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Abstract. An upper bound is derived for the tunneling rate of a spin with large
spin quantum number S. The bound is universal in the sense that it does not
depend on the specific form of the anisotropy (i.e., the potential barrier). The
method of proof relies on the exponential localization theorem of Frohlich and
Lieb and lends precise support to a rather suggestive interpretation put forth
in a WKB analysis of van Hemmen and Sύtό. The resulting bound agrees with
their expression for the tunneling rate in the limit of large S.

1. Introduction

Macroscopic quantum tunneling, i.e., the penetration of a classically forbidden
barrier by a macroscopic system, has aroused a considerable amount of interest
[1]. The motion of the system, a collection of particles, is usually described by a
single coordinate which is allowed to tunnel through a barrier between two minima
of an effective potential. However, not only a system of particles but also a large
quantum spin can tunnel [2-6]. For example, at low temperatures the long-time
behavior of the thermoremanent magnetization (TRM) of a spin glass with uniaxial
or unidirectional anisotropy is dominated [7] by the tunneling of large, mainly
ferromagnetic clusters. The same type of dynamics also occurs in magnetically
anisotropic media [8] where the magnetization of a single domain can tunnel
through an energy barrier between easy directions. Since at low temperatures the
clusters are frozen (i.e., the magnetic moments stick together), it is reasonable to
describe them [7,8], at least in first approximation, by a single spin with a large
spin quantum number S.

We consider a single quantum spin of fixed total angular momentum S and
denote by Sx, Sy, and Sz the usual angular momentum operators with

[S x, Sy2 = ihSz, and cyclically; S±=SX± iSy. (1.1)
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Without loss of generality we can assume that the main anisotropy axis is the
z-axis, choose a representation of (1.1) with Sz diagonal, and take h — 1.

A large class of models is given by a Hamiltonian of the form [3,4]

Jf=~F(Sz)-\t*n(Sn

++S^y (1.2)
^ n = 1

The first term on the right, — F(SZ\ describes the anisotropy. The function F is
strictly convex1, even, and F(0) = 0; for instance, F(s) = y\s\ι with / ^ l and
— S g s rg S will do. The function — F has two degenerate minima at + S. The
second term in (1.2), a linear combination of powers of S+ and ,S_, tunnels the
spin through the anisotropy barrier, which should be classically impenetrable. We,
therefore, require

F(S)» f απS". (1.3)
« = l

Throughout what follows, S is an integer. (Half-integer S may give rise to Kramers
degeneracy.)

Under the above conditions, van Hemmen and Sίitδ [3,4] have derived a
rather precise expression for the tunneling rate τ~ι by devising a novel but
nonrigorous WKB argument. A surprising result is the universality [3,4] of the
tunneling rate. For low enough energies, say E & — F(S), and in the limit of large
S it is found that

, (1.4)
where

(1.5)

is an attempt frequency. Except for TQ 1 , the tunneling rate is independent of the
specific form of the anisotropy F and governed only by the energy E and the
highest degree of the transverse field. The universality itself is similar to the one
found in the particle case [9], but we will see shortly that the methods of proof
do not bear any resemblance whatsoever.

A rather suggestive interpretation of (1.4) has been put forth in Ref. 3: "In
tunneling the spin has to pass a barrier of height |E | . The driving force in the
Hamiltonian is either S + or SN- and the energy associated with each of them
is ocNSN. This gives the fraction x = ocNSN/\E\«1. Since E < — F(S), the spin has
to travel a distance 2S (in units h) and the operators SN

± force it to do N steps
a time. After k = 2S/N times the spin has reached the other side. Thus τ~* = TQ 1xfe,
where TQ 1 is the attempt frequency." The authors of ref. 3 then continued by
saying "Of course, the argument should not be taken too literally."

In this paper we derive an exact upper bound for the tunneling rate, which in
the limit of large S reduces to (1.4). The method of proof relies on the exponential
localization theorem of Frohlich and Lieb [10] and lends mathematically precise
support to the above interpretation. As a preparation we derive in Sect. 2 an

1 In the WKB analysis of ref. 4 only convexity "at large distances" is required. The strict convexity

is a technical requirement which we need in Sect. 3
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expression for the level splitting ΔE by exploiting a symmetry of the Hamiltonian.
Section 3 is devoted to the exponential localization work and Sect. 4 is a discussion.

2. Symmetry and Level Splitting

Hamiltonians which allow tunneling usually have a symmetry. In our case the
Hamiltonian (1.2) is invariant under a rotation & through π about the x-axis. This
rotation transforms Sz into — Sz and leaves the tunneling term invariant. Taking
advantage of the symmetry & we derive a formula for the level splitting ΔE
associated with tunneling. In ref. 4, Appendix C, it has been shown that for the
low-lying states the tunneling rate τ " 1 equals \ΔE\/πh; here ft = 1. So it suffices
to compute ΔE.

For the sake of clarity we start by considering

Jf = - F ( S z ) - α S x , (2.1)

and indicate later on how the arguments can be generalized so as to cover (1.2)
with arbitrary N. The term ocSx is supposed to be "small" compared to — F(SZ),
i.e., ocS « F(S); cf. (1.3). For α = 0, J f = — F(SZ) has two-fold degenerate eigenvalues
— F(m), 1 ̂  m ^ S, and a simple eigenvalue at zero, which will be discarded
throughout what follows. A simple perturbation calculus [11] shows that the
degeneracy is lifted for α / 0 (and S integer). By (1.3), the level splitting ΔE is quite
small, in particular for the low-lying states.

The rotation & which leaves the Hamiltonian (2.1) invariant is unitarily
implemented by a transformation which we again call &. For even S we have
($φ)(m) = φ{—m\ whereas for odd S we obtain (0tφ)(m)= —φ(—m); cf. ref. 12.
(Note that we work in the spectral representation of Sz.) If φ is an eigenfunction
of Jf, then so is 0tφ and, therefore, so are (φ ± 0tφ\ Since for α φ 0 the eigenspaces
of Jf7 are one-dimensional, the corresponding eigenfunctions must be either even
or odd. We now show that they always occur in pairs of opposite parity.

As α->0, we can order the eigenfunctions in pairs {^2m^2m+i} whose linear
span converges to the eigenspace of — F(SZ) which corresponds to the eigenvalue
— F(m) and is spanned by φm and φ-m with φ+m(ή) = δn+m. In the same limit
one finds [11]

1
7( • 0 , (2.2)

where φ stands for either φ2m or φ2m+ι and || || = ( , ) 1 / 2 is the usual Euclidean
norm. The symmetry $ and the orthonormality dictate the coefficients of φm and
φ-min (2.2). Hence, by continuity in α, φ2m has to be even and φ2m + ι has to be
odd, or the other way around. Which of them is even depends on the Hamiltonian.
Let us call the even on φ + , the odd one φ_, put Jίfφ±= E±φ±, and define
ΔE = E+-E_.

We now turn to the computation of ΔE. The following definition was inspired
by a beautiful paper of HarrelΓs [13]. Let

(ΐφ){m) = sgn(m)φ(m), -S^m^S, (2.3)
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where sgn(m) is the sign of m, vanishing at m = 0. The operator / i s hermitian.
By (2.2) we can assume

Because (ίφ_, jf φ + H ( ί φ _ , φ + )£ + and (JTφ_, ίφ + ) = £_(ίφ_,φ + ), we
immediately get

JM**^ (2.5)

and all we have to do is calculate the commutator [/, J>f]. Plainly, I and F(SZ)
commute. To compute [/, S x], we define

α(m) = [ S ( S + l ) - m 2 ] 1 / 2 (2.6)

for \m\ g S and a(m) = 0 for |m| > 5, note that

and find

-f tf(χ/m(m + l))[sgn(m) - sgn(m + \)~]φ{m + 1)}.

The right-hand side of (2.8) vanishes for all m except for \m\ g 1, where

ifl(0)φ(0), m = l ,

m = 0, (2.9)

In passing we note that, in view of (2.7) and the non-degeneracy of the
eigenvalues, there is no harm in assuming the eigenfunctions φ+ to be real. This
is consistent with (2.2).

Combining (2.5)-(2.9) we then arrive at a surprisingly simple result.

Proposition. The level splitting ΔE associated with the Hamiltonian (2.1) is

(2.10)

In the case of the more general Hamiltonian (1.2) one gets instead of (2.10) a linear
combination of products φ + (p)φ^(q) with 0^/?, q^N. Here N is the maximal
range of the walk induced by Sn

+, 1 ̂  n ^ N, on the spectrum of Sz. As S-+ oo,
the terms φ + (p)φ^(q) refer to a fixed and finite region well beyond the classically
allowed domain and, therefore, are expected to be exponentially small. The proof
of this statement is the subject of the next section.

3. Exponential Localization

Some years ago Frohlich and Lieb [10] proved quite a remarkable theorem, which
they tagged "exponential localization of eigenvectors." The content of the theorem
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is the following. Given a Hubert space, let A and B be selfadjoint operators
(typically finite, hermitian matrices) such that (i) A ̂  0, (ii) ± B ̂  εA with 0 g ε < 1.
Furthermore, let φ be an eigenvector of A + B with (A + B)φ = λφ and || φ || = 1.
Choose some p > λ ̂  0 such that

i Γ ^ l . (3.1)

Let Mp be the linear span of all the eigenvectors of A corresponding to eigenvalues
^ p. (Plainly, A — λ restricted to Mp is strictly positive and, thus, invertible). Finally,
let φeMp be a unit vector with the property

(iii) lB{A~λy1yφeMp (3.2)

for O^j^d-1, with d^l. Then

\{φMύ< (3.3)

which is exponentially small in d.
We take2

A = [F(S) - F(SZ)] + F(S) and B= - otSx, (3.4)

so that A ̂  0 and ± 5 ^ εΛ if ε = aS/F(S). Since up to an additive constant 2tf
equals A + B we can stick to (3.4) if we want to estimate φ + (0) and φ_(l) in (2.10).
As we will see shortly, they are both of the same order of magnitude, so we
concentrate on φ + (0) = (δo,φ + ), where δo(m) = δmO is the eigenfunction of A
that is φ in (3.2).

We are interested in the level splitting associated with the ground state of
JίT = A + B, so λ = F(S) + O(aS) for either E+ or £ _ . Naively, it is expected that
the "best" value for σd in (3.3) is obtained by taking d as large as possible, i.e.,
d = S. Then p = [F(S) - F(S - 1)] + F{S) and Sx = i(5+ + S_) can operate (S - 1)
times on φ = δ0 before leaving the space Mp which contains all the eigenfunctions
of A with eigenvalues ^ p. If p(p — λ)~x were 1 (it is not), then σd would reduce
to εs and φ + (0)φ_(l)~ε2S, as announced. In reality (see below), the parameters
p and d are not independent and by varying d in the limit of large S we can
saturate the bound given by (1.4). In this limit the attempt frequency TQ1 is
subdominant and, therefore, will be discarded. Furthermore, (1.4) may be rewritten

τ-1oc(oίS/\F{S)\)2S = ε2S. (3.5)

After these introductory remarks we now turn to a more precise statement.

Theorem. For large S the tunneling rate associated with the ground state of the
Hamiltonian (2.1) obeys the upper bound

τ-1^απ"1α(0)exp{2x[lnε+6)(x)]}. (3.6)

Here x^2S depends on ε = ocS/F(S) and either equals S (then Θ (x) vanishes) or
approaches S as ε JO. In this limit, Θ(x) becomes negligible as compared to lnε.

Other ways of splitting j f into A + B will do as well
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Remark. Within the present context the generalization which is needed to cope
with (1.2) and (S\ + S_), n > 1, is rather straightforward and will not be given
explicitly.

Proof. Let 1 ̂  x ^ S and p = 2F(S) - F(x - 1), so that d = x in (3.3). We choose x
in such a way that σx with σ = εp(p — λ)~x is minimal. For S fixed, we then show
that x either equals S or approaches S as ε JO.

One readily verifies that σ x = Φ(x\ where

f v _ λ\~\x

(3.7)

As F is strictly convex we have dropped O(aS) from the denominator in (3.7). The
function In Φ and, hence, Φ itself is easily shown to be convex for 1 ̂  x :g S. The
derivative of In Φ at x = 1 is ln(2ε), which is negative by assumption (ε« 1). At
x = S we either have a negative derivative (in which case, e.g. for F(x) = exp(x2) — 1,
we are done) or the derivative is positive, as is usually the case in practical work.
Take, for instance, F(x) = γ\x\ι for some I > 1. Then there exists a unique minimum
for 1 < x < S and x = x(ε) satisfies the equation

F(S) ] xF(x-l)F(S)

The left-hand side of (3.8) equals — In ε — Θ(x). This defines Θ(x) with x = x(ε) in
(3.6). The right-hand side of (3.8) is a monotonically increasing function of x. As
eJ,O, x = x(ε) has to increase to 5, though the dependence upon ε is weak and,
therefore, Θ(x) is subdominant as compared to lnε. By (3.3) and (2.10) the proof
is finished.

4. Discussion

Rather surprisingly, the arguments of Sect. 3 do not make any reference whatsoever
to the tunneling process itself. This is the more remarkable since the WKB analysis
[3,4], which hinges on the very notion of tunneling, gives rise to essentially the
same estimates for the tunneling rate τ " 1 as S^oo (or α -* 0). The underlying
philosophy, however, is fully confirmed by the exponential localization theorem
of Frohlich and Lieb [10], which provides us with an upper bound for τ " 1 in
terms of the range of the walk induced by S1^ on the spectrum of Sz. For the
tunneling rate associated with the groundstate of the Hamiltonian (1.2) the message
of Eqs. (2.10) and (3.3)-(3.6) is that starting in the center (m%0) the S+ have
reached the borders of the spectrum of Sz after S/N steps, whence τ~ιccε2S/N

with ε = ocNSN/\E\—as advertized.
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