) Complement 2 to the R-T Theorem. With the above hypothesis, the map λ, h
defined by the R-T theorem for the perturbation Π given by (82), and (ψ, τ) satisfying
(87), (88) satisfy:

_(JV/2)- 1

Hm + /c4 •>

δλ

Tμ dμ

dh

d~μ
ύCm \\m + k5'

Gathering (86) and (90) parameters δ and c have to satisfy:

δ>max((ε ( N / 2 ) - 1 ) 1 / 8 ,ε 1 / 4 ),

(89)

(90)

(91)

in order for the preceding estimates to be bounded when parameters go to 0. Since
δ is small, this implies that the perturbation order N has to be larger than 4, which
is not new since we already assumed in Sect. 3 that N ^ 5 (minimal value for N to
insure normal hyperbolicity outside of V). This minimal value is sufficient again
by the above estimates; indeed the new hyperbolicity parameter is, by the R-T
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theorem :(l—e + a), which was assumed in Sect. 4.4.3 to satisfy (1 — ε + a) < 1. This
implies that a = o(ε) and, by (83), (83'), (85), (87), (91) this last condition can be
satisfied if JV^ 5. Then our method enables us to get the minimal condition on the
perturbation order JV —1.

4.5.4. The Invariant Curve Theorem. Let us recall that: δ — min[|ω — ωo |α,
l Ω - ω i H , and by (21), (47), (74) we have:

In order to avoid unnecessary complications we make the following generic
assumption:

α.φO (where a{ is defined by (22)). (92)

This is a twist condition, analogous to the one needed to prove the KAM theorem
(see [Her 83]). This condition is not necessary but it shows that the bifurcation we
consider is generically of codimension 3 (the parameter μOi being omitted). With
assumption δ = εa, condition (91) implies:

α<min[l/4,(JV/2-l)/8].

Since we assumed JV§;5, let us fix α = 1/8, then the /^-neighborhood, defined by
(89) now reads:

. (93)

If we choose ω in a ω0-neighborhood so that

\ω-ωμ\^Kε5/\K<C, (94)

then the origin lies in the /^-neighborhood (93). Moreover since at φ 0, (90) implies

that — + 0, thus the classical implicit function theorem implies that the equation
oε

λ(μ) = 0 defines a local smooth manifold of the form:

ε = 2arμojai + 2π2ar{ω - ωo)/ai + O(ε5 / 4), for μOi = O(ε). (95)

The study of equation t(μ) = 0 is performed in a similar way, with the above choices,
and by (83), (83'), (85) the ί0-neighborhood takes the form:

(96)

then choosing Ω in a ωx-neighborhood of the form:

(97)

insures that the origin lies in the ί0-neighborhood (96), and by (86) we have: — φ 0.
oσ

This implies the existence of a local smooth manifold on which t(μ) = O; this
manifold is clearly transversal to the one defined by (95) and takes the form:

) . (98)
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manifold manifold

s bifurcation point γ ω Ω

Fig. 4. The transversal manifolds defining the bifurcation point yω%Ω

At this point we have proved the main result of the paper, namely there exists a
family of paths &ω Ω in the three dimensional parameter space corresponding to a
constant μOi section. Each of these paths is defined by the intersection of the
transversal manifolds {μ; λ(μ) = 0} and {μ; t(μ) = 0} (see Fig. 4) and is such that the
one parameter subfamily {Fμ}μe^w Ω admits a family of C°° invariant curves. The
set of these paths is parametrized by the set of pairs (ω, Ω) satisfying:

(ω,Ω)eZ)C1/8(ω0)xZ)Cί21/8(ω1),(see (75), (76)),

(99)

which is a Cantor set having a positive measure in T 2 . The above estimates enable
us to be more precise about the dynamics, at least for parameter μ on the paths
^ ω > β . Indeed by (85), (86), and from the definition (65) of the matrix Dr, we define
the new parameter:

X-v + fo, (100)

which characterizes the weak normal hyperbolicity of the invariant curves on
0*ω,Ω By ^ e above arguments, the equation χ(μ) = 0 defines a smooth local
manifold of the form:

= O(ε5 / 4), (101)

which is obviously transversal to the two preceding ones (see Fig. 4).
Now the map (ε, v, σ)->(/l, χ, t) defined on a constant μoί section is a local

diffeomorphism of ]R3 containing (0,0,0) in its image, which enables us to define
new local parameter space coordinates. The point

yω,β={fev,σ)/(λ,χ,ί) = (0,0,0)},

which belongs to the path ^ωΩ is such that the C00 invariant curve is non-normally
hyperbolic, so it is the bifurcation point corresponding to the pair (ω, Ω) in T 2 . This
ends the proof of the following theorem:
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Invariant Curve Theorem. For each (ω, Ω) in T 2 satisfying (99) there exists a path
^ω,Ω in the three dimensional parameter space (for a fixed μoi) along which the
family Fμ (24), satisfying the generic assumptions (14) with N^5, (18), (34), and (92),
admits a C00 invariant curve with a rotation number ω. On each of these paths there
exists a unique point yωΩ for which the C00 invariant curve is non-normally
hyperbolic (bifurcation point).

Remark. The largest is N, the largest is the Cantor set for (ω, Ω) in T 2, since we can
choose a larger α in (75), (76) bounded by an JV-dependent constant.

At this point we can now describe the bifurcations of the family Fμ, since along
each path ^ωΩ we satisfy the conditions of the Chenciner-Iooss paper [Ch-Io].

5. Bifurcation of Invariant T 2 Tori, Bubble Structure

5.1. Position of the Problem

In this chapter we consider the bifurcation problem for mappings in R 4 and we
define the parameter space regions of persistence for invariant sets (TΓ1 andTΓ2 tori).
These regions are defined by a normal hyperbolicity argument and they bound the
set of bubbles mentioned in the introduction (see Fig. 1).

We use here the consequences of the rotated-twisted theorem (Sect. 4.3) which
enables us to localize the study in the phase space near the rotated-twisted curve
and near each bifurcation point yωΩ in the parameter space.

The method is based on some kind of normal form near the "moved curve." It
enables us to introduce naturally the parameters defined in the previous chapter
and to consider them as a new parametrization of the family. The method is a
generalization for a multiparameter family of the approach of Chenciner [Chen]
and Los [Los 1] and is a more precise way to express the results of [Ch-Io]. The
method of a normal form near an invariant curve (without parameters) was also
used by Douady ([Dou] Sect. III).

To be a little bit more precise we consider first a change of variables which
localizes the family in a neighborhood of the rotated-twisted curve. Each element
of the normal linear bundle over this curve is then an angular dependent matrix for
which the quasi-conjugacy theorem (Sect. A.2.3) holds and is thus used to
introduce a new change of variables. We then obtain an expression of the family
which makes explicitly new parameters (λ, ί, χ) of Sect. 4 appear with angular
dependent coefficients.

As for the usual normal form technique we can simplify this expression by a
sequence of change of variables, replacing angular dependent coefficients of low
order by constants or zero, using the diophantine properties of the numbers ω, Ω.

In fact there are some additional difficulties due to the introduction of a factor

— at each step of this normalization, because of the type of diophantine condition
o

(99) we use. We then need to estimate carefully all terms to be able to use the
standard fixed point technique of Ruelle-Takens [Ru-Ta] at the end.
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5.2. First Localization Near the Rotated-Twisted Curve

Let us come back to the family of maps Fμ:

(40)

Z = e

2iπi^+σ\l + v)z + εzA%x9 \z\2) + Q3

μ(θ9 x9 z, z), ^

where Qμ = O(εN'/2~1).
The R-T theorem says that there exists a curve # = {(0, φ(0), τ(0))9 0 e T 1 } which

is invariant under &λjt°Fμ. This implies the relation:

Fμ(θ9 φ(0), τ(0)) = ̂ . t 1 ° (Φ, ψ(Φλ ̂ (φ))»
with Φ =

- ! „ , , m f (102)

i.e. we have the equality:

(0)) = ( φ - / l ? V ; ( φ ) ? β - 2 ι π ί

τ ( φ ) ) ? (103)

which is valid for every μ in a neighborhood of y ω j β = {μ; Λ. = 0, ί = 0, χ = 0}, χ being
defined by (100). The size of this neighborhood is given by (93), (96), (101). For μ in
this neighborhood we consider the following change of variables:

«-*-(»). J (i041

where φ, τ, /z, A, ί, are defined by the R-T theorem, and the angular dependent
matrix H is given by the quasi-conjugacy theorem (Sect. A.2.2). Let us remark that
in a neighborhood of the point yΦtΩ, the quasi-conjugacy is not exact but is only a
"twisted" quasi-conjugacy which introduces a ί-dependent term in the linear part
of the map.

The new form of the mapping is now:

+ O(ε 3 / 2 |z ' | 4), (105)

+ ε5/4

g 4(μ, λ, t, ff, x', z', z ) + O(ε3'2 |z' |4), (106)

Z' = e

2 '«°(l + χ ') z ' + εz' | z f hx{μ) + e5l4h2(μ, λ, t, θ', z", z')

+ εx'h3(μ, λ, t, θ', x', z', I) + O(ε312 |z' |4), (107)

where

/ 3 = O(\λ\ + ε1/2 \z'\ + |x'|), g4 = O {\λ\ + \t\ + ε1 / 2 \z'\ {\x'\ + e 1 / 2 \z'\)} ,

\z'\), and χf = χ-2ίπt{l

To put this map into normal form we proceed, as in [Ch-Io], by making a
sequence of changes of variables close to identity of the form, (suppressing the
primes into (105H107)):

u' = u + (χ(θ)-xr zp'Zq>λs-tn. with u = θ,x,z, (108)
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which enables us to simplify the expression of the family Fμ at each step, provided
that the following equation admits a solution:

j
with m ^ r (or r— 1 if u = x) and h = p — q (or p — q — 1 if u — z )J

a(θ) being the angular dependent coefficient (C0 0 function) of the monomial
xr zp zq 2 s ί" obtained at each step in the corresponding component of Fμ. The
strategy consists in beginning with s = n = 0 and increasing p + r + q up to the
desired form, then making s + n = 1 with the same strategy and so on.

Each time when the exponent of (1 — ε) is not 0, we can solve Eq. (109) in α,
provided that the corresponding a(θ) is of order ε, since the inverse of the left-hand
side produces a factor ε~i. We observe that each term containing x in Θ and Z is at
least of order ε. In X we have to look for terms with a power in x distinct of 1, and
here again we see that ε is in factor. This shows that we can suppress these terms up
to the desired order.

For other terms, we have to solve a difference equation like the ones treated in
[Ch-Io]. For the case fc = 0, i.e. p — q (respectively p = q + l) we use the standard
diophantine condition on ω to solve (109) with a right-hand side of 0 mean value.
This means that the corresponding coefficients in the expression of the map Fμ will
be transformed into a constant (the mean value).

For other values of (p, q) we need non-resonance conditions and diophantine
assumptions on (ω,Ω) as follows (see (99), (75), (76) for r= 1,2):

ΩΦO, 1/2, 1/3, 2/3, 1/4, 3/4,

3C>0, 3β^
Cε 1 / 8

for r = 0,1,2,3,4 (0,3,4 are sufficient),

(110)

which implies the existence of a solution oc(θ) for Eq. (109), but with a uniform
bound on each Ck norm multiplied by ε~1/8. It can be shown that this does not
really give any problem because of the estimates in ε 5 / 4 (at least) for every a(θ)
concerned. This shows that our changes of variables can be done up to the stage we
wish, corresponding to p + q^4in Θ and X and p + q^3inZ (due to the eventual
terms in z 4 in Z).

We remark that the diophantine conditions (110) are more restrictive than the
ones ((75), (76)) needed to prove the invariant curve theorem (Sect. 4.5.4), this is due
to the fact that we want to define the paraboloidal regions of normal hyperbolicity
with a sufficient size to get through the neighborhood y (see Figs. 2 and 3) and
compatible with the optimal value of the perturbation order (N = 5). But if we
allow a sufficiently large perturbation order the conditions (75), (76) become
sufficient (for the persistence analysis).

Finally the mapping takes the form:

(111)
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1 = 1 ( 1 + O(ε5/4)),
A = ε + O(ε5/4),

tι = - 2πί [1 + v + O(ε5/4) + O(ί)],

and we recall that (see Sect. 4):

χ = v + O(ε5 / 4).

Moreover we now have the estimates:

y = O(ε|x|mi + e 3 / 2 |z|4 + ε 5 / 4 \λ\kl),

ε 3 / 2 |z | 4 ε 5 / 4 |

where we denote by \λ\ the norm of (λ, t), and α 1 ;

(112)

(113)

5.3. Persistence of an Invariant TΓ1 -Curve

Let us introduce scales ξ and ζ as follows:

(114)

The idea is to use the graph transform technique, such as used by Ruelle-Takens
[Ru-Ta] and Lanford [Lan] to prove the existence of an invariant curve x' = ψf(θ%
z' = τ'(θ) in a certain domain of the parameter space defined by inequalities on λ, ί, χ
(where χ = \l— χ\ — 1) and ε.

We start with the assumption that χ = o(ε) and in fact we define: χ = χse, with
ρ < f in such a way that when χ = 0(1) the corresponding parameter space domain
is larger than the neighborhood Ψ' defined in Sects. 3.2-3.3 (see Figs. 2 and 3).

Let us denote by <92, X2, Z2, the expressions given by:

(115)

then, to be able to use the graph transform method it is sufficient to arrange things
so that:

Θ2 and its derivatives in x', z' are o(χ),

X2 and its derivatives in x\ z' are o(ε),

Z 2 and its derivatives in x\ z' are o(χ),

(116)
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Fig. 5. Region of persistence of an invariant closed curve for Fμ, for a fixed (ω, Ω). The χ axis
corresponds to a path ^ωtΩ found at Sect. 4

It is easy to show that, if we choose ρ = l,mo = m1=m2 = 2,ko =
scales ζ = χ1/2ει/4, £ = χ3/4ε1 / 4, then for:

y3/4

= k2 = \ and the

(117)

we can show the persistence of an invariant TΓ1 -curve for the map Fμ. Let us
observe that (117) defines a paraboloidal region (see Fig. 5).

Remark 1. For this persistence result, we can suppress the part of condition (110)
with r = 4 and the non-strong resonance condition for r = 1/4, 3/4. In chapter 4 we
also had not the condition for r = 3 and Ω = 1/3,2/3, but if we try to escape from this
condition, we should have to pay by assuming a larger value than 5 for N in (14), to
be able to find a suitable ρ < 6/5 for χ = χερ.

5.4. Bifurcation of an Invariant TΓ2-Torus

Let us follow the same method as in [Ch-Io]. First, we write the map (111) in the
polar coordinates:

(118)= re2ίπθί.

and we define the mean radius rx of the bifurcating torus by:

..2 X (119)

where do + dί = Re(e 2iπΩ\co(μ) + cx(μ, ε, λ, ί)] (1 + χ) ^ is supposed to be strictly
negative, to fix the direction of the bifurcating family (the reader can check that εr\
is mainly ρ\ of (33)).

Now we choose scales ξ and ζ as above:

x = ξx',
(120)
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so that the map Fμ becomes (denoting by θ0 the old θ):

(121)
' = {ί-έ)x'

—

where
zπ

-2iπΩ [c0(μ) + cι(μ,8,^
1), and:

8

(122)

By choosing ko = kγ = 2, k2 = 4, mo = ί, m 1 = m 2 = 2, and:

Z— vo7/6= χ8Ί/6 (as for the persistence), ζ = χι (123)

we can observe that in the following region of the parameter space (see Fig. 6):

(124)
,1/12 ,5/4

the existence of a bifurcating family of invariant T2-tori can be proved by the
standard graph transform method technique (see [Ru-Ta], [Lan]).

Remark 2. We could use as well a sub-center manifold here to eliminate the
variable x. The problem is then to take care to the fact that (1 — ε) is close to 1, this
implying additional difficulties to the usual ones.

persistence of T1 and

bifurcation of T2 ton

HU persistence regionof T1

Fig. 6. Regions of persistence of invariant T 1 and bifurcating invariant TΓ2
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Remark 3. We did not try to avoid the diophantine condition (110) for r = 4, which
is probably not necessary, as shown in ([Ch-Io] Sect. V.3), since this would
become really very technical for a minor improvement.

Let us sum up the results of this part by the following:

Bubbles-Theorem. For the generic family of diffeomorphisms Fμ (11), satisfying the
non-strong resonance condition (14) with N^.5 and the non-degeneracy conditions
(20), (34), there exists a set of two sided paraboloidal regions tangent at their vertices
yω,Ω (see Figs. 5, 6) getting through the neighborhood 'V (defined on Sect. 3.3, see
Fig. 3). The points yω?Ω are defined, for each (ω, Ω) satisfying (110) and (99), by the
invariant curve theorem of Sect. 4.

In these regions there is a family of Ck invariant Ύγ-curves (Cm on the special
path ^ωtΩ) loosing their normal hyperbolicity at each vertex of the paraboloids.
Moreover, in each one-sided paraboloidal region (Fig. 6), there bifurcates from each
vertex a family of Ck normally hyperbolic invariant Ύ2-tori.

Another way to settle this result is to say that in the union of the above
paraboloidal regions the family Fμ "looks like" the truncated normal form Nμ.
(defined by (24)), for μ' in a neighborhood of μ, in the sense defined by [Chen],
[Los 1]. We could formulate this theorem in a very precise setting, but the price to
pay is certainly no less than two pages more!

We finally obtained the bubble structure announced in the introduction as the
complementary, in the parameter space, of the paraboloidal regions.

6. Persistence and Bifurcation of Tori in Higher Dimensions

In this part we generalize in a Banach space E (of dimension higher than 4!) the
results proved, in the preceding Sects. 4 and 5, for families of mappings in R4. The
frame is the one described in Sect. 2.1 with assumptions of Sect. 3. The problem
here is that we cannot use the center manifold because we loose the C00-
differentiability in that case.

The key tool is that we can generalize the quasi-conjugacy theorem of the
appendix in the infinite dimensional space E, in the following sense. Assume that
the linear operator function on T 1 : Θ^>M(Θ) is close to a constant linear operator
"̂o m E, with a spectrum separated in two parts σ0 and σ _, as described in Sect. 2.1.

The idea is that we can uncouple in a C00 way two vector bundles over T 1,
invariant under the map: (θ, X)^>(θ + ω, M(Θ)X\ such that on one side (oo-dimen-
sional) is a strict contraction, while on the other (finite dimensional) we are reduced
to the case studied in the appendix. Hence it is only necessary to have the quasi-
conjugacy to a constant on the finite dimensional part whose spectrograph (in the
sense of [Ch-Io]) is close to the unit circle.

6.1. Position of the Problem

Let us consider the linear operator 2Γ§ in i?(E) defined in Sect. 2.1, where if(E)
denotes the Banach space of bounded linear operators in E. Its spectrum is splitted
into two parts σ0 and σ_, where σ_ is strictly contained in the open unit disc and σ0

is a finite set of eigenvalues on the unit circle of finite multiplicities. This
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assumption is relevant for instance for Poincare maps built with evolution
problems such as Navier-Stokes equations [Io79], where ^0 is a compact
operator. The space E is then decomposed (see [Kato]) as follows into a sum of
invariant subspaces:

E = E0®E_,dimE0 = n, (125)

where the spectrum of the restriction of 2Γ§ on Eo (respectively E_) is σ0

(respectively σ_), and we define To = ^ E o , T_ =^Ό\E-
We now consider the C00 map:

(126)

and we define the following decomposition for any Z = X + Y in E, with X e EOi

(127)

where:

M a f°° ΓTΓl ( CP(V \ T Y\ '"W Λ/f 00 ΓJΓl ]D\ T \
Q G I (_J1 , {JZ{£JQ), iQ/J = V™n<D<*L

 5 JK.̂ 5 -* 0 J 5

(128)

Here we denoted by «Sf ( £ l 5 E2) the Banach space of bounded linear operators from
E x to E2.

The study made at Sect. 4 shows that the main difficulty for proving the
persistence result lies in the linear step of the proof. For the 4 dimensional system
the key result is the quasi-conjugacy theorem A.2 of the appendix, by which we can
transform the linear part of the map 0tλΛ° Fμ9 over the TΓ1 torus, into a constant
matrix. This kind of result is generally hopeless in infinite dimensions, so we are in
fact less ambitious since we just need to uncouple the linear part (127) as follows:

Lemma 6.1. Let 3~ be given by (127), (128) and be in a sufficiently small
neighborhood of 3Γ0. Then, for any ω in TΓ1, there exists a map J f in

'), Id)] depending tamely on 2Γ9 and such that:

° " (129)

where the matrix representation corresponds to the product space EoxE_ and:

i) (M'o, M'_) e C " [ T \ (JS?CEO) x JSf(£_), (Γo, T_))]
depends tamely on &~, and moreover:

ii) J^(θ)= ( \ ), with L (respectively K) close to 0
\L(U) Id J

in C G O [T 1 ,^(E 0 ,E_)] (respectively C G O [(T 1 ,^(E_,£ 0 ))) . (130)

In the purpose of using the theorem of Hamilton [Ham] we now need to verify that
the spaces we consider are tame Frechet spaces [Ham]. This was not necessary in
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Sect. 4 and the appendix since the result is standard for the spaces used there. In
fact we have the following:

Lemma 6.2. Let B be a Banach space, then the space ^ 0 0 = CGO[T1,JB] is a tame
Frέchet space (TFS).

This result can directly be extended to the case when T 1 is replaced by a compact
manifold. The proof of this result is included here for completeness and is a natural
extension of the standard cases.

Proof. With the family of norms:

L=supsup ||D'/(0)||,/e^°°, (131)
1j θeT1

the space y°° is a graded Frechet space, with the grading:

Let us recall one possible definition for tame Frechet spaces:

Definition. A graded Frechet space {F,(||... \\n,rceN)} is a tame Frechet space if
there exists a family {St)te]1)O0[ of continuous linear maps from F to F such that:

3reN/V(/c,tt)eN2, fc^rc, 3Q f e >0 such that:

VxeF,Vίe]l,oo[, ||S tx|UCΠffcί"-*+'Hx||k

\\Stx-x\\aCn,kt
k—n+rI

(132)

This definition was the one used by Hamilton in the preprint version [Ham 74] of
his theorem (see also [Bost]).

The method for the proof is the same as the one used to prove the equivalent
result for the space C^JΓT1] (see [Her] Sect. IV.2.5).

Let f/GC°°[R] such that: [-1, l]DSup(f/), η even and η{x)=ί if \x\ύh and
define the following real functions:

φt(x) = tφ(tx). J

Then we have the following:

Proposition. Let T be in ^° = C°{J\B^ then:

StT= T* φt= J T{θ-y) φt{y)dy is in ^°°. (134)
R

Γis considered in (134) as a periodic map on the real line. Expanding Tin Fourier
series, and noticing that we have for any ne¥\:

e2iπnθ .b) = η ( " Y e2iπnθ
St(e2iπnθ .b) = η("Y e2iπnθ b, \lbeB.

The definition of η implies that StT is a trigonometric polynomial of degree drg |ί|.
The family (S f) f6]1>00[ defined by (134) satisfies the estimates (132), the proof being
the same as in ([Hor] appendix theorem A10).
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6.2. Proof of Lemma 6.1

Equation (129) can be transformed into the uncoupled system in K, L:

M0(θ)'K(θ) + N0(θ) = K{θ + ω).lN_{θ) K{θ) + M_(θ)~]y (135)

M_(0) L(θ) + JV_(6>) = L(θ + ω) INO(Θ) L(0) + Mo(0)], (136)

and the unknown M'o, M'_ are given by:

M'_{Θ) = N4Θ)'K{Θ) + M4Θ).

Let us consider Eq. (135) (the other Eq. (136) can be treated similarly) and rewrite it
as the operator:

where

^ = (M0,M_,N0,JV_), (138)

defined on the product space corresponding to its arguments, and with values in
CCΌ{J\(^(E_,E010)']. We search for K in Co o[(T1,(^(£_,£0),0)) satisfying
jF(K, W) = 0. We have J^(0, Wo) = 0, with Wo = (To, T_, 0,0), then we apply to & the
theorem of Hamilton in a neighborhood of Wo. By Lemma 6.2 all the spaces
considered are TFS and the map ^ is clearly a tame map since it is defined only

d#~
with additions and products. Thus we have to show that the partial derivative — -

oW
ΞD 2 . f admits a tame inverse in a neighborhood of VK0.

By a direct calculation we obtain:

) ' ΛK = {M0-KoRωN _)- ΔK-ΔKoRω(N ^ X + M_). (139)

To invert D 2 #', we have to solve the linear equation:

D2^{K,W)ΔK = V, (140)

where V is given in C°°l(W\^{E^,E0)). In fact we see that:

where Θ ί and Θ 2 are uniformly close to 0 (in Ck norm for instance). Now, since the
spectrum of 7^ is on the unit circle and the spectrum of T_ is inside the open unit
disc, we can choose a norm in E such that ||To\\~x is as close as we wish to 1 and
|| Γ_ || strictly less than 1 (see [Lan]). As a consequence Jί{θ) is invertible with a
norm satisfying:

Ί o ^ l + ε , and ||N_ | | 0 ^

where k<\ and ε is small, depending on 3~ — 3Γ0. Now it is clear that the linear
operator:

ΔK^ΔK-Ji~ιIΔKoRω(N^ K + M_)] , (142)
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is invertible in a neighborhood of (0, Wo) (identity plus a strict contraction). Using
standard interpolation inequalities (see for instance [Hor], [Ham]) we can prove
easily:

\\AK\\m^Cm{l + \\K\\m+\\W\\m}\\V\\m, V m e N , (143)

provided that | |X | | m + \\W- W0\\m^η, VmeN.
This proves that the inverse of the derivative D2έF is a tame map; thus we solve

Eq. (135) by the theorem of Hamilton. We end the proof of Lemma 6.1 by
proceeding similarly for Eq. (136).

6.3. Persistence of an Invariant Curve in a Banach Space

Let $Fμ be a family of maps in the Banach space E, satisfying the assumptions of
Sect. 2.1, i.e. ^0(0) = 0 and D Z # Q ( 0 ) = ̂ ζ has a spectrum separated into Σ = {λ0, Xo,
λu X1}uσ_, where λj = e2iπωjJ = 0,1, and for every Aeσ_, |Λ|<1. We showed in
Sect. 2.1 how the problem reduces to a 4 dimensional space, but we paid this
reduction to the center manifold by loosing the C00 property.

We now avoid this reduction and use a direct extension of the normalization
technique to the infinite dimensional case such as described for vector fields in
[El & al]. We then obtain a family of maps £ o x £ _ - ^ £ o x £ _ , and if we make the
same change of coordinates as in Sect. 3.2, we now obtain a family of maps Fμ:

T 1 x R x (C x £_ ^TΓ1 x R x ( C x £ _ ,

Fμ(θ, x9 z, ι;)-(<9, X,Z,V), μe (R 4,0),

Θ = θ + ωμ + εAμ(x9 \z\2) + Ql(θ, x, z, z, υ),

(144)
A;(X9\Z\-) + U*W,X,Z,Z,V)9

lφ9x9z9z9υ)9

where Qμ(θ9 x9 z, z, v) = 0(εiN/2)~x), j = 1,2,3,4.
iV

This form is obtained after a scaling: u = ε9 ι/, with q^~—1. The linear

operator Tμ e £?{E_) is a deformation, depending smoothly on the parameter μ, of
the operator T_ considered in the previous paragraph.

In this part we sketch the way to extend the persistence result of Sect. 4 by
taking into account the contracting part in £_. The search of an invariant curve
under Fμ in E is performed as in (43), but with an additional unknown function v(θ)
in C00 [(T1, £_), which is a TFS by Lemma 6.2. We follow the strategy of Sect. 4,
i.e.:

- Existence of a family of rotated -twisted curves,
- Cancellation of the rotation and the twist parameters.
Expressions occurring in the proof are almost the same as before, so we will not

write them again. Operators Φ and 3% in (49), (50) can easily be extended in order to
represent the map in E. The main difference between this case and the one
considered in Sect. 4 lies in the proof of the R-T theorem and more precisely in the
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inversion of the derivative Dx2tfv This operator is now in the fiber bundle of linear
maps in a Banach space over the circle. The sequence of transformations going
from (56) to (63) can be rewritten exactly in the same way. At this point we are faced
with Eq. (63), correctly reinterpreted with M'(β) as a linear operator in £?{E'\
where E = 1R x (C2 x £_ close to the constant:

where the matrix representation corresponds to the product space, and M o is given
by (64). Now we apply Lemma 6.1 to M', then there exists
Mι eC*\Jι,(&(E\ Id)] depending tamely on M' such that:

/ ) . (146)

Since we have implicitly assumed that ω satisfies a diophantine condition (46) and
M* satisfies the hypothesis of the quasi-conjugacy theorem A.2, there exists
(H,DnDφ)eίMfc(W1,K), Id] x [Diag3(C),0]2 such that:

r = M'o, (see (65)). (147)

Let us write now: H 2 (0)= ^ T J )eCD\J1,{£e{E'), Id)], then the map:
V 0 I d/

11 = 11! H 2 , transforms the operator M'(θ) into:

via the quasi-conjugacy relation, provided the twisted parameter t = t0 + φ is given
by (65). At this point we can invert the derivative Dί jΊft, the finite dimensional part
of the splitting (125) is exactly given by solving Eq. (67), (68), while the infinite
dimensional part is given by solving an equation analogous to (67) but with the
linear operator M'_(0). By (148) the preceding equations are uncoupled and, since
M'_(#) is a strict contraction we can invert the derivative. The resulting inverse is a
tame map; this is proved in Sect. 4 for the finite dimensional part, while the
argument for the infinite dimensional part is the same as for the proof of
Lemma 6.1.

It is then clear that the techniques developed in Sect. 4 work here again with the
additional V component, since after decoupling of the linear parts, the linear part
with v is a strong contraction. We can then formulate the following:

Complement to the Invariant Curve and Bubbles Theorems (see Sects. 4.5.4 and 5.4).
For a family of maps <Fμ in a Banach space E, satisfying the assumptions on the
separation of the spectrum of Sect. 2.1, and assumptions of the Bubbles theorem, the
same conclusions hold about the families of invariant T 1 and bifurcating TΓ2 tori in E.
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Appendix: The Quasi-Conjugacy Problem

A.I. Introduction

This self contained appendix is devoted to the study of vector difference equations
of the form:

-M(θ) G(θ) = K{θ), ΘEΈ1, (Al)

where G and K are C00-vector valued functions in Rπ, M is a given C00 nxn matrix
valued function, and ω is a given irrational number in T 1 . In (Al) the unknown is
G.

This type of equation arises naturally as the linear step for proving the
existence of C00 closed curves, diffeomorphic to a circle, with an irrational rotation
number, invariant under families of maps in R π + 1 . The unidimensional case for
(Al) is easy to solve, because of the commutativity of the product in R. The method
consists in transforming (Al) by the following change of variables:

G(Θ) = H(Θ) Γ{Θ)9 (A2)

where (Γ, H, G) are in C^fF 1, R), in order to obtain an equation for Γ of the same
type but with a constant instead of M(θ). For this purpose, the map H which has to
be close to identity satisfies:

H~ \θ + ω) M(θ) H(θ) = const. (A3)

When the dimension n is larger than one, Eq. (A3), now with matrices H and M,
is called a quasi-conjugacy and cannot be solved directly, except for instance in
the case of holomorphic matrices (see [Her 83']). Also a special case of Eq. (A3) for
n = 2 is solved in [Los2], where M is real and close to the constant matrix:

In fact this previous result can be generalized easily to the case of n x n matrices
close to a constant diagonal one, with eigenvalues distinct in moduli. Another
general result on vector fields is contained in Johnson-Sell [Jo-Se] where strong
assumptions are made on the characteristic exponents of M(θ).

In the present appendix we solve the general case arising in perturbation
problems, i.e. when the matrix M(θ) belongs to a neighborhood of a constant one
M o . We introduce a small constant matrix to be added to M in order to have the
quasi-conjugacy (A3). An analogous result was obtained for a special case by
Moser [Mos] for vector fields and M o diagonal with simple pure imaginary
eigenvalues.

The constant matrix to be added to M and the one obtained in the right-hand
side of (A3) are optimal in the sense that their sum belongs to the so-called
"Arnold-Jordan normal form" associated with M o (see [Arn] Sect. 30). The idea is
that we want the number of parameters which constitute the constant matrix to be
added to M, the smallest possible. The most important difference between our
result and previous ones is that we do not impose to M o to have distinct
eigenvalues.
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The basic idea, which consists in adding some well chosen parameters, goes
back to Moser [Mos]. In the same spirit Rύssmann [Russ] introduced a
translation parameter in order to prove the existence of an invariant curve for area
preserving diffeomorphisms of the annulus, he also used this idea for the study of
quasi-periodic Schrόdinger equation [Ru79]. Following the formulation of
Herman [Her], Chenciner [Chen] adapted the method for non-conservative
systems, with parameter dependence and a similar adaptation was the introduc-
tion of a rotation parameter in [Los l ] for a problem of "curve-doubling
bifurcation."

In chapter 4 we introduce 2 parameters: a rotation one and a twist one to prove
the persistence of invariant curves. In all these examples the number of parameters
introduced is minimal in the general sense described above. This is our motivation
to derive a general result which could be used in many other situations.

A.2. Formulation of the Problem

From now on we only consider the quasi-conjugacy problem (A3), since it is clear
that once solved, the resolution of (Al) becomes tractable.

A.2.1. Notations. We use standard notations for spaces of functions: C^flΓ1,]^"),
K = R or C i s the space of C00 maps fromT 1 to Kn; M™(W\K) the space oϊnxn
matrices whose entries are in C^ίTΓ1,^); Mn(K) the subspace of constant nxn
matrices; Όmgn(K) the subspace of diagonal nxn matrices; Tή^(K) (respectively
Ύή~(K)) the subspace of sup (respectively inf) triangular nxn matrices.

The topology on C°°(T\K) is defined by the family {||...||fe, fceN} of Ck

uniform convergence norms, which defines also the product topology on
C^fTΓ1,^") and M^fTΓ^X). All these spaces are clearly tame Frechet spaces (see
[Ham]) as product of such spaces. We denote by (X, A) a neighborhood of the set A
in the topological space X.

A.2.2. The Arnold-Jordan Normal Form. Let M o be in Mn((C), the image of the
commutator operator (also called "homologicaΓ or "adjoint" operator):

T'M0-M0T, (A4)

is orthogonal to the kernel of jrf*, where:

stf*T=TM%-M%T, (Mξ^Mo), (A5)

and where the scalar product in Mn((C) is defined by:

</l, B) = Tr(A -B*), A, BeMn(<£), (see [Arn], [Elp & al]).

Let M o be written in its Jordan form, then Ker(j3/*) consists in matrices,
commuting with MJ, which have the form A + D, where D is diagonal,
proportional to the identity on each subspace corresponding to a Jordan block of
M o , and where A has a 0 diagonal (in general not triangular). We have the
following:

Theorem Al (see [Arn]). Let M o e MW((C) be in Jordan form and M be in some
neighborhood of M o . Then there exists H e [GL(n, C), Id] (invertible matrices),
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De[Diagπ(C),0], ^G[M n (C),0], such that:

(A6)

The matrices A and D are such that A + D commute with M*5 A has a 0 diagonal and
D is proportional to the identity on each subspace corresponding to a Jordan block of
Mo. Matrices A, D, and H depend analytically on M.

A.2.3. The Quasi-Conjugacy Decomposition. We consider now the quasi-
conjugacy problem (A.3). Let M o be given in Mn((£) in Jordan form, and M(θ) close
to M o in M*(TΓ\(C). To prove the quasi-conjugacy result we need to add some
parameters as the next theorem states:

Theorem A2. Let M o e MΠ((C) in Jordan form and ω in TΓ1 satisfying the condition:

j 8^0/V^6QJβ i 7 . -gω-p |^^p ? , (A7)

where Qtj = —- Arg I y-) is defined for every pair (ij) such that \λt\ = \λjl λb2π \λj/
i=ί9...,n being the eigenvalues of M o .

For every matrices M in a small enough neighborhood of Mo in M^fTΓ1, (C), there
exists unique (H, A + , A_, Dr, Dφ, Drψ) such that:

H e [M^CΓ1, Q , Id], (Dn Dφ, Drψ) e [Diag/ί((C), 0 ] 3

(A + ,A_) E [Triπ

+((Q x Tri-(<0,0] ,

H-1(θ + ω).{M(θ)-A_-Dφ}.H(θ) = M0 + A++Dr + Drw, (A8)

where

0 rt = rj if λ-λj,

and

Dφ=( . " ' λM . ° ), w . = l - e - 2 ^ - ^ , φ,.eR, φ-φj if λ~λj9

Σ (<Pz ~ V/)= 0, αnrf A + + A _ + Dr + IL + D r y ; commutes with M%.
i;\λi\ = \λj\

The map: M^>(H,A + ,A_,Dr, Dφ, Drψ) is tame in the sense of Hamilton [Ham].

Remark ί. (A7) is a mixed diophantine condition between the rotation number ω
and the arguments Qtj.

Remark 2. The matrix Dr + Dφ + Drψ has the structure of the diagonal part D of
Theorem Al, similarly for A+ Λ-A^ and A of Theorem Al.
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Remark 3. The matrix Drψ can be chosen as Drψ = 0 if we suppress the condition

Σ (<pi-ψi)=Q>when \λi\ = \λj\for e v e r y Uj
i;\λι\ = \λj\

Complement for the Real Case. // the matrix M{θ) is real, i.e. if MeM?(Wι,ΈL),
close enough to a real Mo, there exists a complex change of variable h such that:
h ~ * M o h = M'o is in Jordan form in Mn((£).

If Mf

0 satisfies the hypothesis (A7) then the quasi-conjugacy relation (A8) holds
for M with real matrices, in particular Drψ is identically 0.

Proof of the Complement. The proof is based on the uniqueness property of the
quasi-conjugacy. We apply the relation (A8) to the matrix: h~ι - M(θ) h, which is
close to M'o, then we obtain:

with J^(θ) = h - H(θ) -h~ί, then as M and M o are real, by the uniqueness property
(consider the equivalent complex conjugate relation) we obtain that: Jf,
h(A_ +Dφ)h~1,h(A+ +Dr + Drψ)h~1 are real matrices. Moreover we have Drψ = 0,
since for any complex eigenvalue λt there is also λk = λt and then φt = — φk, hence

Σ <?* = (), i.e.v\ = 0,Vi.
£ ; | Λ m | = | A j |

Let us explain roughly relationship (A8). We cannot always solve directly the
quasi-conjugacy relation (A3) and we need some constants given in (A8) by the
parameters appearing in the matrices A _ and Dψ. We remark that the number of
these parameters is governed by the Arnold-Jordan normal form, i.e. by the
dimension of a simple subspace of the commutator of M%. This result transforms
the quasi-conjugacy problem into the finite codimension condition:

D=0.
φ

The number of real parameters needed to solve these equations, when M(θ)
depends on parameters, gives the codimension of the problem.

A3. Proof of the Theorem

The following proof needs two basic ingredients, the first one is purely algebraic
depending on the structure of the matrices and the second one needs some analysis
based on the powerful implicit function theorem in Frechet spaces in the Hamilton
formulation [Ham].

Let us write the quasi-conjugacy Eq. (A8) as a functional map:

&: (ΛCOΓ1, <C))2 x (Diagn(<C))3 x TriM
+(<C)

{ ψ}H-\θ). (A9)

We want to solve the equation:

) = 0 w h e r e X = (H,Dr,Dφ,Drψ,A + ,A_),
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in a neighborhood of (Mo, Xo), where Xo = (Id, 0,0,0,0,0) and #"(M 0, Xo) = 0. The
map #" is obviously tame as composed of tame maps, from a tame Frechet space to
another. In order to apply the implicit function theorem of Hamilton, we have to
prove that the Gateaux partial derivative:

admits a tame inverse in a neighborhood of (Mo, Xo).
The direct calculation of this derivative gives:

Proving the existence of an inverse for D2^ consists in solving, for any
^fTSC), the following linear equation in AX:

N, (A10)

for any (M, X) in a neighborhood of (Mo, Xo).
Defining new notations:

• N(θ) H(θ),

Eq. (A10) becomes:

p φ N'(θ). (All)

This relation looks like a commutator operator which we shall solve by a Fourier
series method. Let us define the following series:

ΔH\Θ)= Σ e2iπpθΆH'p, AH'peMn((C),
peΈ

N\θ)= Σ elinpθ'N'p, N!

peMn(<L).
peX

Then the constant part of Eq. (All) is given by:

+ ΔA+ +ΔDr + ΔDrv + {ΔA. +ADφ}'0 =N'O, (A12)

the remaining part, i.e. terms in e2'πpθ, is given by:

(A13)
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The end of this paragraph is devoted to the solving of these two equations, which
is the main point of this appendix, and proving that the resulting series AH'
actually converge.

A3.1. Solution to the Mean Value Equation. Equation (A 12) makes appear a
commutator of the same kind as the one occurring while proving Theorem Al. Let
us define the following linear operator in Mn((C):

and

the index ε is only used to indicate the smallness of the norm of s
Equation (A12) now reads:

N'0-F09 (A 14)

where N'o is given in Mn((C). We look for AH'O and the simplest Fo possible. Let us
denote by Πo the orthogonal projection on the kernel of sέ%. Since ADr + ADφ

+ ADrψ + AA++AA_ is in Ker(«a/g) (as well as Dr + Dφ + Drψ + A + +A_) it
respects the decomposition indicated at Theorem A2 and it is then clear that Fo

cannot be chosen in K e r ( j ^ ) because in general:

By using Πo we decompose now Eq. (A 14) which becomes the following system:

ψ +ΔDφ]'}o = ΠoN'o. (A16)

Let us define a complementary space to Ker(j/0) in MΠ((C), then j / 0 is invertible
from this subspace to Im(j/0). Now observing that:

we write H = Id + h, h being uniformly close to 0, so we have:

. (A17)

It is then clear that the linear operator on the left-hand side of (A 15-16) which acts
on AH'O, ADr + ADrψ + AA + , AA_ + ADφ, is a small perturbation of an invertible
operator, hence it is invertible for \\h\\ and | | J / J small enough (in C° norm).

Remark i. We can observe that the solution of (Al 5-16) verifies ADr + ADrψ + AA +

= Π0N'0 + h.o.L, where h.o.t. means terms of order \\h\\ and | | J / J .

Remark 2. The choice of Fo (A 14) is in fact governed by the semi-continuity
property of the codimension of the image for perturbations of linear operators
[Kato]. This means that the codimension might only become smaller in the
neighborhood of h = 0. Then assuming Fo in a subspace having the dimension of
Ker(j/g) insures us a regular dependency as h-+0 (i.e. M^>M0).
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Then we have solved Eq. (A 12) with respect to AH'O, ADr, ΛDφ, ADrψ, AA + , and
A A. by Eqs. (A 15), (A 16) above.

A3.2. Solution of the Equation (A13), \n\ ^ 1. Let us define the matrices: M0 + Dr

+Drtp = {μij}iJ=lt.mmtn, {μu = μύ in Tri+((C), and AHp = {hij}iJ=u^^n, in
((C).
Equation (A13) now reads:

(e2ίπ<"°μJ-μi)hij + Σ μkj-e2iπ"ω-hik- £ μik-hkj = rij, (A18)
k<j k>i

where: {r̂ },- j=ί n = N'p — [_(ADφ + AA_)']p, which is well defined by the point
A.3.1.

The system (Al 8) is triangular in (C"2 as can be seen in denoting the components
of the vector {/zo } by:

The corresponding matrix for the system (A 18) is triangular, as it is clear by the
following (ij)-row:

|_u, . . . , u, \μp μύϊZ /*/- i ; j j •••? μ ι ,je •>

(i j) (i j-l) (ΐ l ) . . .

(1 + 117) (n'J)

From this triangular structure the system is obviously invertible, for each integer p,
since by the condition (A7): (^2ίπpωμJ -/i ι) + 0, ViJ=l9...,n. Furthermore the
inverse of this system is bounded by:

Γ n Ί " 1

K \ [] (e2ίπpωμj-μi)\ , K>0 constant. (A 19)

This enables us to prove convergence of the Fourier series: £ e2ιπpθ AH' using
peZ

condition (A7) to bound each term AH'p, as it is the case for standard difference
equations [Her], these estimates implies a loss of differentiability for AH\ as in the
standard case. This loss depends on the diophantine constant β and on the integer
L which is the number of pairs (/, j) such that |^.| = |^-| (L^n2). The bound (Al 9) is
the worst one corresponding to triangular matrices, while for diagonal one it is
replaced by:

K Sup{(e2iπpωμj-μiΓ
1;iJ=ί,...,ή},

the loss of differentiability is then only: \+β\β'>β. (A197)

Nevertheless for all cases the precise estimate is of the form:

3RelN; R^L(1 +β) or R^(l +^)/VmeN; 3C(m)>0 such that. j

where Y is defined by the 5 last components of X [see (A9)].
We remark at this point that the diophantine condition (A7) is uniform in β,

which means that for any pair (ij) we have the same β. It is clear that some more
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precise conditions replacing (A7) might be defined. In our case condition (A7) is
sufficient. Estimate (A20) implies that the map:

is tame, so we can complete the proof of Theorem 2 using the theorem of Hamilton
[Ham].

A.4. Some Applications

In order to illustrate the preceding result we give here some applications, one of

them being the precise case we need for the main part of the paper.

Case ί. Let us consider M 0 1 = ί *' . I, with )H in (C such that \λ^ + \λj\, for ΐΦj,
Mi,j=\, ...,n. ^ w '

In this case the quasi-conjugacy equation admits a solution, i.e. there is no
matrix to be added on the left-hand side of (A3) and the constant matrix on the
right-hand side is of the form:

The condition (A7) is reduced to the standard diophantine condition on ω.

Corollary 1. For every M close to M 0 1 in M^fT1, (C) and ω satisfying a diophantine
condition, there exists α;e((C,0), i = ί,...,n and H e[M^(Wι,(L), Id] such that:

(1 +

0

Case 2. Let M02= ( ), we consider M close to M 0 2 in M^fT^R). The

quasi-conjugacy problem admits a solution with: A+=A_ = Dφ = Dru, = 0, and:

M 0 2 + D r = ( Λ /A =M'O 2. The condition (A7) is a standard dio-

V o -(i+z)/
phantine condition on ω.
Corollary 2. Let M close to M02 in M^fT^IR) and ω satisfying a diophantine
condition, then there exists (ρ,χ)e(R2,0) and HelMf^.TR), Id] such that:

This result is proved by a direct method in [Los 2].

Ί Γ
3. Let us consider M O λ = ( I, matrices A-\-D of Theorem Al have the

fl 0 \ , n m 2 r , (a 0\ Λ λ fO 0
, (a, b) E R , this means that Dr =\ and^4_= \1 ,,

b a) \0 a) \b 0/
the other constant matrices appearing in (A8) being identically zero. The condition
(A7) is the standard diophantine one.
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Corollary 3. Let Me[MJ )(T 1,R),M 0 3] and ω satisfy a diophantine condition.
Then there exists (a, b)e(R2,0) and He[M%(ΐ\Έi\ Id] such that:

We have then to "translate" the matrix M by ( I to get the quasi-conjugacy to
\b 0/

a constant triangular matrix. In order to obtain a strict quasi-conjugacy we have to
solve: b(M) = 0, so this is a codimension one problem.

Case 4. We consider now the matrix M 0 4 = I ° I in M2C(R), the complexified

space of M2(R) in M2(C), λo = e2ίπΩo, ί20 + 0, 1/2. By Theorem Al in the real case
we have:

Ά + D=Γ ) , thus Λ+=Λ_=0 and:

The condition (A7) is now:

7 W " (A22,

and we have:

Corollary 4. Lei M e [M^fT1, R), M 0 4 ] , ί/ze complexified space of matrices of real
operators, and let Ωo and ω satisfy the condition (A22), then there exists
(α,φ)e(R2,0), and HeCM^flΓSR), Id] such that:

α μ °J (A23)

We have then to "twist" the matrix M to get the quasi-conjugacy. This problem is,
as the preceding one, of codimension one since we should have to solve φ(M) = 0 in
order to obtain a quasi-conjugacy.

Case 5. We consider now the case needed for the bifurcation problem studied in
this paper; let

1 0 0

M05=\ 0 λ0 0

0 0 I o /
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in M 3 C(R), with λo = e2ίπΩo^ ±1. Matrices A, D of Theorem 1 have the form:

a 0 0\

b 0 ,(α,fe)e(Rx(C,0), then A+ =A_ - 0 , and:

0 0 67

a 0 0
•2 Λ \ .

(A24)\

/

\

The condition (A7)

α

0 /

0

0

0 (

0

now

0

loα

0

0

0

Xoα

0

e2iπφ)

0

reads:

{a, α) G

0

λ0 0

C

c

c
= ι Λ | i + ί !

\q\

(A25)

and we have:

Corollary 5. Lei M e [Mf^fΓ1, R), M 0 5 ] , ί/ze complexified space of matrices of real
operators, and let Ωo and ω satisfy the condition (A25), then there exists
(a,a,φ)e(JR3,0), and HeEM^TSlR), Id] such that:

(A26)

where Dn Dφ are given by (A24).

We remark immediately that the second condition (A25) can be suppressed
since it is implied by the first one. Relation (A26) is again a twisted quasi-
conjugacy of codimension one.

Theorem A2 has a wide range of applicability for problems of bifurcations of
invariant tori for which it has been designed. The generalization to TP instead of T 1

is straightforward.
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