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Abstract. We further develop the quantization of topological solitons in two-
dimensional quantum field theory in terms of Euclidean region functional
integrals. Our approach is nonperturbative and mathematically rigorous. We
apply it to construct physical states with fractional fermion number in models
of interacting bosons and fermions without recurring to a semiclassical
approximation. A related issue discussed in this paper is two-dimensional
chiral bosonization.

L Introduction

In this paper we reconsider the quantum theory of solitons in quantum field
models in two space-time dimensions. Our purpose is to construct Euclidean
Green functions of local order fields and soliton fields in terms of Euclidean region
functional integrals. We also discuss the algebraic structure defined by the order-
and the soliton fields [1] and associated monodromy structure of their Euclidean
Green functions. It will turn out that those Green functions are simply correlation
functions of products of order- and disorder variables.

A mathematically rigorous approach to soliton quantization within the
Hamiltonian formalism of quantum field theory was first developed in [1]. It
turned out, however, that for purposes of a detailed analysis of concrete models a
Euclidean approach to soliton quantization would be more powerful; (see [2] for
a systematic treatment of soliton quantization in terms of Euclidean region
functional integrals within the context of lattice theory).

The idea that the superselection structure of a large class of quantum field
theories in two and more space-time dimensions is encoded, in a mathematically
precise sense, in the set of correlation functions of general local order- and disorder
variables (especially disorder variables associated with line defects of the
corresponding Euclidean field theory) was first conceived in the first reference
quoted in [3], although of course order-disorder correlation functions had already
been studied earlier, and attempts had been made to extract information about the
field theory from such order-disorder correlation functions [4]. The proposal in
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[3a] was also made, independently, in [3b] and systematized in [2, 3]. in this paper,
we combine results and methods from constructive field theory, [5, 6] with the
ideas in [2, 3] to develop a systematic, non-perturbative and mathematically
rigorous approach to soliton quantization for quantum field models in two space-
time dimensions. Our approach is based on constructing modified Euclidean
region functional integrals in terms of which the soliton Green functions can be
calculated. The modified functional integrals arise by coupling the basic Euclidean
region fields of a field theory to singular external gauge fields whose curvature is
concentrated in a finite set of points in Euclidean space-time where soliton fields
are inserted. The gauge group relevant for our construction is simply the global
symmetry group of the classical action, and the coupling of the basic Euclidean
fields of the theory to the external gauge field is accomplished by "minimal
substitution," i.e. by replacing derivatives by covariant derivatives. In this way, the
basic Euclidean fields of the theory turn into distributional sections of some vector
bundle over punctured Euclidean space-time, with those space-time points deleted
where a soliton field is inserted. This vector bundle is equipped with a flat
connection with nontrivial holonomy.

One might object that the time for such an analysis of quantum solitons has
passed. However, the ideas and methods that we develop have several applications
to more topical problems of present-day quantum field theory. Here are some
examples: We present a formalism for bosonizing arbitrary Euclidean Green
functions of chiral spin-1/2 Fermi fields and their local currents in two space-time
dimensions. We are able to express such correlation functions in terms of bona fide
Gaussian integrals of products of functionals of a real, free, massless Bose field and
of disorder operators for that field. In principle, our approach extends to arbitrary
Riemann surfaces, but we have not bothered to work out the details. While at the
level of identities between Bose- and Fermi Green functions we have no new results
to report, the fact that Green functions of chiral Fermi fields can be expressed in
terms of bona fide bosonic functional integrals may have escaped attention.

We are also able to express correlation functions of spin fields associated with
two-dimensional Dirac fermions in terms of Gaussian integrals of products of
functionals of a free, massless Bose field. By "taking square roots" a similar result is
obtained for the correlation functions of spin fields associated with a two-
dimensional Majorana fermion. This is of interest in connection with the covariant
quantization of the superstring, in particular with deriving formulas for fermion
emission vertices. But it also yields explicit formulae for the spin correlations of the
scaling limit of the two-dimensional, critical Ising model. This is, of course, not a
new result. But our approach to bosonization could be used to analyze several
other two-dimensional, critical models of statistical mechanics wich can be
"mapped" onto the Gaussian model; (critical XY- and clock models, Ashkin-Teller
model, ...). It is also of some interest in connection with some monodromy
representations of the braid groups, (the Burau representations). However, in this
paper there is no room for a systematic study of these matters.

Finally, our approach to soliton quantization can be used for a non-
perturbative, mathematically rigorous analysis of kinks and antikinks carrying
fractional fermion numbers in models of interacting bosons and fermions, such as
the pseudo-scalar Yukawa model, in two space-time dimensions. Our analysis
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goes beyond the semiclassical approximation and replaces topological arguments
applied in conjunction with the semiclassical approximation by algebra.

It is worthwhile mentioning that an attempt to evaluate our non-perturbative
formulas for solition Green functions quantitatively, with the help of a semiclas-
sical expansion, leads to some intriguing classical variational problems which we
know how to deal with only in the simplest cases.

The organization of our paper is as follows:
In Sect. 2, we discuss the quantization of solitons in terms of functional

integrals for the simple example of the λφ\ model. We derive non-perturbative
expressions for mixed order field-soliton Euclidean Green functions and recover
the "dual algebra" commutation relations [1] between order fields and soliton
fields. We show how the λφ\ model can be reformulated as a theory of an
interacting Majorana field. It is worth mentioning here that there is a related,
mathematically rigorous isomorphism between the λφ4 model in three space-time
dimensions and a nontrivial 2£2-gauge theory. These isomorphisms extend the
Onsager transformation and Kramers-Wannier duality from the Ising- to the λφ*
models. Finally, we comment on the semiclassical expansion of mixed order field-
soliton Green functions and formulate an associated classical variational problem.

In Sect. 3, we review chiral bosonization over the complex plane (isomorphic to
two-dimensional Euclidean space-time) in a form that we believe is somewhat
novel. We express spin fields associated with Dirac fermions as functional of a
free, massless Bose field and sketch how one may use this to calculate the
correlation functions of the two-dimensional, critical Ising model in the scaling
limit.

In Sect. 4, we briefly review the Euclidean quantization of solitons in the two-
dimensional sine-Gordon model and show how to reconstruct charged Fermi
fields out of our local soliton fields.

In Sect. 5, we combine the results of Sects. 2 through 4 to carry out a non-
perturbative analysis of fractional fermion numbers in two-dimensional models of
interacting bosons and fermions. We hope that our analysis may clarify some
aspects of this phenomenon which, as is well known, is of intereset in one-
dimensional condensed matter physics.

in an appendix some features of the lattice approximation to the bosonized,
two-dimensional pseudo-scalar Yukawa model are briefly discussed.

Fairly detailed references to previous work on all these problems may be found
in Sects. 2 through 5.

In a companion paper we shall analyze the Euclidean quantization of
"anyons," i.e. point vortices carrying a fractional electric charge, in three-
dimensional Higgs models with Chern-Simons term in the action. Our analysis
which is completely nonperturbative sheds some light on strange properties of
anyons, like their fractional spin and statistics, their fractional electric charge and
their "extended particle" structure.

2. A Simple Model with Solitons: λφ\ Theory

In this section we describe the construction of soliton-, or kink Euclidean Green
functions in the simple λφ\ model and show that this theory can also be formulated
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as a theory of Majorana fermions. The formalism introduced here will be useful in
our discussion of kinks carrying fractional fermion number in two-dimensional
models of interacting bosons and fermions (Sect. 5) and is therefore developed in
some detail.

To begin with, we briefly recall the kink solutions of the classical λφ\ field
theory. The Hamiltonian of the model is

H= J dxUπ(x)2 + (Vφ)2(x)+?-(φ(x)2-ξ)2]. (2.1)

The absolute minima ofH in the infinite-dimensional phase space of the system are

φ(x) =±]/ξ, π(x) = 0, (independent of x). (2.2)

The second functional derivative of H in φ at these points is

ΰφ(x)<

where the mass m is given by

m2 =

Every configuration (π(x), φ(x)) of finite energy satisfies

lim τφc) = 0, lim φ(x)=±]/ξ, lim φ(x)=±]/ξ. (2.4)
JC-> ± oo χ->oo x-*-— oo

Thus the space of finite-energy configurations consists of four disconnected
components

Γ+ = \{π,φ): lim

,(/>): lim φ(x) = -]/ξ\, (2.5)

Γ s= Uπ,φ): lim 0 ( x ) = - lim
[ χ-> + oo χ-> — oo

and

Γ s = ί ( π , 0 ) : lim 0 ( x ) = - lim φ(x)=-]/ξ).

The minima of the Hamiltonian H restricted to Γs and Γ^ give rise to kink- and
anti-kink solutions, φs{x), φ-s(x)= —φs(x), of the classical field equations. Here

φs(x) = γ l t a n h [ ] / ^ x - a j = - φ , ( x ) , (2.6)

for arbitrary real a.
Travelling kinks or anti-kinks are obtained by applying Lorentz boosts to the

solutions (2.6).
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Fig. 1 Vf

The components Γ+, Γ_, ΓS9 and Γs are invariant under the Hamiltonian flow.
This permits us to associate a time-independent topological charge Q(φ) with every
finite-energy solution, φ(t, x), of the classical field equations,

Q(φ)= 7 φjux)dx= lim l<Kt,x)-Φ(t, -*)] (2.7)
- oo x-* oo

For (φ, φ) e Γ±, we find Q(φ) = 0, for (φ, φ) e Γs, Q(φ) = 2j/ξ, and loτ{φ\φ)e Γ-s,
Q(φ)=-2γξ.

2.1. Construction of the Vacuum Sector

We now pass to the quantum theory of kinks and anti-kinks in the λφ\ model. The
Hamiltonian approach to this problem has been investigated rigorously and in
much detail in [1]. Here we briefly review the quantization of kinks and anti-kinks
in terms of Euclidean region functional integrals, as developed in [2]. (For earlier
work in this direction, see also [3].) In the Euclidean description of quantum field
theory, the λφ% model is characterized by its Euclidean action

(2.8)

where Φ(x) is a random field whose distribution is given by the probability measure

1

Z
dμ±(Φ)=~e~SiΦ)DΦ±. (2.9)

In (2.8), the double dots indicate normal ordering with respect to the free
propagator (— V + m2)~ \ where m2 is given by (2.3). Formula (2.9) is the Euclidean
Gell-Mann-Low formula: DΦ± is a formal Lebesgue measure on x R x , and the
subscript " + " indicates that we impose boundary conditions (b.c.)

Φ(x)-+ + γξ, as lx|-*oo, or Φ(x)-+-]/ξ, as |x|->oo, (2.10)

for ξ>0. (For ξ<0 we impose zero Dirichlet b.c, Φ(x)->0, as |x|->oo.) The precise
mathematical definition of these b.c. is discussed in [5,6]; [the notation (2.10) is
somewhat symbolic]. The b.c. (2.10) are chosen so as to select pure phases of the
theory.

The factor 1/Z is chosen such that dμ + (Φ) and dμ^{Φ) are probability measures
on the function space ^ ;(1R2) of tempered distributions on IRA Formula (2.9) has
been given a rigorous mathematical interpretation; see e.g. [5,6]. For example,
dμ+(Φ) and dμ_(Φ) can be viewed as limits of measures describing fields over a
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bounded space-(imaginary) time lattice, as the lattice spacing tends to 0 and the
thermodynamic (infinite-volume) limit is taken. It is known that, for ξ small
enough,

(2.11)

while for ξ > ξc, for some bounded ξc,

. (2.12)

This is interpreted, physically, as spontaneous symmetry breaking: The action S(Φ)
defined in (2.8) and the formal Lebesgue measure have a discrete, global Z2

symmetry

Φ(x)-• - Φ(x), for all x e E 2 .

For ξ sufficiently large, this symmetry is spontaneously broken, and the boundary
conditions (2.10) select two distinct pure phases characterized by dμ+(Φ), dμ_(Φ),
respectively, [5b]. This is expected on the basis of the classical theory; see (2.2).

The Euclidean Green functions of the λφ\ model are the moments of dμ + , i.e.

Gΐ ) (x 1 , . . . ,x π )=ί Π ΦiXiWΛΦ). (2-13)
i= 1

It is known that these Green functions satisfy the Osterwalder-Schrader axioms
[7]; (distribution property, Euclidean invariance, clustering and Osterwalder-
Schrader-, or reflection positίvity). The Osterwalder-Schrader reconstruction
theorem then guarantees that the {G{+} uniquely determine real-time Wightman
distributions and Green functions by analytic continuation in the time variables. If

then

G%\xu...,xn) = (Ω±9φ{x\)e-<x°*-χ°)Hφ^^ (2.14)

where Ω + and Ω _ are the physical vacua (distinct, for ξ > ξc, but Ω + = Ω _ = Ω, for ξ
small enough), φ(xγ) is the relativistic time-0 quantum field, and H is the Hamil-
ton operator of the λφ\ model.

For ξ>ξc,

(Ω + ,φ(x)Ω + }=-(Ω^φ(x)Ω^} = Φc>0, (2.15)

while, for ξ small enough, <Ω, φ(x)Ω} = 0.
Let # + be the algebra of functionals of the Euclidean field Φ generated by

We define

and
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Furthermore

Φθ(f) = <t>(fθ)> Φt(f) = <Kft)> and Φa(f) = Φ(fa).

For Fe # + , we define

ΘF(Φ) = F(Φe), Ft(Φ) = F(Φt), and Fa{Φ) = F{Φa). (2.16)

The image of J%. under θ is denoted # L . It is the algebra of functional of Φ
supported at negative (imaginary) time. For F e^+, £>0, α real, Ft and Fa belong
to # + .

Reflection positivity is the property of dμ± that

<<9FF> ± ^0, for all F e # + , (2.17)

where

< F > + E E j F(Φ)dμ + (Φ) (2.18)

Reflection positivity permits us to reconstruct the vacuum sectors of the model as
follows: With each Fe^+ we associate a vector |F> in a Hubert space <#+ with
scalar product given by

. (2.19)

The energy-momentum operator (//, P) is obtained from the formulae

(F\e-tH\G)EE(F\Gt) = (ΘFGt)±, (2.20)

and

i P

 ±. (2.21)

Similarly, if the measures dμ+(Φ) are Euclidean invariant a unitary representation
of the full quantum-mechanical Poincare group on the Hubert spaces J>f+, Jf_ can
be reconstructed from the expectation values of products ΘFG, with F and G in # + ,
in the measures dμ + , dμ_, respectively. This is explained in detail in [8].

Finally, the quantum field φ is obtained from the formulae

1)Gty±, (2.22)

etc.
For the λφ\ model, it is known that, for \ξ\ sufficiently large, the spectrum of the

mass operator M, where M2 = H2 — P2, consists of {0}u{mp h y s}u[mp h y s + μ, oo),
m

Phys > 0 and μ > 0. Here m p h y s is the mass gap, and μ is the upper gap. See [5a] for a
review and references to the original papers.

The material reviewed between (2.15) and (2.22) is, of course, model-
independent. Similar considerations apply to all other models discussed in
subsequent sections of this paper. See [2,8] for general discussions of
Osterwalder-Schrader reconstruction [7] in a context adequate for the present
paper.

We remark that all results for the λφ\ model reviewed here are well known,
rigorous results. It is quite straightforward to verify them for the lattice model,
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whose Euclidean vacuum functional measure is given by

dμ±(Φ)= lim — e x p Γ £ (Φt —Φ 7 )
2Ί J~] dρ(Φj), (2.23)

where A is a finite subset of Z 2 , ZΛ is the partition function,

λ
dρ(Φ) = exp\ - ^ ( Φ 2 - ξ ) 2 μ φ , (2.24)

and

Φί=±]/ξ, for all j<M (2-25)

In this context, symmetry breaking for ξ > ξc(ξc = ξc(λ) > 0) is an easy consequence
of a Peierls argument. See e.g. [2, 5a, 6].

The point is now that in the phase of the λφ\ model with a broken φ-^ — φ
symmetry the physical state space is much larger than the vacuum sector jf+} or
JfL, [1]. There are physical states, \s} of finite total energy with the property that
the function <s| φ{x°, x 1 ) ^ ) resembles the soliton solution φs{x°, x1) of the classical
field equations. In particular,

lim (s\φ(xo,x1)\s)=±Φc, (2.26)

where Φc is the vacuum expectation value of φ defined in (2.15). Defining the
quantum topological charge Q by

β= ^dx1(~ίφ\x°,x1), (2.27)

we conclude from (2.25) that

<s|β|s> = 2Φc, (2.28)

while

<F|2 |G> = 0, (2.29)

for all |F>, \G}eJ^±, since, by (2.22),

(F\Q\G)= lim l(ΘFΦ{0,xί)G)±-{ΘFΦ(Q,-xι

= {ΘFG)± lim
1

- 0 ,

by clustering.
Our purpose is now to construct a local field, φc), carrying a topological charge

of ±2ΦC, out of which soliton states |s>, \s} of charge ±2ΦC can be constructed.

2.2. Soliton Bundles for the λφ% Model

In this section we construct a local soliton field, s(x), for the λφ\ model and show
that, for ξ > ξc, where the φ-+ — φ symmetry is spontaneously broken, it couples the
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vacuum sectors to soliton sectors of topological charge ± 2ΦC. Our construction is
purely Euclidean: We directly construct Euclidean Green functions G^+} for the
soliton field and obtain the soliton sectors Jfs, 3^Έ, a representation of the Poincare
group on J1^, J ^ and local field operators, s(x), from G^+} by a version [2] of the
Osterwalder-Schrader reconstruction theorem [7, 8]. Our construction of G{

s

2?$ is
inspired by the one in [2, 3] which relies on disorder operators. We just sketch the
main ideas; details may be found in [9].

We choose In points {xl5 ...5x2«} m Euclidean space-time R 2 and define

Clearly, M is not simply connected, and there exist, therefore, non-trivial real line
bundles, E, over M with fibre R and structure group Έ2. The group action on the
fibres is given by

(ceZ 2 = { l ,- l } ,φeR)->εφ. (2.30)

Such bundles are uniquely characterized by their holonomy: With each point xt we
associate a number ^ = 0, or 1. Let ω be a loop in M. We let n(ω,xf) denote the
winding number of ω with respect to the point xt. We set

υ(ω) = (-^qiMω-X\ (2.31)

U defines a representation of the fundamental group of M. All line bundles E
specified above may be characterized by such a representation, or, in other words,
by a choice of qu ...,q2n> From now on we choose

An explicit choice of a flat connection on E can be made by connecting the points
x1,...,x2n pairwise by n paths y =(y 1 ? ...,yw) and defining parallel transporters
along arbitrary paths π in M by

U(π,y) = (-iy"Σ'i(π^\ (2.32)

where

f(π, y) = # intersections of π with y.

This permits us to define a covariant derivative, Vy, and a covariant Laplacian, Ay,
on sections oϊE. For our analysis of the field theory, the only important quantity is
the Green function of Δy which can be calculated neatly by using Brownian
motion: Let dWjy(π) be the standard Wiener measure on continuous paths, π,
parametrized by the interval [0, T] with π(0) = x, π(T) = y, (x,yeM). Then the
Green function, Gγ{x,y), of Δy is given by

Gy(x,y)= J dTμWx

τ

v(π)U(π,y). (2.33)
o

The meaning of Vy and Δy can be elucidated by embedding E in a complex line

bundle with structure group U{\) carrying a regular £/(l)-connection, A. One
obtains V, Δγ from VA, ΔA by studying the limit where the curvature, dA, gets
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2«

concentrated in x ί, ...9x2n, {dA) (x) -> π £ + (5(x — x7 ), and the support of A shrinks

Ί ' 1

to y; see also [9].
We now define a covariant action by

^(Φ2-ξ)2:(x)\. (2.34)

Given x e M, let π x be the path parallel to the x1 axis starting at x and reaching out
to x1 = -f oo. We introduce gauge-invariant fields

Φγ(x) = Φ(x)U(πx,y). (2.35)

The full set of Green functions of the λφ\ model is then given by

G^m\Xl,...,x2niyu...,ym)=\l- ί <ΓS(Φ -y) Π Φy(yj)DEΦ±] , (2.36)
|_Z Γd(£) J = l " Jren

where Γd(E) is a space of distributional sections of E, and DEΦ± is the formal
Lebesgue measure on Γd(E). The subscripts, +, still refer to b.c.

Φ{x)-»±]/ξ9 as |x|->oo,

and [...] r e n indicates that the functional integral between the square brackets
requires a multiplicative renormalization of the form α(κ)2n, where α(?c)->oo, as an
ultraviolet regularίzation K is removed, (e.g. the lattice spacing of a lattice λφ\
model is sent to zero). It is not really hard to give (2.36) a rigorous mathematical
meaning; see [9]. In fact, the main problems to resolve are to define the Gaussian
measure dμ®(Φ) with mean 0 and covariance ( — Ay-\-m2)~l, m2 = 2λξ(ξ>0) on
Γd(E) - which is straightforward, using

1(x,y)= J dTe-m2τSdW£(π)U(π,y) (2.37)
o

- and to calculate the ratio of normalization factors of the Gaussian measures
dμy(Φ) and dμ°(Φ) = dμy = φ(Φ) ( = standard free-field Gaussian measure with mass
m2). This ratio of normalization factors is formally given by

det(-zl y + m 2 )~ 1 / 2 /det(-z l+m 2 )~ 1 / 2 ,

but this ratio vanishes. Introducing an ultraviolet regulator K, e.g. a lattice cutoff,
one may choose a function cc(κ), diverging to + oo, as κ->oo, such that

z(dy)= lim φ ) 2 M e t ( ( ~ 4 κ ) W ) / ( ~ z l ( κ ) + m 2 ) Γ 1 / 2 (2.38)

exists, as long as min dist(x{ , xj) > 0. The function z(dy) is gauge-invariant and
ι Φ ;

therefore only depends on dy = {xι, ...,x2n}, but not on our choice of y. It can be
calculated essentially explicitly, and one can show that

ldnf), (2.39)

where dn= min dist(x;,Xj-).
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Defining

V±{Φ)= ^Ud2x:(Φ2-ζ)2:(x)-(2m2/λ):Φ2

with + or — b.c. at infinity (see [5b, 9]), we see that the formal expression (2.36) is
really given by

m

\dμ°(Φ)e-v±m ΓJ ΦM
G ^ f l ^ 4dy). (2.40)

The first quotient on the right-hand side of (2.40) can be defined, mathematically
precisely, by using fairly standard methods of constructive field theory [5a, 6]. it is
finite as long as j ^ Φ)^-, for iΦj, with logarithmic singularities, as Iĵ  — }>; |->0. The
details of these constructions are carried out in [9].

Our notation on the left-hand side of (2.36), (2.40) suggests that the right-hand
side of (2.40) only depends on dy = [xu ..., x2n}. This is indeed the case and follows
from gauge-invariance.

It is instructive to compare the expressions (2.36) and (2.40) with the
corresponding expressions for the lattice theory [2]. We set

z = ί e χ p | —

and

L Z <ij> J

fc=l

(2.41)

where α ( = a(κ= 1)) is an arbitrary positive number, x 1 ? . . . ,x 2 n belong to the dual
lattice (2?2)*, and σ is a Z 2 lattice gauge field given by

( - 1 , if <i/>*ey,
ί J ( 1, otherwise,

where y = (yu ...,yM) are n paths in (Z2)* joining n disjoint pairs of points in
{xu...,x2n} (see [2]). By introducing a variable lattice spacing a = κ~ι and
choosing α = α(/c), dρ — dρκ (independent of y and y1?..., j m ) in a suitable way as
functions of K, one obtains (2.40) as the limit of (2.41), as κ = α~1->oo. We have
suppressed here the discussion of the thermodynamic limit; see (2.23). [Its
existence is an easy consequence of FKG correlation inequalities [6], as the reader
will check quite easily.]

The main result, proven in [9], is now that the Green functions
Gj2+m)(x1? ...,x2n; y l 5...,ym) satisfy the OsterwalderSchrader axioms. This has
been proven in detail for the lattice theory in [2]. The extension to the continuum
limit is discussed in [9], and the main ideas are sketched below. It is worthwhile to
note that, because of the singular behaviour found in (2.39), the Green functions
G^2+'m)(xl5 ...,x2n; yu ...,ym) are not tempered distributions, but belong to a Jaffe
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class of ultradistributions. An extension of Osterwalder-Schrader reconstruction
to this class is known [10]; (see also [8]).

From the Osterwalder-Schrader reconstruction theorem it then follows that
{G^+m)} are the Euclidean Green functions of a local soliton field operator s(x) and
the meson field operator φ(x): For x° < ... < x°2n < y°γ < ... < j/° we have

xe~(y^Ά^φ^y\)e~^y^^(O,y\y..φ(O,yln)Ω±y. (2.42)

When ξ > ξC9 so that

(Ω±,φ(y)Ω±)=±Φc, with Φ c>0,

the physical Hubert spaces reconstructed from (2.42) are

and ί h y s ί + m ΐ ' } (143)

JfY and Jf_ are the vacuum sectors which we have already discussed, while Jfs and
J ^ are a soliton- and an anti-soliton sector. [When ξ is sufficiently negative, J(f+

= Jf.=Jfs = J^, Ω+=Ω_=Ω, and <Ω,,φc)Ω>Φ0, while (Ω9φ{y)Ω} = 0. This is
the symmetric phase of the λφ\-moάύ. We shall not discuss it anymore,
henceforth.]

The quantum field theories on J*fphys and on J^' h y s are isomorphic, (identical
particle spectra and identical dynamics), and are related to each other by the
symmetry operation φ-+ — φ. It therefore suffices to study the theory on J"fphys5 and
we shall omit the subscript + henceforth. For ξ>ξc, the Green functions
Gp"'m )(x l 5 ...,x2«? yi>' '>ym) n a v e exponential cluster decomposition properties,
with

LΓS ^ x l 5 . . . , X j i - α , . . . 5 Λ 2 n 5 > i , . . . , y m j ^ u ,

as |α|-»oo, exponentially fast [9]. Therefore, the soliton field has vanishing matrix
elements between states in J»f0 = ̂ f+, or between states in J^s, but non-zero matrix
elements between states in J*f0 and states in J^s. The spaces J^o and J^s are
eigenspaces of the topological charge

with eigenvalues 0, 2ΦC, respectively.
The mass gap (lowest eigenvalue+ 0 of the mass operator M) on Jfo is mp h y s

>0, the lowest eigenvalue of M on J>fs is m s >0, with mphysoc/l^ and msoc]/(ί, for

£oc - large enough; see [lc, 9]. [The proofs of these results require a somewhat

nontrivial extension of the methods in [5b].] It follows, in particular, that 2tfs does
not contain any translation invariant states (vacua).

The meson- and soliton fields, φ and 5, satisfy the ''dual algebra"" first
discovered in [ l a ] : For x and y two space-like separated points in M 2 ,

φ(x)s(y) = ( - ψyί~χί)s(y)φ(x), (2.44)
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where θ is the Heavyside step function. [Note that, in two space-time dimensions,
y1 — xι^0 are Lorentz-invariant conditions if x and y are spacelike separated.]
The dual algebra can be used to fermionize the λφ\ model: We define a real, local
field, ψ(x), by

ψ(x) = φ(x)s(x). (2.45)

Then the algebra (2.44) implies

= (-lfχl-^φ(y)φ(x)s(y)s(x)

= ~ψ(y)ψ(x), (2.44')

for x and y space-like separated. [We have used that φ and s are local Bose fields
which follows from the symmetry of G(

s

2n'm)(xί,..., x2n y l 5 . . . , ym) under exchanging
x-, or j -arguments among themselves [7].] Relation (2.44') identifies ψ as a Fermi
field and, since it is real, ψ describes a Major ana fermion. It couples the vacuum Ω
to soliton states. Hence the soliton can be thought of as being a Majorana fermion.
Another theory which can be described in terms of Majorana fermions is the two-
dimensional Ising model. One might think, therefore, that there must be a
connection between λφ\ and the two-dimensional Ising field theory, with φ(x)
playing the role of the spin field in the Ising model, and ψ(x) playing the role of
Onsager's Majorana fermion in terms of which the Ising model is described as a
free Majorana theory. Indeed, it is generally believed that the long-distance scaling
limit of the Green functions of the λφ*-model at the critical point (ξ = ξc), i.e. the
infrared fixed point of λφ\, is identical to the critical Ising field theory.

The dual algebra (2.44) has the following consequences pointed out in [11]:
(1) (Ω,φ(y)s(x)Ω) = 0, hence (Ω,φΩ) (Ω,sΩ)=0;
(2) <Ω, φΩ} = <Ώ, sΩ) = 0 implies mp h y s = 0, i.e. a critical theory.
These are model-independent results which follow from cluster properties of

{G[2n'm)} and (2.44).
We finally remark that the form factor

(e-εHs(0, yι)Ω, φφ, x1) e~εHs(0, f)Ω)

resembles the classical kink solution of the λφ*-modol quoted in (2.6).
Most of these results have been established for the lattice theory in [2] and in

the continuum limit in [9]; see also [1]. Here we just outline the main formal ideas
of the proofs.

1. Gauge-invariance: G{

s

2n'm) depends on γ only through dγ = {xι, ...,x2n}. To

see this, we define 2£2-gauge transformations as follows. Partition IR2 into two
disjoint subsets, B and Bc. We define εβ by
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Fig. 2

Then

Hence

Moreover,

provided B is compact.

Hence

and DEΦ± =DE(εBΦ)±,

7 J
Φy(yj)DEΦ± I = I i

1 π
7 = 1

which completes the proof.
Gauge invariance permits us to choose the paths y to reach out to infinity.

Consider, for example, the soliton propagator G(2)(x, y), with x° < 0 < y°. We may
then choose y = yxuyy to consist of a path yx starting at x and tending towards
(— oo, 0) and of a path yy starting at y and tending towards (+ oo, 0). In this case, we
must, however impose mixed ( π — ) b.c. at infinity, i.e. DEΦ+ is replaced by
D £ Φ ( + _ ) , as shown in Fig. 2.

By performing a "global" Z 2 gauge transformation labelled by B, the new
definition of G{

s

2)(x,y) involving (H—) b.c. at infinity, with y = yxvyy, is seen to be
equivalent to the definition of G{2\x, y) given in (2.40) which involves pure + b.c. at
infinity (or pure — b.c), and with y = y. [These formal manipulations can be made
precise by introducing a finite-volume cutoff, as shown in Fig. 2, and removing it at
the end of the construction. See [2, 9].] The new definition is more akin to the
Hamiltonian approach developed in [1].

2. Euclidean invariance and clustering: Formally, Euclidean invariance of the
distributions {G{2n'm)} is obvious. It can be proven by using FKG inequalities [6]
or a field-theoretic version of the Peierls argument [5, 9] to construct the
thermodynamic limit. The second method also proves exponential clustering. This
is the main result of [9].
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3. Osterwalder-Schrader positivity: For the soliton propagator, G{2\
Osterwalder-Schrader positivity is the inequality

f d2xd2yGl2\x, y)Ux)f(y) ^ 0, (2.47)

for every test function/, with supp fQ{x :5c°>0}, where/ Θ (X°,X 1 )Ξ/( — X°,X1). If,
in our construction of G{2)(x,y\ we choose y = yxsjyr as in Fig. 2, then formally

where Fs

y

9

x(Φ) is real, singular functional of Φ concentrated along yx, with
i ^ ( Φ ) e / f , if yxc{x:x°>0}. Now, for x°<0,

F°fx(Φ) = ΘF%x(Φ), with Fs°ex = Ffiyx)e&+9

where θx = ( — x 0 ,* 1 ), and θ(yx) is the time-reflection of yx. Therefore, inequality
(2.47) follows from

for all Fe J%, which is well known.
A more explicit proof of (2.47) has been given in [2] for the lattice λφ2-model,

and since the lattice approximation converges, (2.47) is true in the continuum limit.
Osterwalder-Schrader positivity for the full set {G{2n'm)} of Euclidean Green
functions can be shown similarly, with more effort in keeping notations straight.

Next, we sketch the construction of the soliton sector J^s; ( ^ is obtained in the
same way by applying the symmetry operation φ\-+ — φ). We claim that the
following states form a dense set in Jf,:

s(f)\F)=$d2xf(x)e-χ°Hs(O,xι)\F}, Fe^+, (2.48)

where / is a test function with support in [x: ico>0}. The scalar product of two
states, s(f) \F} and s(g) |G>, of the form (2.48) is given by

(2.49)

where

\dμ(Φ)e κ " ( φ )

Using the cluster properties of {G*2+m)}, one shows quite easily that

< ( / ) | > 0, i.e. s

and

s(f)s(g) \F) = \\d2xd2yf(x)g{y) e~x°Hs(09 x1)

belongs to the vacuum sector Jf0 (see [2, 9]).
4. The dual algebra (2.44): We consider the Green functions G{

s

2n'm\xu ...,x2nl
yu -•> -Vm) defined in (2.35), (2.40), with x2n = x,y1=y. It is convenient to choosey to
consist of the union of n paths y' and a path yx starting at x and tending to (oo, 0), as
discussed in 1) and Fig. 2, above. We now compare the phases of G{2n'm\xu ...,x;
y,...,ym), for two different choices of x and y, with xl9...,x2n_1 and y2,...,ym fixed:
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(i) χ = χW = (O,xίly = y{ε) = (
(ϋ) x = χω = (ε,χil y = y(θ)=p9yi^ ε > 0

Then it follows from the definition of Φy(y\

(πy,γ), see (2.35),

and from the definition, (2.36), (2.40), of Gf "'m ) that

l imG^*! , . . . , ** 0 ^
ε\0 ε\0

(2.50)
with

σ = l , if y1>xi, and σ = - l , if yι<xι. (2.51)

This is easy to see for our choice of y.
From (2.50) and the symmetry of G^2n'm)(x1?..., xln\ yu ...,ym) under exchang-

ing arguments the dual commutation relations (2.45) follow by standard
arguments of axiomatic field theory.

5. The topological charge Q: Let F e ̂ +. We claim that e'εHs{0, xx)|F>, ε > 0, is
an eigenstate of the topological charge Q defined in (2.27) with eigenvalue 2ΦC,
while |F> is an eigenstate of Q with eigenvalue 0. [The last statement has been
proven in (2.29).] As mentioned in 2) (Osterwalder-Schrader positivity), states of
the form ^ " ^ ( O , ^ 1 ) ! ^ ) , Fe, f + , generate a dense set of states in J^s, [2, 9]. Thus,
we must calculate

<e- ε H s(0,x>ΠQe- ε ' H s(0,/) |G>, (2.51)

with F, Ge J%, ε, ε'>0.
Now, (2.51) can be expressed in terms of functional integrals: By definition

(2.27) of Q and (2.36), we have

(2.51)= lim Γ i j e"5(φ'»(0F)_ε(Φ)GAΦ)[Φy(0,w)-Φy(0, -w)]DEΦ + 1 ,
w^oo L Z ^d(£) Jren

(2.52)

where 7 is a path joining (ε7,^1) to ( — ε,*1). By the definition of Φv the right-hand
side of (2.52) is given by

lim - j e~SiΦ>yXθF)^ε(Φ)Gε,(Φ)tΦ(0,w) + Φ(0, -w)~\DEΦ+ . (2.53)
w->oo\_Z Γd(E) Jren

By the cluster properties of the measure dμ + (Φ) introduced in (2.9), and since suppy
is compact, we see that

(2.53)= Γ^ j e-wχθF)-ε(Φ)GAΦ)DEΦ + \ 2jrfμ+(Φ)Φ(0). (2.54)
L Z Γd(E) Jren

The first factor on the right-hand side of (2.54) is equal to

(2.55)
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by (2.36), (2.40), while the second factor is

2 < β + , # ) ) Ω + > = 2Φc.

Hence

which completes our proof of the claim that j ^ s is an eigenspace of Q with
eigenvalue 2ΦC.

6) The form factor: Let F and G be ain # + . We consider the function

with ε, ε' > 0. By a calculation essentially identical to the one carried out in 5),
above, one shows that

lim g(w) = ±ΦC.
w - * + oo

Thus, the form factor g(w) resembles the kink solution of the classical field
equations of the λφ\ model.

Remark. For the lattice λφ\ model, we have shown in [2] that the soliton is a
massive, stable particle by showing that the soliton propagators G{2\x, y) has a
Kallen-Lehmann spectral representation of the form

)= J dρ(a)(-Δ + a2rι(x9y), (2.56)

where dρ is a positive measure of the form

dρ(a) = &δ(a — ms) da + dρ'(a),

[m + o)

with 0 < ms, and 0<μsί « mp h y s, for λ small, and ξ& - large 1. While the methods in

\ A J
[2] do not directly apply to continuum theories, it is likely that one could improve
them to prove (2.56) and (2.57) for continuum λφ\. See also [19] for a general new
approach to particle structure analysis.

One might ask whether the particle structure (soliton mass, soliton-meson
bound states ...) of the theory can be investigated, quantitatively, with the help of
some asymptotic expansion methods, in particular the semi-classical method?
This appears to be possible, indeed, and here is the scheme: As an example, we
consider a two-soliton Green function

j e~s<^ fj Φy{z^DEφλ , (2.58)
Γd(E) i = l J

see (2.36), (2.40). Here y is a path connecting x to y. In order to evaluate (2.58) within
a semiclassical approximation, we must start by looking for the critical points of
the classical co-variant action

Sc(Φ,γ)= \d2x <^(VγΦ)2(x)+ λ

4(Φ2-ξ)2(x)
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on a Sobolev space

{Φ: \ d2 x(VyΦ)2 (x) < oo, Φ(x)—>]/ς, as |x|-»oo]

of sections of the soliton bundle. This is a well-posed variational problem. For a
general connection supported on 7= [yu ...,yn},n^2, this appears to be a rather
difficult problem, but for n=l, 7 = 7, it is equivalent to the following simpler
problem: Let y0 be the shortest path connecting x to y. We define the function
space

yo {μ ]/ς, as |x|->oc,

and Φ(x)->0, asx->yo} ( 2 5 9 )

We look for a function Φo e £Fyo such that

SC(ΦO)= inf SC(Φ)9

ΦeSFγo

where SC(Φ)= \d2x \~{VΦ)2{x)+ ~(Φ2 — ξ)2(x)> is the ordinary classical action.

The minimizer Φo is clearly a section of the soliton bundle E, and it turns out to
minimize Sc(Φ,γ), for ΦeΓ(E). Once we have constructed Φo, we expand S(Φ)
around Φo, for ΦeΓd(E), i.e.

S(Φ) - S(Φ0 + (5Φ) - SC(ΦO) + \Qyo{δΦ) + 0(<5Φ3), (2.60)

where δΦ e Γd{E% and Qyo is a positive quadratic form. Since x, y and 70 are fixed, Q
does not have any zero modes. Moreover, in the limit, where dist(supp^Φ, yo)-+cc,

Qyo(δΦ)-+ $d2x{(VδΦ)2(x) + m2(δΦ)2(x)}, (2.61)

with m2 = 2λξ. To one-loop order, the problem now reduces to calculating the
quotient

d e t ( β y o Γ 1 / 2 / d e t ( - z l + m 2 Γ 1 / 2 ,

and discussing the Gaussian measure with mean 0 and covariance Qyo

ι.

This concludes our discussion of soliton quantization in the λφ\ model. We
have presented rather many details, because this example, although simple, is
really quite basic. See [1, 2, 9] for more mathematical details.

It should be emphasized that the theory developed in this section has a fairly
straightforward extension to A02ί7-type theories, with p = 2,3,4,..., where φ is a
complex or an N ^ 3 component scalar field, and the Lagrangian has a discrete (but
not necessarily abelian) internal symmetry group. Examples are the four states
Potts field theory, or theories with internal Zp symmetry, p = 3,4, 5,.... These are
theories with soliton fields obeying "parastatistics." Their Euclidean Green
functions of soliton and meson fields have, in general, a more complicated
monodromy structure than those of the λφ\- or Ising field theories and define quite
interesting representations of the (pure) braid groups (see e.g. [20, 21]). This will be
discussed in more detail elsewhere.
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3. Some Comments on Chiral Bosonization and Spin Fields

In this section, we briefly review bosonization of massless, free Fermi fields in the
Euclidean formulation of quantum field theory and comment on the construction
of disorder fields and spin fields. We also indicate how the formalism can be
extended to more general Riemann surfaces. We realize that a general understand-
ing of these issues has recently been achieved in [22], but for our arguments in the
fifth section (the main section of this paper) a more down-to-earth and explicit
version of these matters is useful. We thus elaborate on the formulation of the
problem in [15].

Let ψ be a free, relativistic Dirac field on two-dimensional Minkowski space
M 2 and ψ = ψ*y0, where ψ* is the adjoint Dirac field. The Feynman propagator is
given by

(Ωo, Tlψa(x)ψβ(y)-]Ω0)=(i$ + m)aβDm(x-y), (3.1)

where Dm is the Feynman propagator of the free scalar field of mass m, $ = yRd0

+ yRdu and y% yR are the two-dimensional 2 x 2 Dirac matrices. It is convenient to
choose a Majorana representation:

y0R=-™2, yι

R = σ^ (3.2)

where σu σ2, σ3 are the usual Pauli matrices. Hence yR and yR are real matrices. We
set

y5R=y°RyR=σ3. (3.3)

When m = 0, the Dirac equation splits into equations for left- and right-moving
modes:

We set

(:;

and the Dirac equation reads

(do + d^L = 0, ( - 3 o + 31)ψΛ = 0. (3.4)

Hence we have a Majorana-Weyl representation. By Wick's theorem, the entire
field theory can be reconstructed from (3.1).

We now pass from the Minkowski to the Euclidean region by performing a
Wick rotation, t-+it. We set t = x°, with x = (x°,x1) eIE2, and, accordingly, replace
yθ by 7 ° = —ίyR*=σ2,yRbyy1=yR = σ1 and yR by y5= —ίy°yι=σ3. The Euclidean
Dirac operator is then given by

where we have set x = ix° + x\ XΞΞ —ix° + x1, d= —-, d= — .
ox ox

The Euclidean two-point function is therefore given by

<Ψ*(*)ψβ($>)> = (0 + rn)aβGn(& - y), (3.6)
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where Gm is the Green function of — A +m2. When m tends to 0, (3.6) yields

i , _ ^ _ i

~

(3.7)

From now on we shall not distinguish between the point x e E 2 and the complex
number x = ix° -fx1, anymore, and we use the notations

Ψi=

(3.8)

Then (3.7) reads

In

In
and

(3.7')

(3.9)

which follows from <ψαψα> = iψ^ψβ) = iψ^ψβ) = 0.
By applying Wick's theorem and using the anti-commutation properties of b, c,

b and c, we obtain

and

(3.10)

(3.11)

Formally, all these Green functions can be derived from the action

(3.12)

by Berezin integration, with ( ( Γ ^ H X ^ Ξ Ξ —-(X — y)~ι..
\ 2π

The theory is invariant under gauge transformations of the first kind

U(oc)ψ = e2ψ, α e [ 0 , 2 π ] ,

and, for m = 0(!), under chiral rotations

= e 2 ψ, αe[0,2πJ .
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Under these transformations, the chiral fields, b, c, b9 and c transform as follows:

(3.13)

and

The chiral densities are given by

(3.13')

(3.14)

[By (3.9), no normal ordering is necessary, since contractions between b and b, or c
and c, vanish.] Finally, the vector current / and the axial vector current jμ

5 are
given by

f = N{ψy°ψ) = ίN(bc-cb),

β=-iN{ψγ°γ5ψ)= -

where N is the usual normal (or Wick) ordering. Hence, setting A = ίA° + A1,
A= —iA° -\-Aι, we have that

and
T=N(be)=-ίJ5.

(3.15)

The following simple identities - which follow quite easily from (3.10), (3.11) -
have played an important role in guiding the way to bosonization.

(A) Using (3.14), (3.9) and then (3.10), (3.11), we get

Π n

d e t l — ί (3.16)

(B) Let A = (aij\ with aij = (xi — xj)
 x, for i φ j , απ = 0, for all i. Then, since

d e t ^ Γ = det(~^) = (-l) s i z e y l detyl, det/ί vanishes, unless size A = 2n is
even, i.e. A is a In x 2n matrix, in which case

2» n

det^= Σ signσΠ«jσo )= Σ Π < 2 j -
σ : σ(z) Φ i j = 1 pairings, p ; = 1

(3.17)

/ \
Evaluating ( f] N(bc)(xι)) by using Wick's theorem and these facts, we readily

\i=l /
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find

( Π N(bc){xiη - 0 , (3.18)

and

In \ / j \ 2n n / j \ 2

•=1 / pairings,p \ 2 π / i = 1 \Xp(2i- 1) ~~ Xp(2ί)/

Similar identities hold if N(bc) is replaced by N(bc). Moreover, by (3.9),

k * _ \ / f c \ / ί _ \
Π N{bc)(Xi) Π N{bc){yj)) = ( f] ^(bc)(^ )/ ( Π N(bc){yj)) , (3.20)
:=1 1=1 I \i=l I \j=l I

at non-coinciding arguments. At coinciding arguments, there is a contribution from
the anomaly. For example,

(N(bc)(x)N(bc)(y))= ~δ(x-y). (3.21)
4π

It is not hard to extend (3.19)—(3.21) to find the expressions for the Euclidean Green
functions of arbitrary products oϊN(bc)- and JV(5c)-currents. [This yields a proof of
Schwinger's formula

(Qxp(ijμAμ)) = expQ<<i/ί, A ~ ιdΛ}'].']

(C) One may also derive, somewhat less easily, from (3.10) and (3.11) that if F is
a monomial in bb and cc then

(3.22)
and similarly for (N(bc)F(bb,cc)}.

A proof of (3.22) will emerge from our discussion of bosonization.
The identities derived in (A)-(C) permit us to calculate the Euclidean Green

functions corresponding to arbitrary products of currents, axial-vector currents
and chiral densities. [Identities (B) are the most fundamental ones. They
extend to general Riemann surfaces.]

Next, we review the bosonization of the b-c system described above. This is a
well known and much exploited procedure. Since it will turn out to be very useful
for the material in Sects. 4 and 5, it is worthwhile to briefly present our views of
these matters.

We define the zero-mass Gaussian measure, dμ° with mean 0 and covariance
"4π( — A)~1" (see [12]) in terms of its characteristic functional:

<e«*./>>o== i dμ°(χ)ei<X'f> = e2*<f-A-lf>, (3.23)

if / is a test function whose Fourier transform, f, vanishes at the origin, and

j dμo(χ)ei<x'f> = 0, (3.24)
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if/ is real and /(0)φ0. Γln (3.23), (3.24), the sample space Sf' is chosen to be the

space of real, tempered distributions on 1R2. We shall simplify our notations by
writing simply J, instead of J .1

Heuristically

dμ°(χ) = ^o e x P [ - ^ < n> PX>] DXo, (3.25)

where Dχ is the formal Lebesgue measure and the subscript "0" indicates that χ has
zero-Dirichlet b.c. [i.e., symbolically, χ(x)->0, as |x|-»oo].

We define the Wick-ordered exponential, :expi<χ/>:, by

for some m o > 0 . Then a straightforward calculation shows that, with :eίεχ:(x)

0, if Σ ε i * °

Π cK)β? exp Γ - 2 X ε^ In

(3.27)

if Σ ε i = 0 Here c(m0) is a finite, positive constant depending on m0 > 0, and we can
i= 1

choose m0 such that c(mo) = (2π)~1. These matters are discussed in some detail in
[12].

We define a normal product, ΛΓ, of Wick-ordered exponentials by setting

9 (328)

where the second equation follows from (3.26).
Next, we define the disorder field. We start by noting that the action

S(x)=^S(Vx)2(x)d2x (3.29)

used in (3.25) is invariant under global, real shifts of χ, hence, in analogy with
Sect. 2, we define a soliton bundle as follows: We choose k points, \v^={wλ,..., wk),
in IR2 and set

M w = lR2\{w}. (3.30)

A soliton bundle is an R-bundle with non-trivial flat connection in M^, with the
additive group action of IR. Note that, since IR is not a discrete group, as Έ2 in
Sect. 2, we also need to specify a connection. Such bundles can be characterized by
representations of the fundamental group of M w with values in IR, i.e. by the
holonomy of the connection.

With each w, we associate a real flux number ΦWι = Φt such that

Σ φί=°
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Let ω be a loop in Mw and set

« Φ N = Σ ΦiΦ,wd> ( 3 3 1 )
i = 1

where n(ω, wf) is the oriented winding number of ω with respect to wt (counter-
clockwise windings are counted positively, clockwise windings negatively). Then
we denote by Eφ the soliton bundle whose connection has holonomy aφ given by
(3.31). (Remember that, since 1R acts additively, the holonomy aφ has an additive
action, as well.) The covariant derivative on Eφ is denoted by Vφ. A concrete
representation of the sections of Eφ is obtained by considering the universal cover
Mw of Mw. Denote by π the canonical projection: MW-^MW.

A section of Eφ may be identified with a function χ on M^ such that if y is a path
in Mw projecting to the loop ω in Mw, i.e. π(y) = ω, then

In this representation the covariant derivative Vφ may be identified with the
ordinary derivative on Mw, and Vφχ globally projects down to a closed 1-form X on
Mw, i.e. Vφχ = π*X, with FX = 0~on Mvv.

From now on we identify globally projectable forms with their projection, so
that we write Vφχ = X.

Since the space of sections of Eφ is an affine space modelled on the space of real
functions, every section χ can be written as the sum of a fixed section, χ0 ΞΞ α, and a
function χ. Hence, setting Vφoί = Aφ, we have that

r*X = Aφ+Vχ. (3.32)

The closed 1-form, Aφ is a flat connection on Eφ. If we extend the 1-form Aφ on Mw

to a 1-current (i.e. a ϊ-form with coefficients in the distributions) on R 2 , then its
curvature, Fφ is concentrated in the points w. In fact,

FΦ=VAΦ= £ Φ^ix-w^dx0Adx1. (3.33)
i= 1

From now on we generally omit the subscript Φ to simplify our notation.
There is a preferred choice for A: We define

k Φi

where φ(x, wf) is the angle between the ray emanating from wf and passing through
x and the ray emanating from w, parallel to the positive x^half axis.

Notice that Ah = Vah can also be written as

k

Σ sf\ V ^ V I C A — 1 / \ ζC2}/ \ J ? \ Ί II / Q O ^ \

ΐ = 1 μ, v \ OX J
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This is a 1-current in R 2 > but a smooth 1-form in Mw. Using (3.35), one
immediately verifies that Ah is harmonic on Mw i.e.

h = 0 on MΈ.

For later purposes it is worthwhile to note that if j is a 1-current satisfying

dx^dx1, (3.36)

then, by the Hodge-de Rham decomposition

(3.37)

in the space of 1-currents.
We remark that, due to Eq. (3.31), every connection A obtained by projecting

some Vφά satisfies the equation

A-Ah=V<*09 (3.38)

for some globally defined function α0.
To construct the disorder field, we now modify the action (3.29) as follows:

j 2 2 ί (V A)2d2x. (3.39)

We then define formally

° \ ^ S i A i ] DχQ. (3.40)

As in the λφl-moάd, the renormalization on the right-hand side of (3.40) is
multiplicative.

In order to make mathematical sense of (3.40), we now define the Gaussian
measure dμ% via its generating functional: Let / be a test function on 1R2, whose
Fourier transform, ?, vanishes at k — 0. Then, formally,

, (3.41)
L \V ™ / v 4π //_

where

</>£> = ί d2xf{x)g(x).

The problem with definition (3.41) is that <τ4, A} is logarithmically divergent, so
that the right-hand side of (3.41) vanishes. To see this, we choose A = Ah9 as in (3.34).
Then

(Ah9Ah)= — Y ΦfΦ. ln- . (3.42)
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Using Green's theorem and the fact that Ah is harmonic, it is easy to see that

provided χ is a single-valued function on Mw. By (3.42) we may then define

χ)ei<x f>, (3.43)

where dμ° is the zero-mass Gaussian defined in (3.32), and

<Λ,Λ>reg= I Σ W * ^ - γπ "(*•*)• (3.44)

The definition of άμ\ for more general A follows easily from (3.41), (3.43), (3.38) by
setting

<Λ A}τeg = (Ah, Ah) r e g + < Fα0, Va0) (3.45)

(the cross term 2(Ah, Va0} vanishes, since Ah is harmonic), and we obtain

^ < A h A h > > - K f , ^ . (3.46)

Let / be a test function on M w whose support is contractible. On supp / we
may choose a branch α of α, i.e. ΰ(x) is a single-valued function on supp /, with
Fα = A By (3.46)

= exp Γ - ^ ί/(Φ, vv)l exp[2π</, Δ ~ Y> + f</, άh>] . (3.47)

This result can easily be verified, heuristically, using (3.40). The right-hand side of
(3.47) is manifestly gauge-invariant, (i.e. independent of the specific choice of A,
subject to the conditions(3.38)).From (3.47) and (3.26) we obtain, for {w}n{w'} = 0,

where

idμ°A{χ) Π :e^ + Λh(w^ = G^ι\Λ;Φ9w;ε9w'), (3.48)
i= 1

xexpl — Y ε ε. lnl-—

x exp \ i ) Cj ) ^τ~ Φ® (W;, w. (3.49)

and φ<%( , Wj) is a branch of φ( ,wj), indexed by J ^ , 7 = 1, ...,fe, and {§ = (£%j)
k

j=l.
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Next, we define disorder operators, D(^fΦ,w\ and an expectation <( ))°
setting

k

π
0, if £ φ.φO, or /(O)ΦO, /real

1
exp lβπ2

?,w)J
(3.50)

Here

U(Φ9 w) exp [2π</, Λ */> -f i</, αΛ>] , otherwise.

Λ Φ.
Σ 2

If we agree to always write disorder operators to the left of functionals of/ we can
define them, formally by setting

(3.51)

with α( ) = ^— φ^( , w) + αo( ), and — ^ is the formal Radon-Nikodym derivative of
2π dμ

dμ°A with respect to dμ°.
We define a normal ordered product, *, by

D*F*D'*F'=:F*F'*D*D'=...= DD'FF'.
(3.52)

These notions and definitions permit us to develop a formal algebraic calculus with
disorder operators.

Our purpose is now to use the formalism developed above to express the
fermionic Green functions (3.10), (3.11), (3.16), (3.19), (3.22) in terms of the Gaussian
field χ and the algebra of disorder operators, D(^, Φ, w). We begin with the n-point
functions of fermionic currents, (3.18)—(3.21).

Let X = ΪX° + X1, x= —ίx° + xί

i d= — , d= — , δ#=<3, or d. From formula
ox ox

(3.23) for the characteristic functional of the zero-mass Gaussian measure, dμ°(χ% it
follows immediately that

n (δ*X)(.x}}0=0, for all «,
/

and using that

(y vv/ii^-' Xxl
Λ y \ (x-y)2'

= ———^,
x-y\ (x-y)1

\x-

(3.53)
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we obtain from (3.23) that

2n

d) = Σ Π
1

Σ Π ( γ
ρairings,p ι= 1 \Xp(2i~l) Xp{2ϊ)

= Σ Π
pairings, p i— 1

1

i - l ) X
p(2i)

(cχ(x)dχ(y))° = πδ(x - y), etc.

Comparison with (3.19H3.21) shows that we may identify

and

N{bc) with —- dχ,
2π

N(bc) with
2π

(3.54)

(3.55)

(3.56)

(3.57)

Thanks to (3.17), this identification extends to arbitrary Riemann surfaces; (we just
must use the correct Green function of —A and its δ- and (^-derivatives).

Next, we identify (3.27) with a fermionic Green function. A special case of (3.27)
is

fY"exp{-2
2π) F l

. Π
1 ^ i < j < n

2 π / n \χ -y \2

It is a well-known identity, due to Cauchy, that

(3.58)

Π
•=det

Π (χi-yj)
j l

(3.59)

From (3.58) and (3.59) we conclude that

.etz.{x).e-iχ.{y\°=(l
\j=i'6 ' Xj ' e ' y ι l \2π

Comparison with (3.16) permits us to identify

and

V"
J det

with :

with : t

( X \

Γ*:(*).

(3.60)

(3.61)
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These identities were already observed in [15]; (see also [12, 14]).
It is natural to ask whether the chiral Fermi fields b, c, Fand c can be expressed

in terms of the zero mass Bose field χ, too? It turns out that they can be expressed in
terms of χ and the disorder operators, Ώ(β, Φ, w).

To perform our calculations we choose d = dh as in (3.34), with

(3.62)
χ i = 2π, Φ y ι = - 2 π , ί = l , . . . , n . '

We now note that, on given branches of the functions φ( ,x) and φ(-,y), we have
that

φ(x, y) — φ(y, x) -f (2m + 1 )π, meΈ. (3.63)

We define a branch, J*o, of φ(>, x) by setting φ(w, x) equal to the angle between the
half line through w and x which starts at x and the half line through x parallel to the
positive 1-axis. Then

. . ' . . ' .r 0 '> (3.64)
φ(x, y) — φ(y, x) — π it y <x .J

Suppose now that

By formulas (3.48) and (3.50),

In Γ )C_ _ X_

l im f ? π W 2 / TΊ * p 2 (x -4- p)Π(^ ?ττ x\ P 2 ί i; 4- p)D(tf$ ?ττ

Γ 1 1 ί 1 Γ 1
T t/(Φ, (x, j)) exp < — T Σ M n r + l n τ~

16π " J ( ι^i<j^n\_ \Xi — Xj\ \y

n 1 1 Γ
•2 Σ

- Σ (<Kχ»y})+ϊ)\ (3-65)

Since we have set ΦXi = 2π = — Φy., i = 1,..., n,

U(Φ,(χ,y))=8π2ί Σ Γ l n r - ^ — ί + l n r ^ — r l - Σ l n r ^ ~ τ ) ' (3 6 6 )

by definition (3.44) of U(Φ, w). Hence the first and the second factor on the right-
hand side of (3.65) are equal, and their product is given by

Π \χι-χj\\yj-yι\
^ ^ . (3.67)

Π \χt-yj\
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Clearly the product of (3.67) and the third exponential on the right-hand side of
(3.65) is equal to

e ιn2λli^JΛiL = ( - i ) " d e t ( — L (3.68)

by Cauchy's identity (3.59).
Comparison with (3.11) finally proves that

/ In Γ X ^

l im(2π)~" / 2 ( f ] * : e 2 :(x t + ε)D(08o,2π,xί):e ' 2 : ( : M
ε \ 0 \ i = 1

= ( ~ J~~) d e t i — " — ) = { Π b(χ/)c(>;/)) = ( Π ^ ) Π Φi)) 5 (3.69)

provided xJ < ... < x° < y° < ... < y®.
More generally,

= \T\jΠb(x,)cb>j)\), (3.70)

where T is Euclidean time-ordering, i.e. T permutes the factors (the ft's and c's) in
the product in such a way that the 0-(time-)components of their arguments are in
an increasing order and multiplies by the sign of the permutation. Passing from ^ 0

to another branch, &, changes the sign of the left-hand side of (3.70), and thus
corresponds to replacing T by some other ordering.

We conclude that we may identify

b(x) with :e2:(x)D( ,2π,x)
and K } } V (3.71)

- i -

c(x) with :e *2 : (x)D( , - 2π, x).

Similarly, one shows that
.x

and
b(x) corresponds to : e 2 : (x)D(°, — 2π, x)

.x
(3.72)

c(x) corresponds to :e 2 : (x)i)( , 2π, x).

Using (3.28) and (3.44), (3.46), it is easy to show that

lim :e 2 :{y)D{; -2π,y):e2:(x)D( , 2 π , x ) - ^ : e i χ : ( x ) , (3.73)
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for some phase θ depending on the direction in which y tends to x. [Using the
notion of normal ordering introduced in (3.52), it follows that

lim N[: e 2 :()>)£>(•, - 2 π , y ) : e 2 :(x)D( ,2π,x)J = ± i : e1'*:(x).

Similarly,

- i— - / -
2 ()D( 2 ) 2

i /

lim e 2 :(j;)D( , - 2 π , x ) : e 2 :(x)D( ,2π,x) = e " ί θ : e ~ ^ : ( x ) . (3.74)

Formulas (3.73) and (3.74) reproduce (3.61).
We define spin- and disorder fields by

μ-(x) = D( , + 2 π , x ) , μ(x) = %μ (x) -f μ (x)).

One now easily verifies that σ and μ, σ and ip, and μ and ip all satisfy the "dual
algebra" (2.44). Our formalism permits us to compute arbitrary correlation
(Euclidean Green) functions of spin- and disorder fields.

The fields σ and μ are the spin- and disorder fields of a theory of free, massless
Dirac fermions. It is well known that the two-dimensional Ising model is equivalent
to a theory of free Majorana fermions. In order to pass from Dirac- to Majorana
fermions, partition- and spin-/disorder correlation functions must be factorized:
Let f be the co variant Dirac operator for a connection which is a sum of an abelian
gauge field, A, whose curvature is concentrated in points (x l 5..., x2n) and a chiral
gauge field, A5, whose curvature is concentrated in the points (yu . . . j 2 m ) . Then,
for a proper choice of A and A5,

\ Γ At^iίύ JLwλ~λ

(3.76)

For m = 0, this is an easy consequence of our formalism. The passage from Dirac-
to Majorana-fermions consists in taking the square root of (3.76). This remark,
together with (3.75), permits us to explicitly calculate the correlation functions of
the critical Ising model, (m = 0). This provides a basis to the approach in [23].

One natural problem is to extend our formalism to Riemann surfaces of
arbitrary genus. This problem has been solved in a somewhat abstract and indirect
way in [22]. It might be useful to have a more concrete approach to these matters,

using functional integration. The identification of N(bc) with — dχ and of N(bc)

l - . . . . 2 π

with — dχ, where / is a Gaussian random field over the Riemann surface with
2π

covariance given by the Green function of the Laplacian, is valid in general.
What one needs, in addition, is an analogue of Cauchy's identity (3.59) for
arbitrary Riemann surfaces.

Our formalism is very useful to explicitly describe some representations of the
Virasoro algebra, for c ^ l , and of current (Kac-Moody) algebra in terms of
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functional integration over free, massless boson- and parafermion fields. These
fields are "non-local" in the sense that they satisfy intermediate statistics, and their
Euclidean Green functions therefore have non-trivial monodromy which yields
non-trivial representations of the pure braid groups, (the Burau representations).
But these matters go beyond the scope of the present paper.

Finally, our formalism can be used to recover the standard results concerning
the Thirring model in a purely Euclidean setting. We mention this only because it
will be useful in the next two sections. The action of the massless Thirring model is
given by

S{ψ9 ψ) = J d2x{(ψ$ψ) (x) + κjμ(x)f(x)},

with

This model is bosonized by substituting in our formulas dμ°(χ) by dμκ(χ), where dμκ

is the Gaussian measure with mean 0 and covariance

1 , K

This can be justified easily by using Eqs. (3.15), (3.57); (see also [14, 15] and refs.

given there). By rescaling χ, χ—>βχ, with β= il 1 , we can express the

theory in terms of dμ°, :e±iβχ:, etc. ^ % '

4. Solitons in the Two-Dimensional Sine-Gordon Theory

As an application of the formalism in Sect. 3, we now sketch the quantization of
solitons in the two-dimensional sine-Gordon theory from the Euclidean point of
view. This serves to elaborate on the Bose-Fermi equivalence already encountered
in the last two sections and introduce some ideas that will be useful in Sect. 5.

The Euclidean field of the sine-Gordon model is denoted by χ. The Euclidean
action is given by

:(Vχ):(x) + λ:cosβχ:(x^ (4.1)

where Wick order,: —:, is defined with respect to the free field Gaussian measure
dμ°(χ) with mean 0 and covariance 4π( — Λ + 1)~ ι; λ is a real parameter and β>0.
(We shall constrain β to be :gl.) The vacuum sector of this model can be
reconstructed from the functional measure

dμ(χ)=~e~sωDχ0, (4.2)

where Dχ0 is a formal Lebesgue measure defined as in (3.25).
The measure dμ has been constructed rigorously in [12], for all β^ί. The

methods of [13] can presumably be adapted to prove that the theory has a positive
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mass gap, at least for β small enough. For /?= 1, the theory is equivalent to free,
massive Dirac fermions, while, for β φ l , it is equivalent to the massive Thirring
model, (see end of Sect. 3). The renormalization theory, for 1 < β < 2, is discussed in
[16], and, for β > 2, the theory is expected to be equivalent to a free, massless Bose
field. For the lattice theory this is the celebrated Kosterlitz-Thouless phase of the
two-dimensional Coulomb gas which has been exhibited rigorously in [17]. We
limit our discussion to the range β ?g 1, as this suffices for the applications in Sect. 5.

The action S(χ) defined in (4.1) has a discrete symmetry group

Z (x)~>χ(x)+yn, neZ. (4.3)

This symmetry is always spontaneously broken: For zero-Dirichlet b.c.

(Ω,χΩ)=\dμ(χ)χ(x) = O. (4.4)

Had we imposed zero-Dirichlet b.c. on the field χ(x) — n, neΈ, I i.e., formally,

o \ P \
2π \

χ(x)-+ ~^-n, as |x|-»oo I, we would have found

[Here χ is the relativistic quantum field corresponding to χ.] Thus, the theory has a
large vacuum degeneracy labelled by the integers, but, of course, all the vacuum
sectors are isomorphic, (identical dynamics). It is therefore appropriate to view
: eiβχ{x): and (Vχ) (x) as the basic fields of the theory which do not depend on the
choice of vacuum, or b.c.

By analogy with the situation in the λφ\-moάz\ the vacuum degeneracy
described above ought to give rise to soliton sectors the construction of which
should be similar to that in λφ\ and will now be outlined.

The soliton bundle for the sine-Gordon model can be identified with some
soliton bundle Eφ as defined in the previous section. The requirement on Eφ is that
the action density S(χ) (x) obtained by substituting χ by a section χ of Eφ in (4.1) and
V by the covariant derivative Pφ, is globally projectable.

The term cosβχ is globally projectable iff χ is a section of a bundle Eφ

characterized by the flux numbers

Φ^Φ^jΈ. (4.5)

This immediately follows from the fact that the gauge transformation

() ()j (4.6)

leaves cosβχ invariant.
To construct soliton Green functions for the sine-Gordon model we thus

choose a function α on Mw defining a section of Eφ. with Φ as in (4.5), and define a
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covariant action by

S(χ)= j d2x\^:(Vφχ)2:(x)-λ:cosβχ:(x)
M W [on

oπ

We then formally define

dμ s ω= Π U " S ( x a ) l OZo (4.8)
L^ Jren

A mathematical definition of (4.8) is achieved by taking the limit, as Λ/ΊR2, of the
characteristic functionals of the measures

w h e r e

and
ZA=ldμ°{χ)ev*M, (α = 0).

The measure dμ°A is the one constructed in (3.46), Sect. 3, with Φ satisfying (4.5). The
limiting measure, dμ%(χ), as A / R 2 , will also be written as

^ev*iχ)dμ%ί). (4.9)

Gauge-invariant mixed meson-soliton Green functions of the sine-Gordon theory
are now defined by

= l | ^ ω Π : e " j ί ( z + a ) : ( z ^ ( χ ) , (4.10)

w h e r e β f = ± 1 , ΐ = l , . . . , n , a n d α d e f i n e s a s e c t i o n of £ φ , Φ = Φ ^ , w i t h w = ( x l 5 . . . , x π ,

Φ l

As the notation on the left-hand side of (4.10) indicates, the functional integral
on the right-hand side of (4.10) only depends on our choice of w and {ΦXι, ΦjJ"= i,
but not on an explicit choice of α. To see this, let α0 be a globally defined function
on Mw. From its definition (3.46) it follows easily that

If, on the right-hand side of (4.10), we replace α by α + αθ5 use (4.11) and then change
variables, χ' = χ + α0, under the integral our claim follows.
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In particular, we can consider the limiting case obtained by choosing α = ah and

uo = *V*Δ'1j, (4.12)

n

where -—-j is an integer current satisfying
2π

Then by (3.37)

(4.13)

and

Vah+ao=Vo=V9 : e ί e ^ + «H+«o) : = :eiεβχ.9 { 4 Λ 5 )

so that the only dependence on the connection is now in dμ®. Furthermore, by
performing a gauge transformation

(4.16)

where B is an arbitrary region in Mw and ΠEΈ,WQ change j into a new 1-current/

such that — is an integer current and / still satisfies (4.13). The construction of
2π

Green functions with dμ® is the strict continuum analogue of the lattice
construction described in [2].

We remark that the couple of forms (Ah, α 0

Eells 1 -form in M^ [18].
As shown in Sect. 3,

and

, ) defines an Allendoerfer-

(4.17)

16π2

fφ/
detί-

where w and Φ are as in (4.10).
It is also easy to check that

1

Z Π :

see [12] for the relevant calculations. Hence, by (4.17-4.19)

, (4-18)

Λ ) , (4-19)

det εm). (4.20)

Results in [12] and bound (4.20) prove that the Green functions G^π'n'm) are well
defined distributions for βrgl and that G ("'n ' 0 ) satisfies cluster properties.
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It is not hard to convince oneself that the Green functions {G^'"'m} satisfy the
Osterwalder-Schrader axioms; (O.S. positivity follows, using the measure dμ®
defined in (4.14), for suitable choices of j). The local soliton fields s(x), s(y)
reconstructed from {G^'"'m)} are Bose fields, since

G (n,n,m)(γ v y V ' 7 P 7 P )

s \ x x , . . . , x n , y ι , . . . , / „ , z 1 , ε ι , . . . , z m , ε m )

is totally symmetric under exchanging the x-arguments and the y-arguments
among themselves, and its phase depends continuously on x, y and z at non-
coinciding arguments.

But, as follows from the discussion in Sect. 3, there are other soliton fields, b(xf),
c(yi) (and b, c) which are chiral Dirac Fermi fields. They can be reconstructed from
the following Green functions: We choose α as in (4.10).

It is mathematically consistent to set

Then the fermionic Green functions are defined by

Γ<{n,n,m)ί γ v ' 7 P 7 P

us {xl9 ...,xn,yu ...9yn, zubu ...,zm9εm

x Π :ei^+*:(zμμ%γ). (4.21)
/= i

[To verify Fermi statistics of the fields b and c reconstructed from (4.21), it is
convenient to work with dμ®. The argument is then very similar to that used to
verify the dual algebra (2.44) in the λφ^-modd; see (2.50).]

It is not hard to show that the fields s and b carry topological charge 6 = 1, (i.e.
[6 5

 5 1 = [βs fr] = 1> while s and c carry topological charge Q = — \. Here

where χ is the quantum field corresponding to the Euclidean field χ. The proofs are
very similar to that in Sect. 2.5, (2.51)—(2.55). One sees easily that, in the sine-
Gordon model, the topological charge is additive. There are physical states of
arbitrary charge qeZ.

Finally, we remark that, for β<l small enough, it appears quite straightfor-
ward, though technically involved, to establish exponential cluster decomposition
properties of the Green functions {G("'n'm)}, or {G("'n'm)}, and to prove that the field
: sinβχ: couples the vacuum to a stable, neutral one-particle state, while s, b and s, c
couple the vacuum to stable one-particle states of charge ± 1 . (In the lattice
approximation, this can be verified by applying the methods of [2, 19].)

5. Solitons with Fractional Fermion Number

In this section we combine the techniques of Sects. 2-4 to discuss a class of two-
dimensional interacting boson-fermion models, including the pseudoscalar
Yukawa model (with Thirring term).
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The Euclidean fields of the model are the (Dirac) fermion fields ψ, ψ and the real
Bose field Φ. The action is given by

SB(Φ)=$l~:(VΦ)2:(x)+~:(Φ2-ξ)2:(x)\d2x,

SF(Φ, ψ,ψ)=S {: ψfo: (x) - Nlψ(mf + igy5Φ)ψ-] (x) + {κ]f) (x)} d2x, (5.1)

where the last term is the Thirring term; (see end of Sect. 3).
A rigorous construction of the Q.F.T. corresponding to the formal action (5.1),

with κ = 0, has been achieved in [24, 25].
Jackiw and Rebbi [26] considered the model with mf = 0 in the approximation

where Φ is treated as an external field. This serves as a starting point for a W.K.B.
expansion.

They found that the Dirac equation for the field ψ in the background of a static
kink of the φ\ model exhibits a normalizable zero mode, φ0. (In this context, the
existence of ψ0 was later derived from the index theorem [27].) On the basis of the
W.K.B. approximation, they argued that the one-soliton state of the quantum φ\
model gives rise, in the quantum field theory described by (5.1), to a doubly
degenerate soliton state, corresponding to ψ0 being occupied or empty. A
computation of the fermion number, nf, of such solition states, based on a mode
expansion of ψ, yields the remarkable result

"/=+i-i. (5.2)

Subsequently, the model was studied also for m^ + 0, with the same methods [28].
As a result an argument was put forward supporting the existence of soliton states
with fermion number given by

n f=±π-1arctan(^). (5.3)

There are analogues of all these models in condensed matter physics with similar
features. In particular, a model with solitons of fermion number ±_\ has been
considered in connection with polyacetylene [29].

In this section we rigorously prove that, for a suitable range of parameters the
fully quantized theory possesses soliton sectors which are eigenspaces of the
fermion number operator corresponding to fractional eigenvalues. However, for
mjφO, quantum corrections have to be added to the semi-classical result (5.3).
These corrections disappear by symmetry, for mf = 0, and we recover (5.2).

We also prove (in the lattice approximation) that the soliton field operator
maps the vacuum of the theory to a stable massive one-particle state; i.e. the Q.F.T.
described by (5.1) really possesses particles of fractional fermion number.

To construct the Euclidean disorder field of the model from which a local
soliton field operator can be reconstructed we need to know the symmetries of the
action (5.1). They are most clearly displayed if we rewrite the fermion action, SF, in
terms of chiral fermi fields, b, b, c, c, as in Sect. 3.

Spφ, b, c, c,Φ)=l d2x{bdc + Bdc-mfN(bb + cc)

~]2}. (5.4)
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The total action is invariant under the transformation

Φ-+ — Φ, fr<->c, b<-»c. (5.5)

The model can be bosonized using the rules of Sect. 3. Denoting by χ a real Bose
field used in the bosonization of (5.4), the bosonized action reads

SF=$ί~π:(Vχ)2:(x)-mf:cosβχ:(x)-g:ήnβχ:(x)'Φ(x)\d2x, (5.6)

This action displays a Z2-symmetry which is the bosonized version of the
transformation (5.5):

Φ-+-Φ, χ-*-χ, (5.7)

and a ^-symmetry, corresponding to the transformation

Φ-^Φ, χ-*χ+γn, neZ. (5.8)

The classical equations of motion have two minimizing solutions:

φc

= ±]/s j / c = " / 5 " a r c ^ a n ( — " ) • (5-9)

The expression for χc is easily obtained by first setting φ = φc and, then minimizing
the action. We obtain

-^[-mfcosβχ-gsinβχφc] = 0,

hence q(u
t a n ( j 8 χ c ) = ^ .

mf

From the functional integrals with zero Dirichlet b.c. for φ — φc and χ — χc at
infinity {φc= ±\/~ζ) we can reconstruct two physical vacua, Ω±. By a Peierls
argument [13], or by means of a combined contour-cluster expansion [25], one
can prove that the two vacuum states <Ώ + , {-)Ω± > are distinct, for g large enough,
mf and/or λ large, and the symmetry (5.7) (equivalent to (5.5)) is spontaneously
broken. This gives rise to a non-trivial superselection structure in the form of
soliton (kink- and antikink-)sectors. The construction and analysis of these sectors
is the main theme of this section.

The additive symmetry (5.8) is always spontaneously broken, just as in the sine-
Gordon model, and the corresponding soliton sectors can be constructed as in
Sect. 4. One version of the local soliton fields arising in this construction is simply
the bosonized form of the Fermi fields ψ, ψ of the original model.

More interesting are the soliton sectors and soliton fields arising from the
breaking of the symmetry (5.5) on which we focus our attention in the following.
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First we outline their construction in fermionic language, subsequently we
consider the same problem in bosonic language. Let Eψ E^ be two twisted
Euclidean spinor bundles [30] with base space

and structure group TL2. We define a flat connection on these bundles in terms of its
holonomy: If ω is a loop in Mw then, in the chiral basis described in Sect. 3, the
holonomy, U(ω), is given by

J (5.10)

where n(ω, wf) is the winding number of ω with respect to wf; U(ω) is defined by left

action on the sections of £ φ , locally of the form ψ = I _ I, and by right action on the

sections of Eφ which are locally of the form ψ = (b, c).
Let EΦ denote the soliton bundle associated with the scalar field Φ which we

introduced in Sect. 2.
The soliton bundle for the pseudoscalar Yukawa model is now defined as the

fiber product of Eφ, Eψ and Eψ i.e. as the bundle over M w whose fiber is the
cartesian product of the fibers of Eφ, Eψ and £ φ . The point is now that the covariant
action density of the pseudoscalar Yukawa model (see (5.1)) is a single-valued
function on Mw, for arbitrary sections ψ, ψ and Φ of the soliton bundle defined
above. This is a consequence of the symmetry (5.5). If fc is even then there are plenty
of sections of finite total action.

It is now clear how to construct soliton Green functions directly in the
fermionic language. We omit a detailed analysis and, instead, turn to our analysis
of the soliton sectors of the bosonίzed pseudoscalar Yukawa model (although the
fermionic language might perhaps be more natural).

Let Eχ be a soliton bundle, with sections denoted by χ( ), which is an
isomorphic copy of the bundle Eφ constructed in Sect. 2. Then a soliton bundle for
the bosonized pseudoscalar Yukawa model is the fiber product of Eφ and Eχ, with
base space M ; C Ξ I R 2 \ { X 1 , ...,χ2 l I}. Let y be a family of paths in Mx with dy
= {xl5 ...,x2ιj Let dμ® be the Gaussian measure with mean 0 and covariance
( - J y + 1)" 1 constructed in Sect. 2; see Eqs. (2.36)-(2.39).

Then the mixed order-disorder correlation functions for the bosonized
pseudoscalar Yukawa model are defined by

where

V±(Φ,χ)= \d2x\^.(Φ2-ξ)2:(x)-ί-:Φ2:(x)-i~:χ2:(x)

— mf: cos βχ: (x) — g: sin βχ: (x)Φ(x)
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with + or — b.c. at infinity: [see remark after (5.9)]. The dots in (5.11) stand for
additional functional of χ, like :sin/?χy:, dμχr We note that dμ°/{Φ)dμ°; (χ) is a
Gaussian measure on a space of section distributions of the soliton bundle over M x

for the bosonized pseudoscalar Yukawa model.
Following the strategy described in Sect. 2 (see also [2, 9]) one can prove that

the Green functions Gs + satisfy Osterwalder-Schrader axioms. The property most
difficult to establish is clustering. A proof of clustering would require a "cluster
expansion" combining the expansions in [5b, 13,9]. It would converge for small β
and λ and ξ = O{λ~ι). Alternatively, an expansion, like the one in [25], could be
applied directly to the fermionic model and would converge for K = 0 and nip g
large. For the lattice approximation to the bosonized pseudo-scalar Yukawa
model, clustering and many other properties are easily established with the help of
a "Combined Low- and High-Temperature Expansion" [2, 31]. (Of course, this
expansion which is quite crude does not converge uniformly in the lattice spacing.)
Some basic steps of that expansion are outlined in the appendix.

The techniques used to prove clustering show that all correlation functions
with an odd number of x-arguments, obtained by removing x2n to infinity, vanish,
and the Hubert space of physical states, J^, obtained via O.S. reconstruction (with
+ or — b.c.) decomposes into two orthogonal sectors: J f + θ - ^ , J f _ 0 J ^ ,
respectively. The soliton field operators, reconstructed from the Green functions
(5.11), map J^+ onto J^s and Jf_ to ^ .

We now compute the fermion number of the soliton states. The matrix
elements of the fermion number operator, QF, are given by

<F\QF\G)= (ΘF\ J f{x*,xι)dxι\Gj , (5.12)

where |F> is a vector in j f and F the corresponding function of the fields Φ, ψ, ψ in
# + [see Sect. 2, Eq. (2.49)] and j°(x°, x1) is the 0-component of the fermion
current.

In the presence of a singular external Z2-gauge field [gauging the symmetry
(5.7)] with support in y, the (gauge-invariant) fermion current is defined by

j?/{x)= lim

where Uy(ΓXfε) denotes the parallel transport along the curve Γx ε joining x — ε to
x 4- ε which is given, in the chiral basis, by

1 0,

Here n(ΓXE,y) denotes the number of intersections of y and Γx ε

Using the techniques of Sect. 3, we may identify
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Hence, by following the steps which lead from (2.51) to (2.55), we immediately
obtain:

<e-°Hs(09x
1)F\QFe-e'Hs(09y')\Gy

where |F>, | G > e , r + .
(-)

Using the fact that linear combinations of states of the from e~εHs(0,x1)\Fy
are dense in jtίf s, this shows that Jίfs is an eigenspace of QF corresponding to

(s) (s)

the eigenvalue

<χ} n s = ^ < χ > . (5.14)

A semiclassical expansion of the form developed in [5 b, 13] could be used to show

that if λξ is large, β is small and β2g\/ίξ is large,

= ± -̂  arctan I —^— + quantum corrections. (5.15)
p \mf )

This is essentially the result of [28]. To be precise, one can most probably prove

rigorously, using the methods of [5b, 13], that the map from parameter space,

(λ, ξ, β, g, rrif), to — <χ> + is smooth and non-constant, with derivatives given by

π
perturbation theory around the semiclassical result.

In conclusion, in the broken symmetry phase the model (5.1) exhibits soliton
states with fractional fermion number depending continuously on the bare
parameters of the model (in a certain region of bare parameters). The particle
structure of the model can be analyzed, too, at least within the lattice approxima-
tion to the bosonized model: Combining the methods sketched in the Appendix
with those in [19] one can prove that the soliton field, s(x), couples the vacuum Ω +

to a stable, massive one-particle state which carries fractional fermion number.
Our findings can be summarized as follows:
1) In order to construct the soliton sectors of the λφ\ model (see Sect. 2) in

terms of Euclidean region functional integrals, we must twist the Euclidean
Φ-fields, as described in Sect. 2. The resulting states in the soliton sectors are
eigenstates of the topological charge,

β= V^φMx 0,* 1)^ 1,
— 00

with eigenvalue ±2<φ> + .
2) In the bosonized form of the pseudo-scalar Yukawa model, we must not only

twist the Φ-field but also the χ-field, in order to construct soliton Green functions.
This is required by the symmetry (5.7). The states reconstructed from the soliton
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Green functions (5.11) are eigenstates of the fermion number operator QF with

eigenvalue ± — <χ> + .
π

From such states we obtain physical states of fermion number ± — <χ>+ +n,
π

neΈ,by applying products of ψ- and/or ψ fields. The bosonized form of the ψ- and
ψ fields of the bosonized pseudo-scalar Yukawa model is obtained by the
construction described for the sine-Gordon model in Sect. 4. [The structure of
these fields is connected with the symmetry (5.8) of the bosonized action which is
always spontaneously broken.]

The superselection structure of the pseudo-scalar Yukawa model with mf φ 0 is
thus described by a direct sum of superselection sectors, J ^ n, i= +, —, s, s ,neZ,
the vacuum sectors corresponding to J f+ 0, and the sectors containing charged
one particle states to J^±t±1, ^ 0 > ^Co-

in the limit where mf \ 0,
nJ - 4 , and rfF-+—\, (5.16)

(without any quantum corrections). This result is not only exact but rigorous and
agrees with the one in [26] which was based on a semiclassical analysis. The reason
why there are no quantum corrections in (5.16) is that when mf = 0 the model
exhibits an additional symmetry:

φ _ * _ φ ; χ-+χ+ - (5.17)

from which it follows that

^(χy=± + n, neZ. (5.18)

π
3) One might ask whether the new symmetry (5.17) will give rise to additional

soliton sectors which could not be obtained by the previous construction? We
shall argue that this is actually not the case: The soliton sectors constructed above
and the sectors constructed on the basis of the symmetry (5.17) - the construction
combines the methods of Sect. 2 for Φ with the methods of Sects. 3, 4 for χ - are
expected to be equivalent, and this can actually be proven quite easily in the lattice
approximation. Roughly speaking, the argument for this runs as follows: Let Jί?σ,
Jf& denote the soliton sectors and σ, σ the soliton fields reconstructed from soliton
Green functions whose construction is based on soliton bundles with structure
group given by (5.17). We propose to show that some states in Jfσ have non-
vanishing scalar product with some states in J>fs; (this is the basic step in proving
that 3ήfσ = 3tifs). More precisely, we shall argue that

where y° and x° are positive. The scalar product on the left-hand side of (5.19) can
be extracted from a four-point soliton Green function, G(ry, r(y + a), x, x + a),
where α = (0, a1), in the limit where α ^ o o . The symbol r denotes reflection in the
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time-zero plane. According to our constructions in Sects. 2-4,

(e-y°Hσ(0,y1)Ω + ,e-χθHs{0,xι)Ω + y= lim G(ry,r(y + a\x9x + a)
1

(5.20)

where yι and y2 are paths with <?}>! = {x, x + α}, dy2 = {ry, r(y + a)}, and j 2 is a
current of unit strength supported on γ2. By gauge invariance, we can choose yx

and y2 to coincide except in compact discs around {x, ry} and around {x + a,
r(y + a)}, denoted by D, Όω respectively. Hence the support of the term

(Vφ)2(x)-(VnQy2φ)2(x)

is contained in DuDa. Moreover, within the semi-classical approximation

π
χ = χc + quantum corr. = — + quantum corr.,

and

for all x in the complement of DκjDa. Therefore, to leading order in the
semiclassical expansion,

vanishes, except for xeD^jDa. These observations permit us to show that, to
leading order in a semi-classical expansion, the right-hand side of (5.20) is non-
zero. Quantum corrections are not expected to change this conclusion, (and this
could actually be proven for the lattice model). Hence we expect that the scalar
product

is non-zero. A slight improvement of this argument would then show that Jfσ = 3tfs.
Similarly, one can argue that J ^ = #CV

4) It is easy to show that the sector ^ n + 1 and ffls n, defined in remark 2),
above (5.16), coincide. Let \s, n>, \s, n} denote the states obtained by applying one
field s( ) and n fields ψ( ), for n > 0, — n fields ψ( ), for n < 0, to the vacuum Ω ±. One
verifies easily that

Since by construction |s, 0> and \s, 0> are degenerate in energy, it follows that |s, 1 >
and 15,0) are degenerate, too. The states |s, 0) and \s, i) correspond to the ones
discussed by Jackiw and Rebbi [26].
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5) Our construction of solitons with fractional fermion numbers can easily be
generalized from theories with a Z2-symmetry, like the pseudo-scalar Yukawa
model, to theories with a Zp-symmetry, for p = 3,4,5,.... For example, we may
consider a theory of coupled Fermi fields ψ, ψ and a complex scalar field Φ with a
self-interaction P(Φ), where P is invariant under the transformation

i

PΦ, q=ί,...,p — ί.

The coupling between xp, ψ and φ is given by the term

which, after bosonization, is given by

:eiχ:Φ+ :e~iχ:Φ*.

In this model we set mf = 0. The symmetry of the model is then given by

_ q

φ^e2mpφ, χ->χ-2π-, (5.22)
P

q = 0,...,p — l. For a suitable choice of the parameters, this symmetry is
spontaneously broken. Using the tools developed in Sects. 2-4, one can construct
soliton sectors which are eigenspaces of the fermion number operator with

eigenvalue - , # = 1,...,/? — 1. The soliton field, 5, of this model and the field φ satisfy
P

the dual algebra

Hence the composite field (s • φ) (x) is a para-fermion field. All these claims are
verified easily.

Models of the kind described here appear to be of interest in one-dimensional
condensed matter physics [29].

Appendix. A C.L.H.T. Expansion for the Bosonized Yukawa Model with Thirring
Term in the Lattice Approximation

In this appendix, we sketch some steps of a cluster expansion for the lattice
approximation of the model (5.1) in the bosonized version.

Using this expansion, existence of soliton sectors and particle properties of the
one-soliton states can be established easily, following [2, 31].

The lattice approximation of the disorder correlation functions

GS f ±(x l 5...,x2«) E s e e Eq. (5.11)] is given by
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where ω^ is a Z2 lattice gauge field with suipip(dω) = {xi}flu Z = Z(ω = l) and

> 2 2 <ϋ>

Σm/cosχί-g/Φ/sinχi+ -(Φf-1) 2 I, (A.I)

and we impose 0 b.c. on χ — χc, Φ — Φc at infinity. In (A.I) we have rescaled the fields
Φ, χ as

Φ-+--Φ, χ-+βχ,

and we set ^

We now decompose the basic fields χ and Φ as follows:

where , τI e [ — χc, — χc-f 2π], ^ ^ [ 0 , -f oo), and we set

In terms of these new variables Z(ω) reads

ρi Σ Σ

/ /?
x e x P - I Σ W

\ij Z

ί - v^yfij) + χc(l - v<ij}

where we have used

χc = arctan

The Combined Low and High Temperature expansion is now constructed by
treating n and v with low temperature methods and τ, ρ — 1 with high tempera-
ture methods (see [2, 31]).
The expansion converges for

In
β In

I/A'
large and βr large enough.

In particular, it converges even for m / = 0, provided j8; is large enough.
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