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Abstract. We show that if two C°° transitive Anosov flows in a three-
dimensional manifold are topologically conjugate and the Lyapunov expo-
nents on corresponding periodic orbits agree, then the conjugating
homeomorphism is C00.

I. Introduction and Statement of Results

The purpose of this paper is to present a unified approach to the problem of
smooth conjugacy of Anosov systems (both flows and diffeomorphisms) in low
dimensional manifolds. Our results extend those of [LI] for diffeomorphisms in
that no proximity assumption is made. Also, the results for flows, [MM], are
extended to cover arbitrary flows instead of one-parameter families of them. We
also recover the result of [MM] that all Anosov diffeomorphisms of a two-
dimensional manifold with constant Lyapunov exponents in periodic orbits are
C00 conjugate to linear automorphisms. Finally, we show how the important result
of Feldman and Ornstein, [FO], on C1 conjugacy of geodesic flows implies C°°
conjugacy.

We have known from Palis that Ghys has suggested a different approach using
one-dimensional expansive maps to prove C1 regularity of the conjugacy.

Our results are the following:

Theorem 1. Let X, Y be two C00 transitive Anosov vector fields in a compact three-
dimensional manifold. If they are C° conjugated and the Lyapunov exponents at
corresponding periodic orbits are the same, then the conjugating homeomorphism is
C°°.

Remark. Notice that the hypothesis about the Lyapunov exponents follows from
C1, or even Lipschitz, conjugacy. Hence, C1 conjugacies are C°° for the systems
considered in Theorem 1. This remark also applies to Theorem 2.
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Remark. In the particular case of Anosov vector fields with C1 stable and unstable
foliations (which includes geodesic flows on two-dimensional manifolds with
negative curvature) Feldman and Ornstein, [FO], have shown that all C°
conjugacies are C1. By the previous remark, they are C00.

Our theorem has some more applications for geodesic flows on surfaces with a
negatively curved metric.

Out of Morse-Gromov construction - which we learned from [Ka] - we can
conclude that the space of negatively curved metrics on a fixed surface is connected
and, moreover that the homotopy class of a geodesic determines it uniquely.

Then, by Anosov structural stability theorem, all geodesic flows of negatively
curved metrics on the same surface are orbit equivalent and the equivalence has to
preserve the homotopy class of geodesies.

It then follows that if the lengths of closed geodesies in corresponding
homotopy classes are the same and if the Lyapunov exponents also agree, we have
that the flows are C°° conjugate.

These invariants come very close to be those that one can recover from the
spectrum of the Laplacian. The Duistermaat-Guillemin trace formula [DG] -
whose assumptions are verified for negatively curved metrics - implies that one can
recover the lengths and the Lyapunov exponents of closed geodesies from the
spectrum of the Laplacian. Unfortunately, it does not seem to be known how to
recover information about the homotopy classes of the geodesies from spectrum.

Notice that the Feldman-Ornstein theorem shows that the lengths of closed
geodesies on each homotopy class determine the Lyapunov exponents. If the
homotopy class could be found out from the spectrum of the Laplacian, then the
geometric information provided by the spectrum would be very redundant!

Theorem 2. Let f and g be two C00 Anosov diffeomorphisms in a compact two-
dimensional manifold. If they are C° conjugate and the Lyapunov exponents at
corresponding periodic orbits are the same, then the conjugating homeomorphism is
C00.

Remark. Transitivity does not appear in the hypothesis of Theorem 2, because a
theorem of Newhouse, [Ne], shows that all Anosov diffeomorphisms in two-
dimensional manifolds are transitive.

Indeed it is known that the only two-dimensional manifolds that admit Anosov
diffeomorphisms are two-dimensional tori and that all the Anosov diffeomorph-
isms on them are topologically conjugate to linear automorphsims [Fr] (see also
[Ma]). Hence, given two Anosov diffeomorphisms in a two-dimensional manifold,
- T2 - topological conjugacy is implied by having conjugate actions in the first
cohomology group.

It would be interesting to extend the previous results to higher dimensions.
Lopez de Sa has pointed out that diffeomorphisms of the type /(x, y, u, v) = (2x -f y,
x + y,2u + v,u + v), g(x, y, u, v) = /(x, y, u, v) -f (0,0, η(x, y\ p(x, y}} can be considered
having the same Lyapunov exponents at periodic orbits although the derivatives
at fixed points are not linearly conjugate, so that the conjugacy cannot be even C1.

Another interesting open question would be to extend the results here to
analytic conjugacy.
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II. Proofs of the Theorems

Theorem 2 is a consequence of Theorem 1 by a standard suspension argument. It
is easy to check that two topologically conjugate diffeomorphisms give rise to
topologically equivalent manifolds and that the suspension flows are topologically
conjugate on the resulting manifold.

The strategy of the proof of Theorem 1 is based on that of [LI]: first we prove
Lipschitz regularity of the conjugation using scattering theory, and then we
"bootstrap" the regularity measured in the classes Cj, Ck

u introduced in [LMM].
The key element that allows us to treat both flows and systems not necessarily

close to each other is the construction of well behaved smooth coordinates in
stable manifolds by regularizing carefully the initial conjugating homeomorphism.
This global construction permits us to work in the manifold itself instead of using
real coordinates, and the construction is more natural than that of [LI]. A global
construction of this sort for an infinitesimal problem can be found in [MM].

Before giving the proof of Theorem 1 we recall some definitions from [LMM].
Given a C° foliation ̂  of a manifold M by C00 leaves with continuous defining

jets (that is, the leaves are locally a continuous family of C00 imbedded disks), we
say that a function defined on M is of class CJ if it is of class C°° on each leaf of J^,
and the C°°-jet of that restriction depends continuously on the base point. We
similarly define CJ? maps between M and another manifold N. In case ̂  is the
stable (respectively unstable) foliation associated to an Anosov system, we will
denote C^ by Cs°° (respectively Q°). When possibility of confusion arises because
there are several vector fields, we will indicate the vector field in parenthesis, e.g.
C^χy We will also denote by C% the space of functions C^ with respect to integral
curves of the vector field X.

Proof of Theorem 1. Let us denote by τt and σt the flows of X and Y respectively.
Finally, φ will be the homeomorphism that conjugates the flows, τt = φ°σt° φ~l.
To show that φ is C"0, it clearly suffices to show that a cover is C00. Hence we can
assume without loss of generality that the stable foliations of X and Y admit
tangent vector fields of unit length which we will denote by Xs and 7s respectively.

An important ingredient in our argument is the following lemma that shows
that φ can be approximated by more regular homeomorphisms.

Lemma. // ̂  and <8 are C° foliations of the compact manifold M with one-
dimensional C00 leaves, then any homeomorphism φ of M that sends leaves of &* to
leaves of & can be approximated uniformly by CJ homeomorphisms that send each
leaf of 3F to its image under φ, and whose inverses are of class C#.

The proof of the lemma will be postponed to the end. We apply it now to the
conjugating homeomorphism φ and the foliations by stable manifolds ofX and Y
to produce another diffeomorphism φ in C^(X}.

We will show that ψ = φ o φ~l is in C^x). Then φ itself should be in CyY). A
similar argument with — X, — Y, would show that φ is in C^Γ), and it is clear it is in
Cy. Then, an appeal to Lemma 2.3 of [LMM] (an alternative proof is [Jo]) will
show φeC0 0 and establish the theorem.

Using the regularized homeomorphism φ we introduce another flow
τt = φσtφ~l - which we can assume is C° close to τt. We will show that, under the
hypothesis of the theorem, any homeomorphism intertwining τt and τt is in Cyx).
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To show that ψ e Cf(X), we will prove that

ψ= lim τ ί o f _ ί

ί->oo

in the C° sense. This will enable us to conclude that ψ is Lipschitz along stable
directions of X by estimating the Lipschitz constant of τ r o f _ r along stable
directions independently of ί. From that point, on the bootstrap of regularity is
much easier.

Since τtτ-t(x) = τt°ψ~'ί °τ _t°\p(x\ it suffices to show that τt°\p~l°τ_t con-
verges uniformly to the identity. This follows, by a well known argument, from the
fact that \p~l preserves contractive leaves, that we can bound the distance along
the leaf between ip ~ * o τ _ 1(x) and τ _ t(x) independently of x and t and the uniform
contractivity of τt along the stable leaves.

We start now to show that ψ is uniformly Lipschitz along stable manifolds of
X. It suffices to find a bound for the derivative of τr ° τ _ r along Xs uniform in t and
x. Computing, we get

(1)

where we have used that

for certain positive functions ξ, Λ[γ\ Λ(

t

x) in C^(Y}. The first follows from the fact that
φ is Cs*y) and maps leaves of the stable foliation for Y into leaves of the stable
foliation of X. A can be computed by

(2)

where [_X,Xs^=λs

xX\ and similarly for Λ(?\x\
We will prove that each term in the right-hand side of (1) is bounded by a

constant independent of t and x.
The first factor between brackets is bounded by a constant independent of t and

x since ξ is a nowhere vanishing continuous function. In order to prove that the last
term is also bounded by a constant independent of ί, we call δ = max d(φ(x\ <?(x)),

xeM

where the distance is measured along the stable leaf containing both of them. We
consider the points x0 = φ°σ_t° $~^(x) and xt =φoσ_t o φ~1(x)e W£(x). The
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distance between x0 and xί is smaller than δ. Then, by (2),

\Λ[x\xQ}~ Λ^(x,)\ = exp - f λs

x(τr(x0))dr -exp - J 4(τr(x,

<*Cmzx(\Λ™(x0)\9\Λ(

t

where we have taken into account that λs

x is of class Cα (which is a consequence of
the C 1 + α smoothness of the center stable bundle) and that d(τr(x0), τr(x t))
^ Kλrd(x0, xι) for some λ < 1 this exponential decay allows us to get a bound for
the integral independent of ί. If we divide both sides of the above inequality by
MίJ)(.Xι)|, - which, clearly, is bounded away from zero - we get the desired estimate.

Finally, we show that \Λ(

t

x\φcσ-t°(l)~1(x))/ΛlY\σ_t° $~l(x))\ is bounded
uniformly in t and x. This is a consequence of the fact that corresponding periodic
orbits X and Y have the same Lyapunov exponents. Given a periodic orbit 7 of Y of
period T, its stable Lyapunov exponent by (2) is

) = exp[- J4(7(0)^l
L o J

and the corresponding Lyapunov exponent of ^(7) with respect to X is

I*(φ(y)) = Λψ\φ(y(0))) = exp Γ - f λs

x(φy(t))dt
|_ o

This implies that the function η(y) = λs

γ(y) — λx(φ(y)) has vanishing average over any
periodic orbit of Y Using the well known fact that φ is Holder with a strictly
positive exponent, we can conclude that η is also Holder. Since by assumption 7
was transitive, we can apply Livsic's theorem, [Li 1, Li 2], to conclude that there
exists a Holder function ρ:M->R such that

J η(σsy)ds = ρ(σty)-ρ(y)
o

for any _yeM, ίeR. By (2), the last factor to estimate in (1) can be rewritten

This finishes the proof that φ is uniformly Lipschitz along stable manifolds of Y.
Now we conclude that it is actually of class Cj.

By the fundamental theorem of calculus, the restriction of φ to any leaf of the
stable foliation is differentiable almost everywhere on this leaf.

Also, since φ intertwines τί5 σί5 the set of points where it is differentiable along
the stable foliation is invariant under σt.

These two properties allow us to conclude that it is differentiable almost
everywhere with respect to the forward Sinai-Ruelle-Bowen measure.
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At the points where φ is differentiable, we have that A(

t

x\φ(y))ξ(y)
= ξ(σt(y))A(

t

γ\y)or

Tt\nξ(σt(v)) = λ?\φ(y))~λ?\y). (3)

Since S-R-B measure is ergodic, the solutions of the Livsic equation are unique
in the class Ll

s_ R_B.

Hence — Inξ has to agree a.e. S-R-B with the Holder function ρ.
at

Using equation (3), we see that ξ has to agree with ρ everywhere and it is
standard that, therefore, it has to be the true derivative.

This proves φ is actually C*.
One we know (3) holds everywhere we can very quickly bootstrap. Since

λteC™, assuming that φeCk

s(Y^ implies the right-hand side of (3) is in Cj(y). The
proof of Lemma 2.2 in [LMM] allows us to conclude Inξ is also in C*(Y), hence φ is
• rk+ιin cs(Y) .

This concludes the proof that φ e C^Yy A very similar proof would conclude φ
eC^υ. Now we can apply Lemma 2.3 of [LMM] (another different proof was
given by Journe [Jo] using different regularity assumptions, which also hold for
the foliations considered here) to conclude φeC 0 0 as claimed in Theorem 1.

Proof of the Lemma. We can assume that both M and the foliations are orientable,
since otherwise we could work on a suitable cover of M. Then we construct a
global nowhere vanishing vector field G of class C#, tangent to ̂  everywhere, and
another similar one, F for 3F . We consider a covering Ut of M by elementary open
sets such that & is trivial on Vt = (J t/. for any z, £Γ C V{ is a transversal

t / j O ^ Φ O

hypersurface to ,̂ and π t : Ff-»]rf is the projection along the leaves of Ή.
We define D^eC00^) for every; by

π;-y, y e V j , (4)

together with DfajX) = 0. Roughly speaking, we are taking coordinates along the
leaves in a coherent fashion for all the leaves. The reason why we do it using the
exponential map is to ensure that the differential operators that result can be
related for different leaves. Finally, we consider a C00 partition of unity χj

subordinated to φ~l(U, and define

φc(x) = exp(

G

Sr _ 7) (Σ . χι(X)Dt(φ(X))}φ(x) , x e M , (5)

where 7 is the identity operator acting on C°(M), and Sε is a CJ-smoothing
operator acting on C°(M) by

where η e C^(R) is a nonnegative even function with J η(t)dt = 1 . The operator Sε
— 00

can be seen in local coordinates for the leaves of ̂  as a convolution operator,
which approaches the identity as ε tends to 0. This implies that φε tends to φ as ε
tends to 0.
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It should be noted now that, even when we are working on a cover of M5 the φε

above defines a map from M to M. This is because η is an even function. Moreover,
it is obvious that any φε sends each leaf of J^ to its image under φ. In order to prove
that each φε is a homeomorphism for ε near 0, it suffices to see that they are
injective. This can be seen easily as follows:

a) points in different leaves of 3F are mapped to different leaves of ^
b) one-dimensional convolution operators transform strictly increasing func-

tions into functions with strictly positive derivative, so the φ/s are locally injective
on each leaf, with uniform bounds on the size of the domain of injectivity.

Finally, we have to prove that each φt is of class CJ. This can be seen as follows :
applying (4) to πky, assuming y e U 7 u Uk and UjΓ\ Uk φ 0, we have

and using this with j and k interchanged in (4) again we have

y = e*p<ί>j(V)+Dk(πjy)πky. (6)

Comparing this with (4), we see that

Dk(y) = Dj(y) + Dk(πjy). (7)

As a consequence of this, assuming y = φ(χ), we have for xeφ

Dk(Φ(χ)) = Σ [z/χ)βχ0M) + ̂ AM(χ))] .
j

Using this in (4) as well as (5) and (6), we see that

+ Σiχ1(x)Dk(πlφ(x))πkΦ(X) '

Now it is clear that φε is of class Q£, since each π^ o φ is (locally) constant along the
leaves of J% Sε( ) is of class C°° by construction and expf(j ) defines a continuous
family of C°° functions depending on the parameter y. This finishes the proof of the
lemma.
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