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Abstract. We show that there is a Symplectic Action of a Torus associated to
Harmonic flows on the Cotangent Bundle of a semi-simple Lie Algebra. This
allows to obtain a completely classical proof of the Gallavotti-Marchioro
Formula by the method of the Stationary Phase.

We compute the Canonical Partition Function,

Z(β)= j exp(-βH)Ω (J8>O)
γlm

for a class of integrable Hamiltonian systems. H is the Hamiltonian function,
Ω = ωm/ml is the volume form associated to a symplectic form ω of a symplectic
manifold V2m. We compute this integral by a singularity analysis and by an
adaptation of the Duistermaat-Heckman theorem [D-H~] on the exactness of the
stationary phase formula. The proof that Berline-Vergne [B-V~\ gave of this
theorem can be adapted to our situation where V2m is not compact and where
the parameter β is positive.

We obtain, for instance, the expression of the Canonical Partition Function
for integrable systems which are reductions of the Harmonic flow on the cotangent
bundle of a semi-simple Lie algebra. To this purpose, we need to check that these
systems are associated to an Hamiltonian action of the torus. We show that the
Hamiltonian flows of the eigenvalues of the Lax matrix are all periodic.

Our result extends a formula which was precedingly obtained by Gallavotti
and Marchioro [G-M~\ for the Calogero-Moser system with an external quadratic
potential which corresponds to the root system of type Am_1. Gallavotti and
Marchioro got their result by considering the quantum system and then by taking
a limit (ft->0).

On the contrary, our proof is purely classical; it illustrates how the Duistermaat-
Heckman formula can be used also to compute thermodynamical sums.

1 Adaptation of the Stationary Phase Method

We consider the proof of [B. V.] of the theorem of the stationary phase of
Duistermaat and Heckman.
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Let V be an arbitrary ^-dimensional manifold and let ξ be a vector field on
V. Let J = J ° + + &n be the De Rham complex on V, with the differential
d: & -• J i + *. Let ^ be the operator d + /(£). By the Cartan formula, we get δ2 = Lξ

(Lie derivative along the vector field ξ).
We assume furthermore that n = 2m, V is symplectic, that there is an

Hamiltonian action of the torus ΊΓm on V. Let J be the moment map, we take as
ξ a vector field so that ξ = J*(X) for an element X of the Lie algebra of the torus
and that the zeroes of ξ are fixed points for the action of the torus.

Let us put on V an invariant Riemannian metric < , >. We define then a
1-form θ on the open set Vo = (xeV/ξ(x) φ 0) as follows:

ξ(x)}. (1)

This 1-form has the properties:

i) Lξθ = 09

ϋ) θ(ξ)=l.

Lemma 1-1. (Berline-Vergne). Let μ = μlm+ - μ0 be an even element of &
such that δξμ = 0. Then μ2m is d-exact on Vo.

Proof. We introduce

v = 0 Λ ( l + ί / 0 ) " 1 Λμ. (2)

We get from i) and ii) ί(ξ)dv = i(ξ)μ, and since on Vo, i(ξ)\£2m^Q2m~ι is injective,

If we set α = H — ω, where H is the Hamiltonian of ξ, then, we have, δξoc = 0.
We apply the lemma to

μ = exp - βa = e x p ( - βH)(ί + Bω + ••• + {βm/m\)ωm). (3)

We get:

We assume furthermore that:

—(c x) if is a rational (respectively meromorphic) positive function on R2m; it
blows up along finitely many algebraic (respectively analytic) subsets of codimen-
sion 1 denoted Δ^ί = 1,..., m).

—(c2) V=T*W, W=Um/Ui=ι

mΔhω = Σdx1 Λ dyt

—(c 3) The only critical points of H are minima. This implies that the critical
points of H must be fixed points for the action of the torus Tm. (otherwise they
could not be isolated)

—(c4)//(*,}>)-> + oo when (x,y)->oo.

Remark. In our examples, H is convex, so that the condition (c3) is naturally fulfilled.
Let d(p9Δ) be the distance in U2m from a point p to a closed set Δ. We introduce

the set:

DR = {(x,y)/\\(x,y)\\<R,d((x,ylΔi)>R-1 for all (i = l , . . . , s . )
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We denote by C, the set of the Critical points of the function H and let Bp, peC,
be small balls centered about the critical points of H. From our assumptions, the
Canonical Partition Function of H:

Z(β)= J exp(-j8if)β (4)

exists and is equal to

Z(β)= lim J exp{-βH)Ω.

By Lemma 1-1, there is a 2m— 1 form v2m-1 defined by (2) so that by Stokes'
theorem, we have,

Z(β)= Σ $exp(-βH)Ω- J β-mv2m.1+ lim j β^v^.,. (5)
peC Bp δBp R -> oo δDR

Our situation differs from the Duistermaat-Heckman case as β is a positive
parameter (versus a purely imaginary one) and as the manifold V is not compact.
So we have to show that the limit in (5) is equal to zero. This can be done with
the Lojasiewicz inequality [L].

Lemma 1-2. The contribution of the boundary vanishes:

lim J / r m v 2 m - i = 0 .
jR->oo δDR

Proof, if is a rational (respectively meromorphic) function on IR2m, since it blows
up either when (x, y) tends to infinity or along the algebraic (respectively analytic)
subsets Ai(i=l,...,s), the Lojasiewicz inequality [L] shows the existence of a
positive constant 1 such that

&xp(- βH(x,y))(exp{- R1) for (x,y)eδDR9R}0.

From (1), the 1-form θ blows up eventually when (x,y) approaches the subsets Δt;
but, again by the Lojasiewicz inequality, it has at most a polynomial growth there.

So that by (2) the form v2 m_1 satisfies

llv2m-i II < cRτ Qxp — R1 for some constants c,τ > 0 . (6)

Also, we see easily that the volume of δDR increases as an algebraic function
of R as R tends to infinity. This ends the proof. •

We finish now as in [B-V]. By the canonical form theorem [G-S] (from the
assumption that the critical points of H are of Morse type and that H is associated
to the action of a torus), we can find symplectic coordinates (xl9...9xm;y1,...9 ym),
given by a local diffeomorphism Φ, on the ball Bp such that:

Φ*H = H(p) + X mλk(p)(xk

2 + yk

2) = Ho. (7)
fc=l

If we compute the terms on the right-hand side of (5) by making a second
application of Stokes' theorem, we get:

j exp-βH0Ω- j v2 M_1°= f exp-βH0Ω,
Φ-HBP) δφ-l(Bp) U2m

where v2m_1° = Φ*(v 2 m_ 1).
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The right-hand side of Eq. (5) can now be easily computed. We see that Z(β) is
determined by the critical values of H and by the eigenvalues of the Hessian of
H at its critical points. We have now proved the

Theorem 1-3. Under the conditions (c), and with the notations of (7), the
Canonical Partition Function of H is equal to:

Z(β) =Σπmβ~m(fl λk(P)) Xexp-βH{p). (8)
peC \fc=l /

2 Hamiltonian Torus Action

Let ^ be a semi-simple Lie algebra of dimension m. The cotangent bundle T*1^
may be identified with ^ x ^ * ~ ^ x <S. As a cotangent bundle, it has a symplectic
structure which can be written [K. K. S.]:

ω = Tr dX A dL, (X,

We define on T * ^ the Harmonic Flow by the Hamiltonian Function

L2). (9)

The group G acts on ^ by the adjoint action; this action lifts into an Hamiltonian
action on Γ*^. The Harmonic flow has m commuting independent integrals

which are G-invariant functions.
Following [O. P] , a projection of the Hamiltonian system (9) on the cotangent

bundle of the Weyl chamber Γ* W9 defines the system

Jί = (l/2) X ( Λ

2 + A2xi

2) + (l/2) X g*\afKx,«y, (10)
i = 1 txeA +

m

ω= ^ dXi A dyt.
i=l

In (10) A + means the set of the positive roots of the Lie algebra ^ and the ga are
arbitrary positive constants which are equal for two elements α,α; which are
conjugated under the Weyl group.

Examples:

1—If ^ is of v4m_i type, the walls of the Weyl chamber are given by the
hyperplanes

the Weyl group is the permutation group Gm, it acts transitively on the set A + ,
so all the constants ga must be equal. In that case, we get

H = (1/2) £ (j;,2 + A V ) + g2 £ (xt - x,)"2, (Π)
i = 1

which is the Calogero-Moser system with an external quadratic potential.
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2—In the Bm = Cm case, the walls of the Weyl chambers are given by the
hyperplanes

(x. = Xj9 i φ j \ (x. = - Xj9 i φ j \ (x. = 0).

The set A + has two orbits under the action of the Weyl group. So that there are
two constants gx and g2 and that we get

+ 9t2( Σ (Xi-XjΓ2+Σ (Xi + XjΓ2) + β22 Σ *Γ 2 (12)

3—In the Dm case, we obtain the Hamiltonian system which corresponds to
(12) with g2 = 0.

We explain now in details why we can associate an Hamiltonian torus action
to the Calogero-Moser system with an external quadratic potential. We can
proceed in quite a similar way for the more general system (10) (type V in the
Olshanetsky-Perelomov classification [O. P]) with slightly different notations.

We use the matrices (X, L) defined by:

We note that we have the relation [X, L] = ^ — 1 gC, where the matrix C is defined
by Ctj = 1 - δij. Under the Hamiltonian flow of the function H = (1/2)
Ύv(λ2X2 4- L2), the matrices X,L have the following evolution:

X = [A, X] + L, L = [A, L] - λ2X, (14)

where A is given by:

kψi

We introduce the matrices Z = y/ — 1XX 4- L and Z* = — ̂ / — 1 λX + L; the matrix
P = ZZ* undergoes an isospectral deformation

P=[Λ,Pl (16)

and we remark that Z* = *Z (transposed of the complex conjugated) and
accordingly that P* = P. The eigenvalues of P are algebraic functions on T*W.
Let Λ(=ΛP) be one of these eigenvalues.

Theorem. The Hamiltonian flow defined by A on T*W is periodic. All the periodic
orbits have the same period (not necessarily primitive) 2π/λ.

Let us introduce the eigenvector Ψ of P for the eigenvalue A. The Hamiltonian
flow of A is defined by the equations:

(17)

. (18)
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The matrix P can be diagonalized by an element V of the unitary group. If we
denote by < , > the Hermitian product, we get

— fl/pψ ψ\/flχ — /7\plP)Ύ ψ ψ\

P) / ΊD ii/ ιχ/\ IP) ΛJ / Pi p /P)ΛJ ^ff iff\

Let us introduce the matrix T:

T = ψ. ψ*

(* for the complex conjugation).

Lemma 2-1. The matrix V~1TV is diagonal such that:

Proof We remind the reader that the index p refers to the eigenvalue A. We have

because
T^Ψ.Ψ^V^V^. •

As a corollary, we get: [P, T] = 0. We prove now the

Proposition 2-1. Under the Hamiltonian flow of A, the time evolution of X
and L is given by the equations:

}}, (20)

L=ίAίp\L]-λ2{{X,T}}, (21)

where the elements of the matrix A{p) are:

(i Φ j)AtJ = (yt + yj)/(Xi - Xj) Ty + yj-lg{Tu+ Tjj)/(Xi - Xj)2

+ Σ J-l0TkJ/(xt-Xj)(xt-xk)+ Σ J-lgTJiXi-XjKx.-Xj), (22)
kfij kfij

Au= - Σ (Λis- λyl - 1 Γ J + λy/ -1TH= - Σ (Asi- λj - l T s i ) + λyj - lTii9
sfi sψi

(23)

and where the symbol {{ , }} means the anticommutator of two matrices.

Proof. We write the elements of the matrix P:

(i*J)Ptj= Σ -β2/(x,-Xk)(Xk-Xj)
kfij

+ J-ίg{yι + yj)/(χι-χj) -λg (24)

To check (20), we have first to show that:

x, = {{L, T} }, = Σ Lu Tβ + Lj, Tu. (25)

The sum of the right-hand side is:
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which is xf by (18) and (24).
Then for i φj, we have to prove that

0 = [>l<*U] l 7

We get:

which is precisely (22).

Let us see now the diagonal term of (21), we have to check that

which is precisely given by (19), (22) and (24).
The off-diagonal terms of (21) deserve the most part of our attention; we get:

- ^ - lg(xt - Xj)/(Xi - Xj)2

' - l g A i k / { x k - X j )V j j j j j Σ
kψij

~~ v ~ iQAkjIyXi — Xk) ~ λ \χί •+• χj)Tij>

If we multiply by (xt — Xj)/yJ — 1#, this gives:

~ Σ ̂ -
kψij

V - Wjk - TfcJ )/(x7 - xk)(xt ~xj)+'" (26)

χj)+- (27)

V-iff-^μV + yΛ-ίAV + y/WΓy+ - (28)

Σ TkAyj-yt)Hχi-Xk)+ Σ ̂ (^-^Vfe-^ ) (29)

Σ (^ίs(Xi - Xj)/(x5 - Xj) - Asj{xt - xj)l{xi - χs)) + ... (30)

^ - ^ = 0. (31)

To show this equality, we begin to remark that:

Σ {Ais{Xi - xs)/(xs - Xj) - Asj(xs - Xj)/{Xi - xs)) (32)
sψij

ΣAis-ΣAsP (33)
sψi sfj

Σ ^ ( ^ + Λ)/(*.-^)- Σ Ϊ / Λ + Λ ) / ^ - * , ) (34)
sfij sfίj

Σ rto(>'i + Λ ) / ( χ ϊ - ^ ) + Σ τtl(y,+y})l(χι-χ.) (35)

Σ Tdyt + y,)/(χ. - xj) - Σ ?>&, + yjWt -*,)+••• (36)

Σ V " W « - Γw)/(χι - *.)(*. - ^') + (37)
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£ y/-lgTik/(xk-xs)(xs-Xj)- Σ yj -^GTkjl{xs-xk){Xi-xs)
sfi,j,kfi,j,s sfi,j;kfi,j,s

(38)

+ • X V - igTtj/ix, - xs)
2 - Σ V - Wixj - Xs)2 + - (39)

sfl sψj

Σ V-igTj,/{χ,-χj)(χt-χj)-y/-igτj{χt-χ,)(χ,-χ}). (40)
sfij

We have that:

(29)+ (36) = (34)

(27) + (37) = - V - Iff" 1 -PU( T « - TJJ) -λyj- ί(Tu - TJJ),

(28) + (39) = - V - \g~\-Pu + P]})Tiit

(26) + (40) = - Σ V - igTJixt - xj)(xt - χ

k)
kfij

- Σ y/-igτkjj/(χι-χj)(χj-χk), (41)

(38) +(41)=- Σ y/-lgTk}/(x,-xk)(x,-x.)
sΦUk;kΦι,j

+ Σ J-ίgTik/(xk-xs)(xs-Xj), (42)

(34) + (42) = - 7 - l g - i ^ ( P s . T i s _ p . s Γ j . )

and so finally:

(27) + (28) + (31) + (32) + (30) + (34) + (37) + (39) + (42)

= y/-lg~1 [Λ Γ\ιj + Σ K - V - 1 Σ Tis - Σ AtJ

Sψi Sfi Sfj

Note that to end the proof of the proposition, we have to check the coherence of
(23), that is:

Σ Ais- λj -\Tis= Σ Asi- λj -\Tsh

sfi sfi

but this is a direct consequence of yj — \g~x [P, T]u = 0. Π
From (20) and (21), and again the fact that [P, Γ] = 0, we deduce that the

matrix P is isospectral for the flows of its eigenvalues. We find by this way that
the eigenvalues of P are in involution.

At this point, we introduce the matrix U, solution of the differential equation:

U = AU

so that U(oo)= 1 (identity matrix).
For imaginary values of λ, we have unbounded orbits for the flow of the

Hamiltonian, and so Z,Z* and P = ZZ* tend to diagonal matrices. We have,

dUPU~1/dt = 0 and so,
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UPU'1 = U(co)U~1(cc) is a diagonal matrix also for real values of λ. Since T
commutes with P.UTU'1 is diagonal, and by Lemma 2-1, we have necessarily,
UTU~1=Δ.

We introduce now the matrices:

to write that (20) and (21) imply

ξ = J-lλ{{ξ9Δ}}9 ξ

These equations can be integrated into:

By taking the difference, we get that X(t) = UXU'1 is a periodic matrix of period
2π/λ. The traces of X(t)j for all integers j are periodic functions of t of period
2π/λ. We obtain that all the functions xf(ί) are periodic of period 2π/λ (of course,
it is not necessarily the primitive period.)

We conclude now this paragraph. The Hamiltonian flows generated by the
functions Λl9...9Λm commute to each other and are periodic.

They define an Hamiltonian Action of the torus T m on T* W9 the moment map
J being given by

The Hamiltonian system which defines the Calogero-Moser system with an
external quadratic potential, or more generally the Olshanetsky-Perelomov
systems of type V9 is given by

so that for the element X = (1 , . . . , 1) of (Tm)*, the Hamiltonian vector field ξ of
H satisfies ξ = J*(X). We can apply the method of the paragraph (1) to compute
its Canonical Partition Function.

3 Generalizations of the Gallavotti-Marchioro Formula

From [C] and [P], we can deduce the following analysis of the set of critical
points of H given by (10). Since H is convex, it has only one critical point in each
connected component of the Weyl chamber and it is a minimum; the value of this
minimum is equal to H = λ Σ 0α At each of these minima, the Hessian of H

is equal to:

where vt(i = 1,..., m) denote the degrees of the basic invariants of the Weyl group
[Ch]. We can now prove the

Theorem 3-1. Let H be the Hamiltonian system given by (10), the Canonical
Partition Function Z(β) of H is given by.
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= (2π/βλ)mexp-(βλ Σ

Proof. There is a symplectic system of coordinates (pb <?,) so that

(xeA + i=ί

The formula (8) gives for each connected component of the Weyl chamber, a
contribution

" ~λ Σ Oo
aeR +

to the integral Z(β). The order of the Weyl group is equal to the product v1 - vn

[Ch], and so we obtain the announced formula. •

Examples:

1—In the Λm_1 case, we obtain

Z(β) = (2π/βλ)mexp - (βλgm(m -

which is the Gallavotti-Marchioro formula [G. M.].
2—For the Bm = Cm case, we have:

Z(β) = (2π/βλ)mQxp - β(giλm(m - :

3—The case Dm corresponds to g2 = 0.

Acknowledgement. The author thanks the referee for providing him with the reference [G.], where

another classical proof of the Gallavotti-Marchioro formula in the case of two particles and for the

Lie Algebra Am_ί was given.
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