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Abstract. The basic properties of super Riemann surfaces are presented, and
their supermoduli spaces are constructed, in a manner suitable for the
application of algebro-geometric techniques to string theory.

0. Introduction

Super Riemann surfaces were introduced by Friedan [Fr] as the correct
supersymmetric analogue of a Riemann surface, and the supermoduli space plays a
role in superstring theory analogous to the role of moduli space in bosonic string
theory. In this paper we will provide a description of supermoduli space in precise
sheaf-theoretic terms, following the classical lines of Kodaira-Spencer deformation
theory.

We will in fact construct the supermoduli spaces for super Riemann surfaces
with level-rc structure, n ̂  3. The choice of n = 3 as the lower limit is dictated by the
fact that 3 is the least of all integers n such that an automorphism of a Riemann
surface (Σ, Θ) inducing the identity on H1(Σ, Z/nZ) is itself the identity map [F-K].
It follows that the reduced space of the level-?? supermoduli space is nonsingular.
Nevertheless, the supermoduli spaces are orbifolds, so to speak, in the "odd"
directions. Each is locally the quotient of a supermanifold by the canonical
automorphism which sends any superfunction / of definite parity |/ | to (— l) l / f/
The construction calls attention to the topological problem of determining, for
each value of n9 whether the level-n supermoduli space is a global orbifold. This is
equivalent to asking whether the spin structures on the fibers of the universal curve
over the reduced space may be fitted together to form a square root of the
canonical bundle of that curve. Some remarks about this problem are given in the
appendix.

One may also consider super Riemann surfaces with a homotopy marking. The
corresponding supermoduli space is a global orbifold. It is the quotient, by the
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canonical automorphism, of super Teichmύller space. For a given genus g, let T
denote the 4^-fold cover of Teichmϋller space corresponding to all possible spin
structures, and let (17, κ1/2)-> T denote the universal curve with its canonical square
root of K. Then super Teichmϋller space is (% A π°(/c3/2)), where π°(/c3/2) is the 0 th

direct image sheaf of κ3/2. In particular, super Teichmϋller space, and all the
supermoduli spaces, are superspaces of dimension (3g —3,2g —2) (see [Fr, C-R]).

All of the supermoduli spaces carry an action of the mapping class group, and
one may obtain a "true" supermoduli space as the quotient of super Teichmϋller
space by this action. The supermoduli spaces with level-n structure are smooth
finite branched covers of the full quotient, and therefore provide an appropriate
setting for superstring theory.

1. Super Riemann Surfaces

First recall the definition of a supermanifold. Let {X,si) be a Z2-graded-
commutative ringed space over C. Let Jί C si be the ideal of nilpotents. (X, si) is a
complex supermanifold if

1.1. (X.sijJί) is a complex manifold.

1.2. JίjJί1 is locally free over sijJί and si is locally isomorphic to
2

ι
For example, if (X, 0) is a complex manifold and δ is a locally free sheaf of

^-modules, then (X, A δ) is a supermanifold. Not all supermanifolds are of this

form. For a general discussion of this point, see [E-L, R]. A map (X, si)—>(Y,&)

between supermanifolds is a pair consisting of a reduced map X —^-> Y and a

homomorphism n~Q\{β) >si of Z2-graded sheaves of C-algebras. A family of
compact supermanifolds is a map (X, si)—>(Y,3#) such that π r e d is proper and π is
submersive. The dimension of a supermanifold (X,si) is the pair (dimX,
rank(yΓ/yK2)). The relative dimension of a family is the difference of the dimensions
of the domain and range. Given a family (X,si)—>(Y,&) and a point pe Y9 the
fiber of the family at p is the supermanifold π ~ ί (p) = (π~Q^ (p), sijj^ where JpCsi
is the ideal generated by π*{π~\Jt^) and JίvQ$%\s the maximal ideal at p. The
dimension of π " 1 ^ ) equals the relative dimension of the family. Let us denote
supermanifolds by barred letters X, % etc., and let X stand for (X, six). The tangent
sheaf of X is the sheaf of graded derivations, Der(six), which we abbreviate by
Der(X). If X—> Y is a family, the relative tangent sheaf is the sheaf Derrel(X)
CDer(X) consisting of derivations which annihilate π*(siγ). Derrel(X) is locally
free, with rank equal to the relative dimension. If X—> Ϋ has relative dimension
(p,q) and z1, ...,zp, η1, ...,ηq are sections oΐsix (with the z's even and the ^'s odd),
such that dz1,..., dzp,..., dη1,..., dηq are a basis for Derfel(X), we call (z, η) a relative

coordinate system. Then —-r,..., —--, —Ύ,..., —— are defined to be the dual basis for

Un 8Z dZ dη δη

Definition 1.1. A super Riemann surface over the supermanifold Y is a family of

compact supermanifolds X - ^ Ϋ, of relative dimension (1,1), together with a (0,1)-
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dimensional subsheaf @cDerrel(X\ such that the Lie bracket

is an isomorphism. <3)2 denotes the tensor product Θ®^^. A super Riemann
surface is also called a SUSY-curve [M].

This definition connects with the standard definition in the physics literature
by the following lemma.

Lemma 1.2. // \X—> Y; 3)) is a super Riemann surface, one may cover X by relative

coordinate systems (z, η) such that & is generated by

Proof. Let (w, λ) be a relative coordinate system. Since 2 is locally free of rank (0,1),

it has a generator of the form -— + α^—, with a odd. Since Θ2 ——• Derrel(X)/@ is
~ oλ ow

an isomorphism, —- must be invertible.
oλ

Introduce a coordinate system (z,η) with η = λ. Then

d d d . / dz dz\d

dλ dw δη \" dw ' dλj dz

Thus we must solve a -—f- — = λ. Expand z and a as power series (first order) in λ:
dw dλ

z = λzλ+z2, a = a1+ λa2.

We obtain two equations:

dz2 dz2 dzι ,

dw dw dw

Since a2 is invertible, it is easy to see that this system has a solution. •

Call a relative coordinate system (z, η) canonical if 2 is generated by — + η —.

Note that by Lemma 1.2, one may define a super Riemann surface to be a
family of (1, l)-dimensional supermanifolds together with an atlas of relative
coordinate systems (zα, ηa) such that on the overlap of any two coordinate systems α

and jS, h ηa-— is a superfunction multiple of- 1- ηβ -—. This is the definition
dηa dza dηβ dzβ

in [Fr].

Example. Super Riemann surfaces over a reduced base. Let X^Y be an ordinary
complex curve over a complex manifold 1̂  and let K be the relative cotangent sheaf
on X. If X = (X, s$)^> Y is a family of supermanifolds with relative dimension (1,1),
then stf is canonically Λ (/) for some line bundle /. Indeed Θx = stf0 and l = stfx.\iX
admits a superconformal structure 2, then for any D e § , f^®χ and ηel, D(fη)
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= Df-η +fDη =fDη, since Df is odd and therefore of order η. Then 3 = Γ \ and
the bracket operation on 3 makes / a square root of K. Furthermore, (X, Λ κ1/2)
always admits a superconformal structure. Namely, if (z, η) is a relative coordinate
system for Λ K1/2 such that η®η = dz, then take (z,η) as a canonical coordinate
system. Thus a super Riemann surface over a reduced base is simply a family of
Riemann surfaces X-+Y together with a choice ofκ1/2.

2. The Moduli Problem

The goal is to find a universal super Riemann surface (X-> Ϋ; 3\ meaning roughly
that all super Riemann surfaces are obtained by maps into Y. This makes sense
only after a suitable notion of equivalence is given. First introduce a notion of
marking. For a given genus g, fix a smooth surface Σ of genus g. Then the family of
smooth surfaces X-+Y may be regarded as an associated fiber bundle of a
principal ΏiίϊΣ bundle over X, and a marking is simply a reduction of the structure
group. We will consider two types of marking.

1. Homotopy marking, i.e., a reduction of the structure group from DiffZ to
DiffoZ, where DifT0Γ is the identity component of ΌiϊΐΣ.

2. Level-n structure, i.e., a reduction of the structure group from DiffΣ to
ΌiϊϊnΣ, where ΌiϊίnΣ is the kernel of the natural map

DifΐT-»Aut(#1(2;,Zn)).

If X —• Ϋ is a family and Z —> Ϋ is a map, one obtains a family α*(X) > Z,

called the pullback, defined as follows. Set

α*(X) = {(z, x) e Z x X\φ) = π(x)},

and set

where s/2 ® ̂ x ^s t n e structure sheaf of Z x X and«/ C ^ ® <*&? is the ideal defining

the graph of α. If 3) is a superconformal structure on X—• Ϋ, then the pullback
inherits a natural superconformal structure α*££. If the underlying family of curves
has a marking, one may also pull that back.

The Canonical Automorphism and its Effect on the Moduli Problem

Fix a type of marking. Then ask the question, does there exist a marked super

Riemann surface (X —> Y; 3)) such that given any marked super Riemann surface

{W^Z\9'\ there is a unique map Z-^U? such that ( α * Ϊ ^ Z ; α * 9 ) and

(W—>Z; 3)') are isomorphic over Z, by an isomorphism which respects both the

superconformal structure and the marking? The answer to this question is no, for

the following reason. Define the canonical automorphism (of a supermanifold) to be

the sheaf automorphism which sends any superfunction / of definite parity |/ | to

(—l)^1/ We denote this automorphism by A. Then given any super Riemann
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— α _

surface (X—> Y\2) and any map Z — > X α and A oα induce equivalent super
Riemann surfaces over Z.

The canonical automorphism has the following effect on the moduli problem.
After constructing the reduced space of the supermoduli space by classical
methods, one may use Kodaira-Spencer theory to construct pieces of the
supermoduli space over small open sets in the reduced space. However, when
trying to glue these pieces together on each pairwise intersection, one finds that
there are two ways to do it, and no natural way to choose between them. As a
result, the supermoduli space is defined only modulo A. To say this more precisely,
we introduce the following notions.

Canonical Superorbifolds

Define a quasimap between two supermanifolds X and Y to be an unordered pair of
maps {φu φ2} CHom(X, Ϋ) such that φί = A° φ2. Define a canonical superorbifold
to be a set of data (X, {^a},τaβ), where X is a complex manifold, # a = (^a,j/a) is
supermanifold defined on an open subset %a C X, the sets ύlίa cover X, and the τα|9

are quasimaps

which induce the identity on X and satisfy the cocycle condition

Associated to any canonical superorbifold X = (X, {^α}, τaβ) is a class
εeH2(X, Z2), obtained by choosing a representative, f a / j e H o m ( f a , f ^ a n ^ for
each τaβ, and then defining εaβy by

If ε vanishes, then we say that X is a global superorbifold.
Notice that, while a canonical superorbifold is not a ringed space, there is a

ringed space associated to it, for the even superfunctions are invariant under A.
To construct the level-n supermoduli space as a superorbifold, we proceed in

two steps.

Local Theory

The first step in the local part of the moduli problem is to identify the sheaf of

infinitesimal automorphisms. Let {X —> Ϋ; 2) now be any super Riemann surface.

Define sheaves ^ π and ^ π on I :

is the infinitesimal automorphism sheaf of the super Riemann surface.
A simple but important lemma:

Lemma 2.1. ^^Q)2 as sheaves of π~i(jtfΫ) modules.

Proof Recall
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We claim that q\%π is bijective. Let (z,η) be canonical coordinates and set

D= — +t}~. Take ζ e ^ π and set ζ = a-~+bD. Then
oη cz όz

Thus

The result follows. •

Example. lϊ(X-+Y, κ1/2) is a super Riemann surface over a reduced base, then
has a generator in κ~n/2. Then

Thus over a reduced base, ^π = κ
Let π^ denote the ith direct-image functor, i.e., for any sheaf SF of abelian groups

on X, πιJjF) is the sheaf on Y obtained by completing the presheaf

— π —

Proposition 2.2. Let (X—• Y\3>) be a super Riemann surface of genus g ^ 2 . Then

Proof Let Jί'CstfΫ denote the nilpotent ideal. Set

1 ) , X{n) = (X,

Define ^ W ) C Derrel(X{n)), by analogy with ^ π . Since the assertion is local, we may
assume s/Ϋ= A <f, where $ is a locally free sheaf of 0y-modules. Then we have

As stated in the example above, ^°π = κ~ι®κ~112. Thus (πred)°(^°) = 0, and the
proposition follows by induction on n. •

Let Z be a supermanifold, and let (W—>Z\ κ1/2) be a super Riemann surface
over the reduced space. We wish to characterize the super Riemann surfaces over Z
which pull back to (W—>Z;κi/2). There is a characterization in terms on non-
abelian sheaf cohomology, at least when Z is split. First declare two super

Riemann surfaces (W-^Z\2) and {W'-^Z'\Sf') extending (W-^+Z; κ1/2) to be
equivalent if there exists a superconformal isomorphism

W >W'

which restricts along Z to σ. Now assume Z = (Z, A S\ where $ is a sheaf of

0z-modules. Extend the family W—> Z trivially in the ^-directions to obtain a
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super Riemann surface

W=(W, A£>®AK1J2)->(Z, Λ<f).

\_A$® ΛK1/2 is an abbreviation for σ~1(Λ£))®σ-i(&z)Aκ1/2.~] Let Jί denote the
nilpotent ideal of Λ $. Over W one has a sheaf of nilpotent Lie superalgebras

σ. Let G denote the sheaf of groups

Lemma 2.3. The set of equivalence classes of super Riemann surfaces (W—>Z\3))

extending (W—>Z;κ1/2) is in natural 1-1 correspondence with H1(WiG).

Proof Given a neighborhood WcW, consider a super-Riemann-surface
automorphism

(*, Λ S® A κ1/2) - U (^, Λ S® A κ1/2)

which is trivial moάJί. If (z9η) is a relative coordinate system, then

where δz and (5?/ lie in Jί® A K1/2. It follows that 1 — τ is nilpotent, so that one may
define log(τ) as a power series about the identity. Thus τ = exp((), where ζ is a
section of

Since the superconformal structure is preserved, ζ lies in Jί® <gσ. \{(W' - ^ Z; βί) is
a super Riemann surface which pulls back to (W—> Z; κlf2\ then W is obtained by
gluing together local bits of W via a cocycle of automorphisms of the type just
described. This proves the lemma. •

Now take Z as above, and assume furthermore that Z is Stein.

Lemma 2.4. Let Jί denote the nilpotent ideal in A S and let Z(n) = (Z, A £/J^n + 1).
Then

1. Any super Riemann surface (X—>Z(n);@) over Z{n) may be extended to a
super Riemann surface over Z(n+1\

2. The space of equivalence classes of such extensions is naturally an affine
space modelled on

Remark. Though Z{n) is not a supermanifold, there is no difficulty in defining the
notion of super Riemann surface over Z(n\ in complete analogy with the definition
given in Sect. 1.

Proof Suppose
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is an exact sequence of sheaves of groups over a space X, with A central. Then by
pushing the long exact sequence as far as it will go, one finds

1. There is a connecting map H1(X,G2)—ί-^H2(X,A), such that

is exact.

2. Given τeH1(X,G2), one may form a group H°(X,G2). If τ is given by a

1-cocycle τaβ, then H°(X,G2) is the group of 0-cochains {ρα} satisfying

Q*τaβQβ1=τ*β

3. There is a connecting homomorphism //°(X, G2)—°-^H1(X,A\ and if
Aί(τ) = 0, then H\X, A) acts transitively on the fiber of H\X,Gι)^H1(X,G2) over
τ, with the kernel being the image of Ao.

To apply this to our situation, let σ = π r e d , and define y("+1) as in the proof of
Proposition 2.2. Then we have

Because Z is Stein,

The lemma now follows from points 1, 2, and 3. Indeed, Γ(Z,σ^(^ } )) vanishes,
since the fibers of σ are curves. This and point 1 prove the first assertion. To prove
the second assertion, take τ e H L(X, exp((^n )) e v e n). Since τ is a family, one may form
its sheaf of infinitesimal automorphisms, ̂ τ . Then H®(X, exp((^M))even)) is precisely
tf°(X,exp((^τ,)even). By point 3, Γ(Z,(Λn^®σ^(^σ))e v e n) acts transitively on the
extensions of τ, and the kernel of the action in i/°(X,exp((^τ,)even). By Proposit-
ion 2.2, the latter vanishes, so the action of Γ(Z,(ΛΛ<?®σi(^σ))even) on
H\X, exp((#?>)even)) is faithful. •

The next ingredient is the Kodaira-Spencer map. Given any super Riemann

surface (X—• Ύ\2\ the differential of π defines an exact sequence

The Kodaira-Spencer map is the connecting homomorphism

The Kodaira-Spencer map behaves naturally with respect to pullback, in the
following sense. Take a split supermanifold Z = (Z, A S) as before, and take Z to be

Stein. Define Z(Π) as in Lemma 2.4. Let (W—• Z; κi/2) be a super Riemann surface
over the reduced space, and define

Fn = {equivalence classes of super Riemann surfaces

over Z{n) which restrict to σ}.

We have seen that there is an action of Γ ( Z , ( Λ " # ®σ^(^σ))e v e n) on F\
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On the other hand, let (X —> Ϋ; 2) be a super Riemann surface and let

Z(n)—> Ϋ be a map. Let Z—> Y be the reduced map of h, so that h consists of the

pair (/, /z*), where h* is a homomorphism / " 1(stfγ)—> /\{n)$. If ζ is a section over Z
oϊ(Λn£®eγf*(Der(7)))mn ( = DerQWM~\^γ\ Λ 7 ) ) } then C + ^* defines a new
map. Thus if we set

Mn = {maps Z(n)-^Ϋ which restrict to / } ,

we find that there is an action of Γ(Z,(Λn&®f*(Der{Ϋ)))mn) on M\

Now assume that (W-^Z; κί/2) is the pullback of (X-^> Ϋ; 2f) via / Then the

Kodaira-Spencer map of (X—>Y\Θ) gives us a map f*(Der(Ϋ)) >^ii^σ\
which induces a map which we will again call fcs(π),

Γ(Z, (Λ£®J *{Der (r))) e v e n)

Lemma 2.5. Let

denote the pullback map. Then for all

and all heM\

Proof. We may assume that Ϋ is a coordinate neighborhood. Let w1,..., wM be
supercoordinates on K Cover X by open sets ^ α equipped with canonical relative
(super)coordinates («„,«„). Then express (u^uj) as a power series in (w,uα):

If /z G M", then the super Riemann surface p"(/z) admits relative coordinate systems
{ul,ύl\ related by

Take CeΓ(Z,(Λ^(χ)/*(Z)er(7)))even), and set ζ=-ga^-a The gfl's are sections of

AnS. pn(h + C) will be characterized by transition functions

Therefore p"(h + ζ)—p"(h) is the cohomology class

and this is precisely ks(π) (ζ). The lemma is proved. •

We now arrive at the basic result.
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Theorem 2.6. Let (X—• Ϋ;S>) be a super Rίemann surface, let Z—> Y be a map

between the reduced spaces, and let (W—> Z;κll2)be the pullback of π via f Define

Mn and Fn as above. Assume Der(Y) •πi(^π) restricts to an isomorphism along

the reduced space, Y. Then for all n, the pullback map

is bijective.

Proof. First observe that by taking an open cover of Z, one may restrict to the case
that Z = (Z, Λ {$)), Z is Stein, and the range of/ lies in a coordinate neighborhood
of Ϋ. One has restriction maps

and

and a commutative diagram

Mn ——-> Fn.

Observe that in the local situation, any map h e Mn lifts to a map at order n + 1 .
Indeed, if w1, ...,wM are supercoordinates on Ϋ, then h gives the values of
/ί*(w1), ...,/z*(wM) to order n, and we may extend these values arbitrarily to order
n + 1 to obtain a lift. Then (an+ί)~1(h), being non-empty, is an affme space
modelled on

Now the Kodaira-Spencer map of π is assumed to take
Γ(Z, Λn + 1£®f*(Der(Ϋ))) isomorphically onto Γ(Z, An + 1δ®σιJ^σ)). Thus the
fibers of an+1 and bn+1 are affme spaces modelled on the same vector space. By

Lemma 2.5, pn + 1 intertwines the actions of this vector space, whence pn+1 is
bijective on each fiber. Then, by induction on n, pn is bijective for all n. •

Remark. In proving Theorem 2.6, we used only the assumption that the Kodaira-
Spencer map of π restricted to an isomorphism along the reduced space. However,
it follows from Proposition 2.2 that π^(^π) is always locally free. Therefore, under
the hypotheses of Theorem 2.6, fcs(π) will in fact be an isomorphism over Ϋ.

Theorem 2.6 may be rephrased by saying that if (X—>Y;@) is a super
Riemann surface for which fcs(π) is an isomorphism, and (W—>Z;&) is a super
Riemann surface for which there is a map Z-^> Y and a superconformal
isomorphism
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_ φ' _
then there is a unique map Z >Y extending φ' for which there exists an
isomorphism

I I
Z -£-> F

with 1/3 extending φ. For the purposes of constructing the universal super Riemann
surface, more control is needed over ψ.

Theorem 2.7. Let X—>Y be any super Riemann surface for which ks(π) is an
isomorphism. Then the only superconformal isomorphisms

inducing the identity on Y are id and the canonical automorphism, A.

Proof Let φ be such an isomorphism. Since ks(π) is an isomorphism, the set of
points ye Yfor which n~Ql(y) admits an automorphism has positive codimension.
Thus φτed must be the identity. Now over Y,φ is an automorphism of κί/2

preserving the map κ1/2®κ1/2^κ. So along Y, φ = id or A. It remains to check that
if φ = id over Y, then φ = id. First observe that φ' must be the identity, by
Theorem 2.6. But if φ = id along Y and φ' = id, then φ = idmod nilpotents. It
follows that 0 = exp(Q for some ζeH°(X,^π). By Proposition 2.2, ζ = 0. D

We complete our discussion of the local theory by establishing the local
existence theorem for super Riemann surfaces.

Theorem 2.8. Let (X—> Y;κ1/2) be a super Riemann surface over a reduced base.

Assume that Y is Stein, and that ks(π) (classical) is an isomorphism. Then there is a

super Riemann surface X —> Ϋ, into which (X —> Y; κ112) may be imbedded, such that

ks(π) is an isomorphism.

Proof We have ^ π ~ K~1ΘK~1/2. Let £ = π£(κΓ1 / 2)* = π°(κ:3/2). δ is a locally free
sheaf over Y9 of rank 2g-2 . Let Y = {Y, /\δ\ Y{1) is simply (Y9Θ®δ), and there
is an obvious super Riemann surface over F ( 1 ) , namely the one which depends
trivially on the (f-directions. Then by Lemma 2.4, the super Riemann surfaces
over F ( 1 ) are in natural 1 — 1 correspondence with

(SU)even) = Γ(Y9 £®πl(«?π)oάά) = Γ{Y,£®£*) = Γ{Y,End{£)).

Thus there is another obvious super Riemann surface over F ( 1 ) , namely the one
corresponding to the identity section of End (δ). By Lemma 2.4 again, this super

Riemann surface may be extended to a super Riemann surface (X—>Ϋ;<3>). It
remains to show that fcs(π) restricts to an isomorphism along the reduced space.
The tangent sheaf of F pulls back along Y to ΘY®S*. In the first summand, ks(π) is
the usual Kodaira-Spencer map, which is an isomorphism. In the second
summand, ks(π) is, by construction, the identity map. This shows that fcs(π) is an
isomorphism. •
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Remark. A more explicit construction of a super Riemann surface for which ks(π) is
an isomorphism is given at the end of this section.

Global Construction

To complete the construction of the supermoduli space, it remains to solve an
appropriate version of the moduli problem for reduced base spaces. We have
already seen that a super Riemann surface over a reduced base is simply a curve
X->Y together with a choice of τc1/2. However, it is easy to see that there does not
exist a curve X-+ Y with a level-n structure and a choice of κ1/2 which is universal.
Indeed, suppose such an object existed. Then any curve W-+Z with a choice of κ1/2

would be induced by a unique map Z — > Y. However, one could modify κι/2 by a
class ωeH1(Z,Z2). This produces no change in κ1/2 locally in Z, and therefore it
cannot change the map σ. So we see that the correct data for the moduli problem
are not a curve with spin structure, but rather a curve together with a consistent
choice of spin structure on each fiber.

Recall that the choice of κ1/2 is strictly topological. Regard X-> Y as a family of
smooth surfaces, and let T r e lZ be the relative tangent bundle. Let <SrelX
= (TrelX-{0})/R + . SτelX is a circle bundle over X. Let oceHι(SrelX,Z2) be the
mod2 class of any fiber S1 -+SrQlX. Then a choice of κ 1 / 2 corresponds to a choice of
ωeH1(SrelX,Z2) such that ω[α] is non-trivial. Associated to the fibration

iSrelX—• Y is a Leray spectral sequence

EP>q => Gr(Hp + q(SrelX,Z2)) with Ep

2

q = Hp(Xπ%(Z2)).

A choice of spin structure on each fiber of X is simply an element σeE2

Λ

= H°(Y,πl(Z2)) which is non-trivial on the fiber class. The differential
d2(σ) e H(X Z 2) must vanish for σ to give rise to a choice of τc1/2, and if d2(σ) = 0, the
set of such choices is parametrized by H1(Y,Z2).

Define a fiberwise spin curve to be a curve X-+Y together with a class
σeH0(Y,π\(Z2)) as described above.

Theorem 2.9. Universal objects exist in the following categories:

1. Fiberwise spin curves of a given genus g ^ 2 , with level-n structure, n^.3.
2. Fiberwise spin curves of a given genus g ^ 2, with homotopy marking.

Proof. Let (X —> Y, σ) be a marked fiberwise spin curve of genus g, where the
marking may be either a homotopy marking or a level-n structure. The marking
assigns to each point yeYa preferred set of maps Γy C Diff(π ~ 1(y), Σ), where Σ is the
standard surface of genus g. If ψ e Fy is any such map, then ψ transports the
complex and spin structures on π~ ι(y) to complex and spin structures on Σ. Thus,
if we let ^ be the space

# = {Complex structures on Σ} x {Spin structures on Σ},

then Γy determines a point φ(y)e^/G, where GcΌiΐίΣ is the subgroup which de-

termines the marking. It is essentially a classical result that %>/G is a 3g — 3-

dimensional complex manifold, and the map Y—• <g/G is holomorphic. Indeed, in
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the case of the homotopy marking <tf/G is the trivial 4^-fold cover of Teichmuller
space whose sheets correspond to the choices of κ1/2 on the universal curve, and it
well known that φ is holomorphic in this case [A, G, K-S]. Let us denote Ή/G for
this case by T. Then let Γ denote the mapping class group, Γ = DiffI,yDiffo£, and
let Γn denote the kernel of the natural map

For n ^ 3, Γn acts freely and properly discontinuously on T, [F-K], so that in the
case of the level-n structure, Ή/G = T/Γn is again a smooth manifold. Over Ή/G is a
curve U = (# x Σ)/G. It remains to give U a fiberwise spin structure, such that
(X —> Y, σ) is induced by φ. For each point (J, ω) e Ή, let [J, ώ] be its equivalence
class in Ή/G. Then we get a diffeomorphism

Given g e G we get a commutative diagram

\ /

Σ

It follows that there is a well defined class

given by

*[J.ω] = (V(Jfω))*(ω).

It is clear that (U-*(£/G,ά) is the universal object. D

We denote the universal level-n fiberwise spin curve by (Un—> Mn; σ), and we

denote the universal homotopy marked fiberwise spin curve by (U—>T; σ). Mn is
called level-n spίnmoduli space.

Construction of the Supermoduli Space and Universal Curve

To complete the construction of the level-n supermoduli space, let { α̂} be a
covering of Mn by Stein open sets. On each π~ ι{ύMa), choose κ\11 compatible with σ.
Let £a = πlί:{κl12). Let % = (%, Λ<fα). By Theorem 2.8, we may construct super
Riemann surfaces

such that for all α, fcs(π

α) is an isomorphism. Theorems 2.6 and 2.7 together imply
that on each intersection, π~ί(<%Λn<Wβ), there are two isomorphisms

Λ - ticβ -

-\. i-
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i = l , 2 . The pairs χa,β = {lφχlβ} and τ^β = {τι

φτlβ} are uniquely defined quasi-
maps, which therefore obey the cocycle condition. We now have canonical
superorbifolds,

M is the level-n supermoduli space. The data (X, {πα}, {^α}), constitute the universal
level-n super Riemann surface. Level-n supermoduli space is universal in the
following sense.

Universal Property

Given a supermanifold Z and a canonical superorbifold Ϋ=(Y, {^α},ταβ), a map

Z-+Y is by definition a map Z — • Y together with a collection of quasimaps

such that for all a and β, the diagram

commutes.
Let Z be a supermanifold with H\Z, Z 2) = H2(Z, Z 2) = 0, and let ρ = (ρ, {ρα}) be

a map Z-+Mn. We obtain a collection of super Riemann surfaces (ρα)*(Jfα)
->Z|ρ ~ 1(%a), and quasimaps between them. Since H1(Z, Z 2) = H2(Z, Z 2) = 0, there
exists a unique way, up to equivalence, of resolving the Z 2 ambiguities to fit these
super Riemann surfaces together and construct a super Riemann surface over Z.
Denote this super Riemann surface (defined up to equivalence) by ρ*(X). From
Theorems 2.6 and 2.9, we immediately obtain

Theorem 2.10. Given any supermanifold Z with H\Z,Z2) = H2(Z, Z 2) = 0, and any
super Riemann surface (W^Z\Θ) with level-n structure, there is a unique map

Z—>M inducing the given level-n structure, such that ρ*(X) and W are super-

conformally equivalent. •

Super Teichmύller Space

The constructions of the supermoduli space and universal super Riemann surface
can of course be carried out for homotopy marked super Riemann surfaces.
Indeed, this is the easiest case. Since Tis Stein [B-E], the local construction of the
supermoduli space may be applied globally. The resulting base space, is therefore
isomorphic to (T, Λ π^(κ3/2)), (with the trivial open cover {0, T) and the cocycle
{id, A}). (T, Λπ^(κ:3/2)) is called super Teichmύller space.
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Uniqueness of Supermoduli Space

Any supermanifold may be characterized up to isomorphism by data (X, τ), where
X is a complex manifold, and τ is a 1-cohomology class with coefficients in the
automorphism sheaf of the supermanifold (X, A(Θ®m)). Similarly, denoting this
automorphism sheaf by @, a canonical superorbifold over X determines an
isomorphism class τeHι(X, &/A). The isomorphism class of supermoduli space is
uniquely characterized by the universal property of Theorem 2.10.

Explicit Construction of Local Universal Families

Finally, it is possible to be more explicit in the local construction of the
supermoduli space. Again take the universal level-n fiberwise spin curve
(Un—>Mn; σ), take an open cover by Stein sets {^α}, and on each π~ 1(^ζχ), choose
κ\j2 compatible with σ. Fix α and set W = %. Set δ = π%κl11). Assume that Un\%

admits two disjoint relative divisors, Dx and D2. Let f j c π " 1 ^ ) denote the
complement of Db ΐ = l , 2 . Let θ\ ...,Θ29~2 be a basis of sections of S. The open
cover {^1,^2} computes the analytic sheaf cohomology of π~ι(%\ so we may
choose sections φu ...,φ2g-2e Π ^ π ^ , K ~1 / 2) such that the cohomology classes

are dual to θ1, ...,θ2g~2. Using now the isomorphism (^π)odd^κ:~~1/2, identify the

sum θtyi as a nilpotent derivation of %~1{AS)® Λ K 1 / 2 , I Recall that if η is a

generator of κιβ and z is a relative coordinate such that η2 = dz, the identification
P PI P) \

of κ~1/2 with ^ π sends — to η —.) On each of ^ and τΓ2, one has the superto η .)

Riemann surface

obtained by extending trivially in the $ directions. Now glue these super Riemann
surfaces together over the intersection by the automorphism

Then the Kodaira-Spencer map of the resulting super Riemann surface is an
isomorphism, and this gives an explicit local construction of the universal super
Riemann surface.

For the purpose of understanding the cocycle τaβ which glues together
supermoduli space, let us consider what happens if we make different choices in
this construction. Theorems 2.6 and 2.7 say that the difference in the choices
should produce a map AS—> A$. For simplicity, take the same open cover
{^1,^2} f° r TI~X{^\ but instead of φl9 ...,φ2g-2> t a ^ e a different set of sections
ψί9 ...,ψ2g-2€Γ(i^1nίr2,κ~1/2), such that the cohomology class [βaψ^\ is still the
identity section of π*(κ;1/2)(χ)<ί. Then θaψa = θaφa -4- d — ζ2, where ζ t is holomorphic
in T^. Then the super Riemann surfaces defined by exp(θaφa) and exp(0flψfl) are
isomorphic to first order in θ. To see what happens to second order in θ, we
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compute

exp( - θaφa) exp( - ζx) exp(θ b

Ψb) exp(£2)

= exp( - θaφa) exp( - d ) exp(θaφa + ζ,~ ζ2) exp(C2)

, C i ] ) ^

α? C2] + K i , C2]) + o(θ2)).

The section

έίC^^GJ + E^^CJ + K ^ ^ e Γ ^ n ^ , Λ2£®κ-112)

defines a cohomology class

The Kodaira-Spencer map identifies χ with a A2S valued vector field on %. Then

up to second order in θ, AS —> A $ is given by 1 + χ. The higher order terms of τ

may be computed in a similar fashion.

3. Appendix. Does the Universal Curve over Level-w Spinmoduli Space
Admit a Square Root of K?

Recall that Mn = T/Γn, where T= (Teichmύller space) x (spin structures), and Γn is
the level-rc subgroup of the mapping class group. Let σ be the fiberwise spin
structure described in Sect. 2, σ e H°(Mn, πJC(Z2). σ gives rise to a square root of K if
and only iϊO = d2σeH2(Mn,Z2). We do not know in general whether d2σ = 0, but
we can offer the following observations. First note that Mn is a disjoint union of
two pieces, called the even and odd spinmoduli spaces, corresponding to the even
and odd spin structures. (For a discussion of the parity of a spin structure see [At]
or [J].)

Proposition 3.1. For 2 ^ g ^ 4 , ά2σ vanishes on the odd spinmoduli space.

Proof. By results of [E-K], for g ^ 4 the universal curve over Teichmύller space
admits exactly 2^(2^—1)/2 half-canonical divisors, one for each odd spin structure.
Thus we can replace (Teichmuller space) x (odd spin structures) by (Teichmϋller
space) x (half-canonical divisors over the universal curve). It is then clear that
U^>(Mn)odd admits a half-canonical divisor, which defines a square root of K. •

For higher genus, the problem is more difficult. Since n^3,Mn is in fact a model
for B(Γn). Therefore d2σ can be described in terms of group cohomology. Fix a spin
structure ω e H1(SτelΣ, Z 2) on the standard surface. Let G C Diff Σ be the subgroup
fixing ω. ω is an equivalence class of double covers of SτelΣ. If we choose a
particular double cover P^>SrelΣ corresponding to ω, then for geG, the fact that
dg*ω = ω means that there are two isomorphisms of P covering dg. Thus if we let G
be the group of transformations of P covering dg for some g, we get a central
extension.

O-*Z2->G-»G-*1, (*)

and d2σ vanishes on M ( p a r i t y o f ω ) if and only if this central extension splits when
restricted to GnΌiϊLΣ. We can at least observe



Moduli of Super Riemann Surfaces 175

N ^ _

Γ) κ<-^ ... <-~y
' A x i s I

Region A

Region A Region A

Fig. 3.1

Proposition 3.2. The sequence (*) does not split.

Proof. Certainly, Diff0ΓcG. Since ΌiS0Σ is contractible, it is easy to see that (*)
splits on Diffo£, and since every element of DiffoZ" has a square root in ΌiS0Σ,
there is a unique splitting Diff0Γ—>G. Now represent Σ as in Fig. 3.1, so that
rotation through π about axis / maps Σ to itself. For 0^θ^2π, let gθ be the
diffeomorphism which rotates neck N through an angle θ, imagining region A to
be made of rubber, and so that the complement of region A remains fixed. Then
g2π fixes the point x and the tangent vector v of N. Thus v(g2π):P->P fixes the
fiber over υ.

Claim. v(g2π) acts nontrivially on the fiber of P over v.

Proof. Observe that the neck N is homologically trivial. It follows that the loop
{θ-+dgθ(v)}cSr&ιΣ is homologically the fiber class. Since any spin structure is
nontrivial on the fiber class, the claim follows.

To finish the proof of Proposition 3.2, let heΌifϊΣ be the diffeomorphism
h = r gπ, where r is rotation through π about axis /. r commutes with gπ and
r2 = l, so h2 — g2n. Moreover, h acts by —1 on homology, and so fixes all spin
structures. Also, h fixes the point x and the vector v. So if there were a splitting, v,
of (*), on any subgroup of G containing Diffo£ and h, v(g2π) would act on the fiber
of P over v by v(h)2, which is trivial. This contradicts the claim and finishes the
proof. •
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