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Abstract. Various intersection probabilities of independent random walks in d
dimensions are calculated analytically by a direct renormalization method,
adapted from polymer physics. This heuristic approach, based on Edwards'
continuum model, leads to a straightforward derivation and also to refinements
of Lawler's results for the simultaneous intersections of two walks in 2Z4, or three

2P
walks in Zζ3. These results are generalized to P walks in Zd\ d*= ——-, P^2.

For d<4, an infinite set of universal critical exponents σL, L^l, are derived.
They govern the asymptotic probability &L~S'L that L "star walks" in IRd,
with a common origin, do not intersect before time S. The σL's are calculated up
to order O(ε2), where d=4— s. This information is used to calculate the
probability JΓ(^) that a set of independent random walks in IRd or Zd, rf^4,
(respectively d^ 3) form a given topological networks ̂  of multiple intersection
points, in the absence of any other double point (respectively triple point). This

2P
is generalized to a network in d^——- dimension with exclusion of P-tuple

L — I

points. The method is quite general and can be used to calculate any critical
intersection probability, and provides the probabilist with a large variety of
exact results (yet to be proven rigorously).
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1. Introduction

Intersection properties of random walks or Brownian paths have been a long
standing problem, starting from the works by Dvoretzky et al. [1], and Erdos and
Taylor [2,3]. In particular, it is known [4] that two infinite (discrete) random walks
in Ή4 have a non-empty set of common points, while [1] two infinite Brownian
(continuous) paths do not intersect in R4. For a space dimension d^5 the
intersection sets are empty in both cases [1-5]. In this sense d=4 is a critical value
for the intersection properties of two independent walks or paths, and this is well-
known to be intimately related to the non-triviality of the φ4 field theory [6-10] for d
< 4, and to the theory of critical phenomena, where critical exponents take non-
mean field values for d < 4. For the statistical physicist, the above remark of the non-
equivalence of intersections of discrete walks in Z4 and of continuous Brownian
paths in IR4 is entirely reminiscent of the existence of logarithmic corrections in a φ%
theory with an ultraviolet cut-off (the lattice spacing of Z4), while the continuum
φ4 theory is widely believed to be trivial.

Recently, Lawler [11-13] has been able to give, by rather detailed probabilistic
methods, logarithmic bounds on the probability of intersections of two random
walks in four dimensions [11,12], and of three random walks in'three dimensions
[13]. He considered two trajectories in Έ4 Πί(Q,n) and Π2(Q,n) of two simple
random walks of n steps, starting at 0 and Xo respectively, and their probability of no
intersection after n steps

) = 0} . (1.1)

The results are for n large

p(n)»\ -aQnnΓ1 (1.2)

if \x0\
2xn, with a prefactor a of the logarithm depending on x0\

2/n = a, and for XQ = O

p(n)x(lnnΓlβ (1.3)
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Actually (1.3) is only asserted to be the actual decay rate of p(n), logarithmic bounds
being obtained, which do not suffice to prove rigorously (1.3) as asymptotic limit.
More precisely [11] it was shown that

nnΓl/2 , (1.3 bis)

where c and c' are constants, and [12] that lim (In n)rp(n) = oo for all r > 1/2. Similar
«->00

bounds as in (1.3 bis) have been rederived by Felder and Frohlich [10] using
(rigorous) methods in field theory, (see also Aizenman [9]). One should note also
that more recently a different probabilistic approach, using "intersection local
times", has been devised [14-17] for studying the intersection properties of random
walks or Brownian paths. In particular [15], conjecture (1.3) appears likely in this
approach. Lawler [13] has also considered the triple intersections in Ί? of three
simple random walks, d— 3 being there the upper critical dimension. The results for
three trajectories 7Ij(0, ft) are

1. For two walks starting at 0, and a third starting at a distance Xo~]/n,

P{/71(0,«)n772(0, oo)n/73(0, oo)Φ0}^(ln/t)-1 . (1.4)

2. For three walks starting at the origin

, oo)n/73[0, oo) = 0}^(lnrcΓ1/4 . (1.5)

Actually, (1.4) is proven by upper and lower bounds, while the (ln«)~1/4 decay rate
of (1 .5) is rigorously obtained as an upper bound, the lower being only conjectured.
Lawler [11,13] also presents results for a variety of other probabilities of the same
type, like those of two-sided walks, to be described below.

The aim of the present article is to propose a different approach, which embodies
both analytical calculations on Brownian motions (like in the probabilistic ap-
proaches) and renormalization (like in field theory), but directly applied to the
Brownian intersection theory. This approach comes from polymer physics [18-20].
It has to be adapted to treat intersection properties of random walks. Polymers
indeed correspond to random walks which are both self- and mutually avoiding
[18-21]. Here only the mutual avoidance properties are relevant. This case also
exists in physics and corresponds to polymer solutions with selective interactions or
"chemical mismatch" [22]. We use for that purpose a continuum model, derived
from the standard Edwards' model for polymers, and which describes the
intersections of, e.g., two independent Brownian processes in lRd, for d= 4 — ε, ε ̂  0.
Using renormalization theory, we are able to reach the limit ε = 0, d=4. We then
recover and extend Lawler's results. For instance, for two walks starting at 0 and XQ ,
we obtain in four dimensions the universal limit

lim 21n77P{771(0,«)n/72(0,/7)Φ0}--(l-e"α)-£τ

ί(-α) , (1.6)
n-» oo $

where α— lim \x0\
2/2n, and where Et(—a) is the exponential-integral function

£,(-<*)= - J Λ . (1.7)
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The finite limiting value actually corrects one (ln(l +l/α)) asserted by Lawler in
[11]. For three walks (0, n) (0, oo), (0, oo) starting respectively at (XQ, 0, 0), we find
similarily in Tl? the new result

lim 41n«P{Π1(0,«)n/72(0, oo)n/73(0, oo)Φ0}

= \dx(\-y\-x)e-~ — -£,(-«) , (1.8)

which gives the exact universal form of (1.4). By the same direct method, we
reobtain (1.3) (1.5) for walks all starting at the same point.

We also present a series of generalizations. A first generalization consists in
looking at the intersections of P paths (P Ξ> 2) at the same point, the intersections of
p paths 1 ̂ p^P — 1, being not considered. These P-body intersections occur (in
probability) only below a critical (continuous) dimension d* = 2P/(P — 1). We show
how to calculate the scaling behaviour of the probabilities of multiple intersections
of P walks in Rd, for d^ d*, including their universal logarithmic behaviour in IRd*,
which generalizes (1.3)(1.5).

A second progress in the known results is obtained for the standard intersections
of two walks (P = 2), by calculating the scaling behaviour of p(n) (1.3) for d<4

p(n)ϊzn^ , fl-»oo , (1.3ter)

where ζ is an universal critical exponent which depends only on the space dimension
2^ί/<4. We calculate it to (9(e2), where ε = 4-d. This second order (two-loop)
calculation allows also [20] in d = 4 the obtention of all the subdominant
O(lnln«/ln«) universal logarithmic correction terms in asymptotic results like
(1.2)-(1.7).

Finally, rather than considering only two (or P) walks starting at the same point,
one can discuss nets of random walks in ΊLd, or Brownian paths in Rd, for any
topology. A net ̂  is determined by requiring that a certain number of independent
walks of lengths n meet at some prescribed vertices, where two, three, . . . , L, . . . walks
meet. The vertices are not fixed in space, but the topology of the network, i. e. the net
of walks, although arbitrary, is fixed. In other words, the topography of the walks is
similar to that of a hydrographical network made of rivers flowing ones into the
others at the same prescribed confluence points. Other crossings of the rivers are
forbidden. We calculate in this work the probability P(<&) that the walks have no
other intersection points than the prescribed confluence vertices. One can forbid
double points in ί/^4, or only triple points in drg3, or ... /7-tuple points in d^d*,
and obtain each time a different universal scaling behaviour, which is evaluated here
as an explicit function of the topology of the network. We find, below the critical
dimension, that the probability P(^) scales like

where <£ is the number of independent loops in ,̂ and where ζ^ is a new universal
exponent, topology dependent. We calculate ζy to order O(ε2), ε = 4 — d, when two-
walk intersections are excluded, and to order O(ε'), ε' = 3 -d, when only three-walk
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2P
intersections are excluded. We generalize this to P walks, with ε = - -—d(>0).
At the critical dimensions, P(^) scales like

where 3^ is a new universal logarithmic exponent, generalizing —j or — \ in (1.3),
(1.5). We calculate explicitly 3^ as a function of the topology of ̂ , in the cases where
two-walk, three-walk, ...P-walk intersections are excluded.

The continuum model that we use, for instance in the case of the intersections of
two independent Brownian paths in IRd, is given by the probability weight

2 o \as1 ) 2. 0

-i / *! I ds2 δ* [Γl (Sl) -r2 (s2)]} , (1.9)

where τί(si), 0^si^S1 τ2(s2), Og^2^^2 are two Brownian trajectories in IRd,
interacting via a local repulsive distribution δd, with an interaction coefficient b > 0.
For £-κx), (1.9) describes mutually avoiding walks. We work in dimensional
regularization, which amounts to continue analytically the theory from d<2
towards d=4. For d< 2 no divergences appear in the perturbation expansion of the
model, while they occur at some poles for 2^d<4. All quantities are calculated as
meromorphic functions of d. The limit S\ , S2 -» oo (actually equivalent to b-> oo, see
below) will yield the universal properties of the intersections of long Brownian paths
in d^4. It is also to be noted that working in dimensional regularization with d=4
— ε, ε > 0, allows one to take the d= 4 limit, after renormalizatίon. Then one obtains
automatically the scaling limit of the theory with an ultraviolet cut-off in four
dimensions, as discussed in detail in ref. [20].

Let us briefly discuss the relation of this approach (1.9) to the field theoretic
representation of polymer problems [21,23,24,5-10]. To each random walk
β ( = 1 , 2) is associated a field φ β (x) with n components φf (x) i = 1 , . . . , n, where x is a
point of the lattice TLά . The local repulsive interaction between walks is simulated by
a field interaction term [5-10] b ]Γ £ \φβ(x)\2\φy(x)\2 in the Lagrangian. Amass

χGiLd β*y -m2ΣSβ
term m ]Γ \φβ(x)\2 corresponds to the exponential killing factor e β of the

β
times {Sβ} allowed to the set of walks {β} in (1 .9). Then the «->0 limit [23-25] of the
Euclidean field theory corresponds to the theory (1 .9) of Brownian paths with a
mutual local repulsive interaction between any two paths. This correspondence,
implicit in Symanzik's representation of field theory [26], has been fully understood
and exploited in polymer physics, starting from the original works by de Gennes
[23] and des Cloizeaux [24], and using Wilson's theory of critical phenomena [27].
More recently, this correspondence has also been quite fruitful in mathematical
physics, by mixing random walks and field theories [5-10], yielding rigorous results
in the latter. But here we want to follow the other direction [18-20,22], without
employing field theory, but only direct renormalization methods, which deal
directly with locally interacting polymers, or, as in (1.9), with locally interacting
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Brownian paths. In these direct theories one can perform any analytic calculation of
configurations of random walks with some specific intersections. Hence, the
parameters are directly those of interest for the probabilist mathematician. In
particular, what is called "local time" [14-17] corresponds precisely to the
interaction integral in Edwards' formulation (1.9) [28-32] of interacting random
chains. [The existence of weight (1.9) could be established as in Westwater [29-32]
who studied the standard Edwards' model [28]]. Admittedly, up to now, the validity
of the direct renormalization methods for the Edwards' model has only been
established [33-35] by a Laplace-de Gennes transformation [25] into a O(ή) field
theory in the limit n -> 0, and using the renormalization scheme of the field theory. So
it has the same heuristic validity as the standard perturbative Callan-Symanzik
renormalization of, e.g., the (φ4)d field theory, as used by K. Wilson for describing
critical phenomena in d=4— ε. A similar derivation of the multiplicative renor-
malization structure could be performed for model (1.9), starting from the
interacting field theory [φβ(x)} described above. But the direct renormalization
method is quite powerful and simple. New results and new generalizations to more
random walks with various topologies (like those of star-walks, or nets of walks) are
given in IRd, d^4. We also consider in detail the case of triple intersections in IRd,
rf^3, for various topologies, and of P-tuple intersections, using the same method.

We hope that this study could interest various readerships, by bridging a gap
between probabilistic approaches and field theoretic ones. It can be used also as an
heuristic mean to invent new exact results, which then remain to be proven
rigorously, in the mathematician's sense. It could also suggest in probability theory
more direct approaches to intersection properties, which should embody the salient
features of renormalization theory.

2. Intersections of Two Walks Near Four Dimensions

2.a. The Continuum Theory

Let us consider first the simplest situation of two independent random walks of the
same length. We describe them by a continuum theory in IRd with d< 4. At the end,
we let £/->4. The probability weight of configurations r1(s), τ2(s) in IRd is of the
Edwards' type (1.9)

(2.1)

S is the "length" of the two walks, and by dimensional analysis one checks that it has
the dimension of an area in the continuum theory. More precisely [18], for a single
isolated random walk

<[r(S)-r(0)]2>0 = ̂  , (2.2)

where the average is taken with the Brownian weight (2.1) for one walk (bδd drops
away). Thus S replaces the usual number n of steps in a lattice walk with n/d-> S. Let
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us then perform the rescaling τt = S1/2ρh / = 1,2, and s = Sx, ρ and x being now
dimensionless. We get for (2.1)

i i i i
- \dxql(x)-- \dx'Q2

2(xf)
z o z o

-(2π)"'2z } rfx ί dx'δd[ρι(x)-ρ2(x')]\ , (2.1 bis)
0 0 J

where the dimensionless parameter z of the two-point interaction is defined as [18]

z = (2πΓd/2bS2~d/2 . (2.3)

Clearly, for d>4, z-»0 for S-+oo and the intersection local time [14-17, 36, 37]

s s
f ds f ds'δd[r1(s)-r2(s')]-S2-df2 (2.4)
0 0

is irrelevant (vanishing). On the contrary, for J<4, z->oo when 5~>oo, and the
intersections are important. As is well known, d=4 is the marginal case, where
logarithmic behaviour occurs. In the limit z-»oo, the weight (2.1) (2. Ibis) selects
only configurations without crossings, and enables us to discuss intersection
probabilities. For doing this, we define the averages with respect to weight (2.1), as
the functional integrals

where ̂ 0 is the pure Brownian weight of the trajectories for b = 0, which defines the
normalization in the continuum theory. Following Lawler's notation [11, 12], let us
consider the probabilitity that two simple random walks in 2£d, starting from 0
(Fig. 1) do not intersect again before step n: P{/71[0,«)n772(0,«) = 0}. In our
continuum theory this is just ¥g(S,S; 0, 0), where

, S; x, y) = <^(rt (0) -x)<5d(r2(0) -y)> (2.6)

is the correlator of two walks of lengths 5 starting at x and y in Rd. Owing to (2.5), ̂
is dimensionless. The critical limit z-κx) will yield the continuum analogue of the
no-intersection probability P above.

2.b. Diagrammatic Rules

The strategy is the following. We first calculate (2.5), (2.6) by perturbation theory of
weight 2P (2.1) in powers ofb. To first order, we have

^S O^l-δJώfώX^Ir^^ ,
o o (2>?)

where the subscript 0 stands for the Brownian weight with b = 0. (We see that at this
order 3? is given by the average value of the intersection local time (2.4) but at higher
orders correlations of local times come in.) Such a term (2.7) is represented by a
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Fig. 1. One-loop diagram contributing to the probability of no further intersection of two
independent random walks starting at the origin 0. The dotted line represents conventionally a
local contact — b δ d [ τ ί ( s ) — τ 2 ( s ' ) ] in space, between points of abscissa s and s'

diagram [18] as in Fig. 1 with a dotted line for the δd contact. Calculations are
always performed by Fourier transforming [18-20]

I ddqeίq r , (2.8)

(2.9)

(2.10)

and using for each pure (b = 0) Brownian path r the Green function

Hence we trivially find for (2.7)

a
,S;0,0) = 1 -b J —-M ds J ds'

(2π) o o

This is a particular case of general diagrammatic rules [18] for calculating an average
like (2.5) in perturbation series of b. They are easily obtained by expanding the
exponential in (2.1). These rules, which we shall need all along, are the following
(Fig- 2).

Fig. 2. A second order (two-loop) diagram contributing to JΓ(5,S,x,y) [Eq. (2.6)], and the
associated integration variables appearing in Eq. (2.11), as an illustration of the diagrammatic
rules of Sect. (2.b)
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1. Diagrams are made of walks (continuous lines) interacting via arbitrary
dotted lines joining two interaction points on walks, with a factor (—b) for each
interaction.

2. When some physical points on the walks are at some prescribed positions
(x,y, ...} in Kd one draws also a set of independent vectors {x— y, ...} which span
the independent relative positions.

3. A set of independent loops is selected in each interaction diagram, which
involve both continuous walk lines, interaction dotted lines, and relative position
vectors. An independent momentum q flows along each loop, with integration

, ddq
measure — -— Γ.

J d

4. Each of the relative vectors {x -y, . . .} of rule 2 carries a momentum Σq which
is the sum of the momenta of the independent loops to which the vector belongs.
Then it contributes a factor e

l< χ - y ϊ ' Σ f i to the integrand.
5. Along each segment of length s of a walk, determined by two successive

interaction points along a same walk, one evaluates the total momentum flowing
along it, which is the algebraic sum Σq of the momenta of all the independent loops
to which the segment belongs. This segment contributes then a factor e ~ έ (Σq}2s to the
integrand.

6. One integrates over all independent momenta, and all positions of inter-
action points which preserve the topology of the diagram.

7. One sums over non-topologically equivalent diagrams.
Equation (2.10) corresponding to Fig. 1 gives a first trivial example. The

contribution of the second order diagram of Fig. 2 to ̂  (S, S;x, y) (2.6) is for
instance

(2.H)
• f dsί J d

0 0

Now, for calculating the contribution of a diagram obtained by the above rules,
one integrates first onto the L Gaussian loop variables q z, /= 1, . . . , L, with the well-
known Gaussian formula

J Π A/exp -~ Σ
L 1,1'

where the matrix Mu> acts here only on the loop indices /=1, . . . ,L, which are
decoupled from the lRd space components. Clearly (2.12) now allows the analytic
continuation [38] of the theory to non-integer values of d. [One should also note that
after Gaussian integration over all momenta q's one gets an integrand in terms of
parameters s, which is exactly that of the Schwinger-Feynman "α parameter"
representation of the (φ2)^ quantum field theory. The only difference lies in the
domain of integration. The walk parameters {s} are bounded by constraints on the


