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Abstract. A 3 -f 1 formulation of complex Einstein's equation is first obtained
on a real 4-manifold M, topologically Σ x R, where Σ is an arbitrary 3-man-
ifold. The resulting constraint and evolution equations are then simplified
by using variables that capture the (anti-) self dual part of the 4-dimensional
Weyl curvature. As a result, to obtain a vacuum self-dual solution, one has just
to solve one constraint and one "evolution" equation on a field of triads on Σ:

DivVία = 0 and ^-£ijk[Fj? Fk]
α, with i = l,2,3,

where Div denotes divergence with respect to a fixed, non-dynamical volume
element. If the triad is real, the resulting self-dual metric is real and positive
definite. This characterization of self-dual solutions in terms of triads appears
to be particularly well suited for analysing the issues of exact integrability of the
(anti-) self-dual Einstein system. Finally, although the use of a 3 +1 decompo-
sition seems artificial from a strict mathematical viewpoint, as David C.
Robinson has recently shown, the resulting triad description is closely related
to the hyperkahler geometry that (anti-) self-dual vacuum solutions naturally
admit.

I. Introduction

Over the past decade, considerable work has been done on half-flat1 solutions to
Einstein equations both in the Euclidean and the complex regimes. It turns out that
the half-flatness requirement simplifies Einstein's equation significantly, whence it
is possible to obtain several interesting results. The most powerful ones are the
following. First, using three different approaches, Newman, Penrose, and Pleban-

1 A 4-metric gab will be said to be half-flat if its Riemann tensor is proportional to its dual. Note
that, due to the Bianchi identity 4^[flf,C]d = 0, a half-flat metric is necessarily Ricci flat. Because the
square of the duality operator equals +1 if gab is Euclidean, and — 1 if it is Lorentzian, a real metric
can be half-flat only if it has Euclidean signature. In this case, we shall say that the metric is self
dual if its Riemann tensor equals its dual and anti-self dual if it equals minus its dual
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ski have given algorithms to find the "general" half-flat solution. (For a review, see,
e.g., [1].) The task of finding such an algorithm in the non half-flat context, on the
other hand, remains hopelessly difficult in spite of the fact that the problem has
drawn attention over several decades. The second striking result is on the
asymptotic behavior of these solutions: Using their //-space techniques, Newman
and collaborators have shown that, in the exact theory, the characteristic data of a
self-dual solution at past null infinity are related to those at future null infinity in
exactly the same way as in the linearized theory. Thus, in spite of non-linearities,
the classical S-matrix is trivial in the half-flat case.

These and other results have led to certain conjectures concerning the
mathematical structure and the physical relevance of these solutions. The results
on trivial scattering suggest, for example, that the half-flat Einstein system may be
exactly integrable. If this turns out to the case, it would be of considerable interest
to find the associated infinite number of conservation laws and to attempt non-
perturbative quantization of the resulting Hamiltonian framework. Such a
quantum theory would provide a rare example of an exactly soluble model in
4-dimensional quantum field theory. Moreover, it may provide useful hints for full
quantum gravity. In particular, it could shed light on the viability of Penrose's
suggestion [3] that (positive frequency) half-flat solutions should be regarded as
the quantum mechanical wave functions of non-linear- or "dressed"-gravitons.

Although these ideas are attractive, they have not been pursued vigorously
because the techniques that have been used to construct and analyze the properties
of these solutions are very different from those needed to test exact integrability
and to carry out quantization. For example, although the //-space and twistor
methods developed by Newman and Penrose are powerful in many respects, they
are not geared to obtain a Hamiltonian description of half-flat fields because they
involve constructions which are essentially non-local in terms of space-time
variables.

The purpose of this paper is to present an alternate treatment of half-flat
metrics; a treatment that is closer in spirit to the traditional Hamiltonian
formulation of field theories. It is hoped that this analysis will serve as a useful
platform from which one can explore the field theoretical properties of the half-flat
system using conventional methods. In addition, since the final picture that
emerges from our approach emphasizes the hyperkahler structures that naturally
exist on half-flat space-times, the approach may have purely mathematical
applications, e.g., in finding suitable generalizations of the hyperkahler structures
to higher dimensions and/or to quaternionic manifolds which correspond to
Einstein- rather than Ricci flat-spaces.

The plan of this paper is as follows. Section 2 is devoted to mathematical
preliminaries. In Sect. 2.A, we briefly recall the standard 3 + 1 decomposition of
Einstein's vacuum equation for a complex metric on a real 4-manifold M,
topologically Σ x R for some 3-manifold Σ, in terms of the first and second
fundamental forms of Σ. Section 2.B recalls the spin-connections, first introduced
by Sen [4], which are potentials for half (i.e. for self dual or anti-self dual parts) of
the Weyl curvature [5]. In Sect. 3, we introduce new variables - which are to
replace the first and the second fundamental forms - and recast various projections
of Einstein's equation in terms of them. The new variables consist of a pair,
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(σa

A

B, +AaA

B) [or, alternatively, (σa

A

B, ~ AaA

B}~], where σ°A

B is a (density weighted)
soldering form for SL(2, C) - or rather, complexified SU(2) - spinors and ±AaA

B are
SL(2, C)-valued Sen connections 1-forms defined on Σ. (Throughout, ± mil stand
for plus or minus.) The transition from the first and second fundamental forms of Σ
to (σa

A

B, ±AaA

B) simplifies the constraint as well as the evolution equations
considerably. Up to this point, the material is only a generalization of a recently
introduced phase space formulation of real, Lorentzian general relativity in terms
of spinorial variables [6] (except that the conventions are so fixed that when all
fields under consideration are restricted to take values in the SU(2) subalgebra of
SL(2, C) - i. e. to the "real part" of the complexified SU(2) - we obtain an Euclidean,
rather than Lorentzian, 4-metric.) The key observation of the paper is made in
Sect. 4. Since ~~AaA

B is a potential for the self dual part of the Weyl tensor and
+AaA

B, for the anti-self dual part, self dual solutions can be obtained by setting
+ AaA

B equal to zero and anti-self dual ones, by setting ~ AaA

B equal to zero. When
this is done, a drastic simplification occurs: we are left with just one (linear)
constraint equation and one (non-linear) "evolution equation" for the remaining
dynamical variable σa

A

B. By using a triad V? of vectors on Σ and Pauli matrices to
express the soldering form, these equations reduce to:

(Div)7αi = 0, i=l,2,3 and, (1)

ή = fiuk[^»i]β; (2)

where the divergence in the first equation is taken with respect to a fixed, non-
dynamical volume element on Σ (whose choice is intertwined with that of the lapse
function), and the dot and the bracket in the second equation denote, respectively,
"time-derivative" and Lie-bracket. The required half-flat 4-metric gab on
M~ Σ x R can be constructed from the solution to (1) and (2) by purely algebraic
manipulations. The converse is also true: every half-flat metric gab on M= Σ x R
admits, at least locally, a triad Va

i satisfying (1) and (2). In this sense, (1) and (2)
capture the entire content of the half-flat equation, thereby providing a new
characterization of half-flat 4-metrics. To illustrate the simplicity of these
equations, in Sect. 5. A we obtain a class of half-flat 4-metrics by solving (1) and (2).
In Sect. 5.B we linearize these equations and recover all the right circularly
polarized weak gravitational waves. Section 6 discusses possible applications of
our characterization of half-flat metrics.

Our conventions are as follows. Throughout, we use Penrose's abstract index
notation [7]. However, to avoid possible confusion, 4-dimensional objects will
carry a prefix 4 when the four dimensional and three dimensional objects are
denoted by the same letter. gab is assumed to be Riemannian when real and sign
conventions are adapted to this case. The curvature tensors are defined by:

O^n 4r j /Λ . 4r> d/ 4r> m 4p
Z U[a > Ub}&c — ' Kabc Kd ? Kamb ~ Kab

and
4 τ> nab . 4 p

Kabg =- K.

While dealing with spinors, εAB is fixed once and for all, independently of the
metric; the soldering forms, σa

AA>, carry all the information pertaining to a spe-
cific gab.
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2. Mathematical Preliminaries

This section is divided into two parts. In the first, we recall the standard 3 + 1
decomposition of the complex Einstein equation on a real 4-manifold and in the
second we summarize a few properties of certain spin connections that will play an
important role in Sect. 3.

2. A The Standard 3 + 1 Decomposition

Since it is somewhat unusual to consider complex solutions of Einstein's equation
on real manifolds, we shall briefly sketch the 3 + 1 decomposition procedure for
such solutions to ensure that the entire procedure is meaningful beyond the
familiar Lorentzian context.

Fix a real 3-manifold Σ and let M be the 4-manifold Σ x R. Thus, M is endowed
with a natural foliation. Let the leaves of the foliation be labelled by constant
values of a real coordinate ί. (It is convenient to think of t as a "time coordinate"
even though we are not working with real Lorentzian metrics.) Let gab be a
complex metric - i.e., a second-rank, symmetric, non-degenerate complex tensor
field - on M. (If it happens to be real, we assume it has signature + + + + and our
sign conventions are adapted to this signature.) By the usual analytic argument, it
follows that there is a unique torsion-free connection 4D compatible with gab,
Hence, the Riemann, the Ricci, and the Einstein tensors of gab are well-defined
on M.

Let ζa be a smooth vector field on M such that ζa : = gabζ
b is everywhere

proportional to dt and such that ζaζa = 1 . Thus, ζa is the unit normal to Σ, unique up
to an overall sign. The intrinsic metric qab on a t = constant slice is given by

qab = gab-ζaζb> (3)

and the "extrinsic curvature" of this slice is

Kab = qa

mqb

n4Dmζn, (4)

where qa

m is the projection operator associated with the slice. A straightforward
calculation leads us to the Gauss-Codazzi equations relating the curvature of gab

with Kab and the (intrinsic) curvature of qab. One has :

abKab-K2ι (5)

and
Gbcζ

bqc

a = Db(Kab-Kqab), (6)

where 4Gab = (4Rab-^4Rgab) is the Einstein tensor of gab and where D and R are,
respectively, the derivative operator and the Ricci scalar of qab.

Set ta = (^ζtΓ
lζa = Nζa. Then t is an affine parameter of the vector field ίfl. It

is easy to show that the "time-derivatives" of qab and Kab are given by:

; (7)

and
Kob : = ̂ tKab = - DaDbN + NRab + 2NKa

m Kmb - NKKab

-Nqa

mqb"*Rmn, (8)
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where Rab and 4Rab are the Ricci tensors of qab and gab respectively. Thus, gab

satisfies the Einstein vacuum equation, 4Gab = Q, if and only if the fields qab(t) and
Kab(t) satisfy, on each ί = constant slice, the constraint equations

Kab-K2 = Q, and, (5')

D"(Kab-Kqab) = 0, (6')

and the "evolution equations"

qab = 2NKab, (7)

and

Kab = - DaDbN + NRab + 2NK™ Kbm - NKKab . (8')

Thus, even though we are working with complex metrics gαb, the 3 + 1 decompo-
sition (5'H8') of Einstein's equation is completely analogous to the real Lorentzian
case. (We have set shift equal to zero just for simplicity.) Note, however, that, in the
complex (or real Euclidean) case, the Cauchy problem need not be well-posed - i.e.,
a pair (qab, Kab) on Σ satisfying (5') and (6') need not give rise to a Ricci-flat gab on
Σ x /, no matter how small the real interval /is - unless we further restrict (qab, Kab)
to be, say, analytic.

2.B The Sen Connections

A natural framework for analysing half-flat solutions is provided by spinors. Let
gab be a complex metric on M and let σa

AA> be an SL(2, C)-spin soldering form
compatible with gab:

n _ ._ A A' BB' 0 /Q\
gab~ σa σb εAB^A'B' W

(Note that, because gab is complex, the primed and unprimed indices are
completely independent.) Let 4^ be the torsion-free connection on spinors and
tensors, which annihilates σa

AA\ εAB, and εA,B,. Thus, 4^ is an extension to spinors
of the metric compatible connection 4D. Denote the curvature 2-forms of 4^, by
4FabM

N and 4FabM,N '. lΐgab is Ricci-flat, these 2-forms can be expressed in terms of
the Weyl curvature of gab [7] :

Bf)λNί (10)

and

Hσίa

ΛA'σb]

BB'ΨA,B.M

N'εAB)aN,, (11)

where ΨABMN is the anti-self dual Weyl spinor and ΨA>B>M>N> is the self dual Weyl
spinor. The Weyl tensor Cabcd of gab is given by

Γ ^ AA' BB' CC' DD'
^abcd = σa σb σc σd

B CD) •>

so that, if ΨABCD vanishes, gab is self-dual and if ΨA'B>C'D' vanishes, it is anti-self dual.
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Let Σ be a 3-dimensional submanifold of M. The unit normal, ζa, to Σ
enables one to introduce the following additional structure. First, we have an
isomorphism from the space of primed spinors on Σ to the space of unprimed
spinors :

ζA'A, (13)

where ζA'A: = σa

AA'ζa. Second, we obtain an 5L(2, C) soldering form, σa

A

B which
maps second rank, trace-free unprimed spinors, λA

B, to complex vectors tangent to
Σ: λa\=-σa

A

BλB

A = -Trσaλ via

σa

AB = \/2ζ(A

A'σa

B]A,, (14a)

or

BζβA" (14b)

Note that the spatial object σa

AB is distinguised from the four dimensional σa

AA, by
the latter having a primed and an unprimed spinor index, while the former has two
unprimed spinor indices. Consequently, at points of Z, unprimed spinors can be
regarded either as entities associated with the 4-manifold M or with the 3-manifold
Σ; λAμA' σa

AA, is a (complex) 4-vector, while λAμBσ°AB is a (complex) 3-vector
tangential to Σ.2 Finally, the restriction of the connection 4^ to Σ defines two
3-dimensional connections ±(3) on unprimed spinors and vectors:

+ ̂ a^=qa

mqb

n4^mλnB, (15a)

-®JbB : = \f2qa

mqb

n (*®J.nBK
B'B . (1 5b)

These are the Sen connections [4]. Using (14) and the definition of 4^ it follows
that

DaλbB:=
 ±@aλbB + \/ΪKacσ

c

B

AλbA, (16)

[where Kab is the extrinsic curvature (4) of Z], is the unique torsion-free connection
on Σ which annihilates σa

AB, and KAB. While D is determined by the intrinsic
soldering form σa

AB, on Σ, one needs both the intrinsic soldering form and the
extrinsic curvature of Σ to define ±2.

The curvature 2-form, ^^^ of ±Q) is defined by:

2±@[a

±®b}λΛ = :±FabA

BλB. (17a)

Using (10), (11), and (15), we can relate it to the curvature of 4^. We have:

+ 17 B _ m n n 4 r1 B
Γ abA ~<4a ^b Γ mnA •>

and (lib)
~~ J7 B o „ m „ n 4 17 B' γ A' y B

Recall that *FmnA

B is an anti-self dual 2-form (and ̂ FmnA? is a self dual 2-form.)
Hence, +FabA

B vanishes if and only if 4FabA

B vanishes, i.e. if and only if the Weyl

2 Thus, the 5L(2, C) which acts on spinorial indices of σa

AB is the complexification of the double-
covering of the 3-dimensional rotation group in the tangent space of Σ; it is not the double-
covering of the Lorentz group that acts in the tangent space of 4M
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curvature of gab is self-dual on Σ (and ~FabA

B vanishes if and only if it is anti-self
dual). Thus the Sen connections, ±^, are potentials for the (anti-) self dual part of
the Weyl curvature on Σ.

Finally, if gab is a real, positive definite metric, without loss of generality, one
can impose certain Hermiticity restructions on σa

AA' which are preserved only by
an SU(2)R x SU(2)L subgroup of 5L(2, C) x 5L(2, C). Then, the primed spinors
transform under SU(2)R [or self-dual part of the universal covering of 50(4)] and
unprimed, under SU(2)L [or, the anti-self dual part of 50(4)]. Given a 3-surface Σ,
on the other hand, we also have "spatial spinors" transforming under the 5(7(2)
which is the double covering of the rotation group intrinsic to (Σ, qab). 4FabM

N and
4FabM,N' are 2-forms that take values in the Lie algebras of SU(2)R and SU(2)L

respectively, while ±FabM

Ή takes values in the Lie algebra of spatial S17(2).

Remark, Note that, a metric gab defines an alternating tensor zabcd up to sign via

F L ,P σam σbn ρc r σd}> — A !
^abcd^mni sύ ό 6 6 ^

In spite of the sign ambiguity, one can meaningfully ask if a given metric is half-flat,
i.e., if its Riemann tensor satisfies

I
±

l 4"

If we restrict ourselves to real Euclidean metrics, we can further divide half-flat
metrics into two categories: self dual and anti-self dual To do this, fix, once and for
all, a nowhere vanishing, real, smooth 4-form έabcd. Then, given a real metric gab,
choose as its unique alternating tensor, the 4-ίbrm εabcd defined by (18) which has
the same orientation as έabcd, i.e., which satisfies zabcd = fZabcd> where / is positive.
Then, place gab in the self dual category if its Riemann tensor satisfies (19) with the
lower sign and in the anti-self dual category if it satisfies (19) with the upper sign.
The labels "self-dual" and "anti-self dual" are convention dependent. However, the
fact that an unambiguous classification exists is not. For a complex metric, on the
other hand, this procedure fails because the function / relating the metric
compatible alternating tensor and the fiducial έabcd is, in general, complex and the
requirement that εabcd have the same orientation as έabcd is meaningless. However, if
we have access to spinors, we can resolve the sign ambiguity by using the soldering
form - square root of the metric - to select a preferred alternating tensor:

rabcd.__ i [a b c d] AB CD A'D' B'C (Λ o / \
8 •—~~'2σ AA' σ BB' σ CC' σ DD' ̂  fc 6 c . l l δ j

This choice of εabcd can be then used to determine if the Riemann tensor of a half-flat
σa

 AA> is self dual or anti-self dual

3. The New Variables

In Sect. 2.A, we reduced Einstein's vacuum equation to constraints (5') and (6') and
evolution equations (7') and (8') on the first and second fundamental forms, qab and
Kab, of the 3-manifold Σ. Although the use of qab and Kab is natural in that they
admit a direct geometrical interpretation, the resulting equations are analytically
quite complicated; (8'), in particular, involves non-polynomial functions of qab.
Furthermore, none of these equations simplify if we require that gab be half-flat.
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This has been the primary reason why the simplicity of the half-flat Einstein system
has remained opaque from the Hamiltonian standpoint. In this section, we shall
introduce new variables which are adapted to the half-flat condition and recast
(5')-(8') in terms of these variables.

The discussion of Sect. 2.B suggests that the Sen connections ±Q) should be
used as some of the new variables. Let us therefore proceed as follows. Fix a real,
3-manifold Σ and consider the trivial SL(2, C) vector bundle B on it. Each fiber of B
thus consists of a 2-complex dimensional vector space, equipped with a symplectic
2-form, which is preserved by the SL(2, C) action. Cross sections of B will be
represented by fields, λA, μA,... on Σ, λA(x0) being an element of the 2-dimensional
fiber over x0. By considering associated vector bundles, we acquire fields with
arbitrary number of "internal" indices, e.g., %A...B

C'"D We shall denote the
symplectic 2-form by εAB and its inverse by ZAB:

P n4D_ s D
bABb — °B i

and use it to "raise and lower" internal indices:

λA = sABλB and λM = λ»εNM.

Let us now consider connections 2 on these SL(2, C) fields which annihilate εAB;
Q)aλAB = 0. Fix a connection 3, chosen to be flat for simplicity. Then, any other
connection can be written in terms of an SL(2, C) Lie-algebra valued 1-form, AaA

B\

0aλΛ = :daλA + AaA

BλB. (20)

These connection 1 -forms will constitute a part of our new variables. The other
part is essentially the soldering form: it is given by an isomorphism σa

A

B between
the 3-dimensional vector space of complex vector densities of weight one, 2α, at any
point x0 of Σ and that of trace-free linear operators, λA

B, on the fiber over x0,
expressed by λa~ — σa

A

BλB

A= — Ύrσaλ.3 Given a soldering form, the internal
indices get soldered to the tangent space of Σ and can be regarded as SL(2, C)
spinor indices.

Given a (density weighted) soldering form σa

A

B, we obtain a complex metric
qab on Σ as follows: qab is the inverse of the non-degenerate, symmetric tensor field
qab defined by

Ύrσaσb=-(detq)qab, (21)

where the density of weight two, (detg), is the determinant of qab. (Alternatively, we
have qab = (-detΎrσaσbΓ1/2(-Ίrσaσb).) Next, recall that a soldering form σa

defines a unique torsion-free connection D on spinor and vector fields on Σ via
Daσ

b

A

B = 0(and DaεAB = ΰ). Hence, given a pair, (σα, + 9\ where +^ is an SL(2, C)
connection on Σ, we acquire a field πaA

B via:

— — —LaA ~~ r~ naA

or

(16')
B — Γ B— — — 7T B

LaA ~~ r~ nar~

3 Our notation is as follows: A tilde over a letter implies that the letter represents a density of
weight one while a tilde under a letter implies that it represents a density of weight minus one
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where ΓaA

B is the (spin-) connection 1-form of D. Note, however, that unlike Kab of
(16),

^TrίπΛM (22a)

is not necessarily symmetric in a and b. Let us define Kab via

Kab = π(ab}. (22b)

Then, given any pair, (σα, +®α), for (σα, +v4α), we acquire a pair (gflfe, Kfl5) consisting
of a (complex) metric qab and a symmetric tensor field Kab, which can be used as first
and second fundamental forms, i.e., "initial data", for Eqs. (5')-(8') of Sect. 2. A. We
shall now regard (σα, + Aa) as the primary objects and (qah,Kab) as secondary,
derived quantities.

Note that, given a pair, (σα, ~Aa), where ~ Aa is αrcy SL(2, C)- valued connection
1-form, we can define a pair (qab, Kab) in the following alternate way: qab is defined
as above but Kab is defined via:

B_Γ B_ B
LaA — r~ πaA •>

(16"

[This alternate definition is motivated by (16) with lower signs.] As geometric
objects in their own right, there is no distinction between +Aa and ~Aa; they are
both SL(2, C)-valued connection 1 -forms. However, the rules that yield us initial
data (qab, Kab) starting from (σα, +Aa) and (σfl, ~Aa) are different. Thus, ± signs refer
to the two rules, (16') and (16"). Since, for our present purpose, we are interested
more in the relation between SL(2, C)-connections and geometry of space-time
than in the connections in their own right, we shall always associate a prefix -f or
— to the connection 1 -forms, thereby emphasizing the specific way in which we
wish to use them. In what follows, we can work either with (σα, + Aa) or (σα, ~Aa) and
± will always stand for -f- or — .

Let us now rewrite Eqs. (5')-(8') in terms of new variables. The motivation
behind the procedure that follows comes from a Hamiltonian framework [6].
Here, we shall present only the final picture.

Let us begin with constraints. In the passage to new variables, we have
introduced three new degrees of freedom: while qab has six components per space
point, σ°A

B has nine. Hence the set of equations in terms of new variables contain
three new constraints. These turn out to be

(23)

which, using (16'), (16"), (22) and the fact that D annihilates σα, reduce to:

π[fl6] = 0 or πab = Kab. (23')

[Note that, Christoffel symbols do not appear in (23) because we are computing
the divergence of a vector density.] The remaining constraints are the same
as before, Eqs. (5') and (6'). To express them in terms of σa and ±Aa, let us first
compute the curvature of ±Aa. Using (16') and (16") one finds thats ±FabA

BλB

:=2±^[a

±^b]λA is given by

]/, (24)
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where RabΛ

B is the spinorial curvature of £>, σ" = (detq)~ 1/2σα and εabc is the metric
compatible 3-form defined by

VK,t£, = 3! . (25)

Contracting (24) with σ"B

A, one obtains

^σa±Fab = -~ πamπb,,E'ma + ~ D°(πba-πqJ

^+~-Da(Kab-Kqab), (26)

I/2

where ~ stands for equality modulo the new constraint (23). Similarly, we have

2-π f l hπb β) + εβ f r cD f lπb c

2-KabK
ab). (27)

Consequently, modulo (23), (5') and (6') can be respectively written as:

'fl& = 0, and (5")

Thus, we have re-expressed the constraints in terms of new variables σα and ±Aα:
The satisfaction of (23), (5") and (6") by (σα, ±A^ implies that the pair (qαb,Kαh)
determined from (σα, ±Aα) via (21) and (22) satisfies the Einstein constraints (5') and
(6'). Equations (23), (5") and (6") are, furthermore, simpler because they are
polynomial in terms of the new variables.

In the Hamiltonian formulation of general relativity, there is a close inter-
relation between the Hamiltonian generating time-translation and the scalar
constraint (6') [or (6")]. Using the relation, one can obtain evolution equations for
σα and ±Aα [6], These are:

dα = ± 21/2 ± 0 b(Nσ [ασb]] , and (!"}

where the lapse N is now a scalar density of weight minus one, related to the scalar
lapse N of Sect. 2, A via N = (det^)1/2N. Again, using the expressions (21) and (22) of
qαb and Kαb in terms of (σα, ±Aα\ it follows that (7") and (8") imply (Ίf) and (8')

To summarize, given a 4-manifold M, topologically Σ x R, and a pair of fields
(σα(t\ ±Aα(ή) defined on each leaf ί = const of the foliation, satisfying (23), (5")-{8"),
we obtain a pair of fields (qαb(t), Kαb(t)) on M satisfying (5')-(8'), and hence a 4-
metric gαb satisfying the vacuum Einstein equation. Using (3), it follows that the 4-
metric can be written as

gαb = qαb + ζαζb = ̂  ̂  - I ( _ Jf -α ~b + ̂  - 2 ̂  ? ,̂ j

where, as in Sect. 2. A, tα is a vector field on M defined by tα : - (jS?ζί) ~ ̂  - ^VCfl. We
shall see in the next section that the form (23), (5")-(8") of Einstein's equation is
especially well-suited to analyze half-flat metrics.
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Remarks, i) Mathematically, one may regard a pair (σc\ ±A^ as representing an
"initial datum" for SL(2, C) Yang-Mills theory, ±Aa playing the role of the Yang-
Mills connection and σfl, of the Yang-Mills electric field. Then, (23) is just the Gauss
law constraint for Yang-Mills theory. To qualify as an Einstein "initial datum," on
the other hand, (σa, ±Aa) has to satisfy four additional constraints (5"), (6"). Thus,
we have an imbedding of the space of Einstein initial data into that of the Yang-
Mills initial data.

ii) The reduction to the Euclidean case is obtained simply by restricting σfl,
and ±Aa to be Hermitian with respect to some Hermitian conjugation operation.
Then, qab, defined by (21), is guaranteed to be a positive definite 3-metric on Σ and
Kab of (22), a real second rank tensor field.

iii) It is only for simplicity that we have restricted the fiducial connection d to
be flat. It is straightforward to extend the framework to the case when it is not: The
form of the constraint and evolution equations remains the same; only the
expression of ±Fab in terms of ±Aa acquires additional terms. Such an extension is
essential when the topology of Σ is non-trivial.

i) In the general, complex case, (detg)1/2 is unique only up to sign. Hence, given
(σa, ±Aa), we can recover σa and Kab only up to sign. These ambiguities do not affect
the fact that, modulo (23), (5") is equivalent to (5') and (6") to (6'). However, the
situation with evolution equations is more complicated: if we change the sign of
(detg)1/2 - and hence of σa and Kab - we have to simultaneously change the sign of
the "dot operation" (i.e. the sign of ζa) in (7") and (8"). The 3-metric qab as well as the
4-metric gab are, however, unaffected. In the real, Riemannian case, one can avoid
all sign ambiguities simply by requiring that (detg)1/2 be positive.

v) A primary limitation of this framework is that the topology of M is required
to be of the type Σ x R. Many Euclidean instantons, for example, do not
accomodate such a topology. On the other hand, the 3 + 1 form of field equations
in terms of (σfl, + Aa) is such that one never needs to lower the a vector index on σa.
Consequently, Eqs. (23), (5")-(8") represent a generalization of Einstein's equa-
tion, reducing to it when σa is non-degenerate. It is quite possible that solu-
tions to (23), (5"}-(8") eχist in which σα fails to be invertible, say, on a set of
measure zero of M. Then, the resulting solution gab will not be invertible at such
points and the domain on which gab satisfies Einstein's equation in the traditional
sense may have an interesting topology.

4. The Half-Flat Case

The discussion in Sect. 2.A implies that ~ Aa is a potential for the self dual part of
the Weyl tensor and +Aa, for the anti-self dual part. One can see this explicitly in
the 3 + 1 framework as follows. Define ±Fαbc by ±Fab

c=—Ύΐσc±Fab. Then, by
dualizing on a and b in (24), one obtains:

±Wcd: = εabd ±F a b

c -1/2(Rcd + Kc

mKmd- KKcd±εabcDaKb

d), (28a)

where, ~ now stands for equality modulo constraints (23), (5"), and (6"}. In a Ricci-
flat space-time, one can express the electric and the magnetic parts of the Weyl
tensor, Eab:= Cambnζ

mζn and Bab:=*Cambnζ
mζn, in terms of the initial data
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(qab,Kab\ and, using (28. a), show that:

±Wcd = ]/2(Ecd±Bcd). (28b)

Hence, if ±Aa = Q, ±Wcd vanishes, whence Ecd=+Bcd, i.e., the Weyl tensor is,
respectively, self-dual or anti-self dual. This is why, the reformulation (23), (5//)-(8//),
of Einstein's equation in terms of (σα, ± Aa) is well adapted to the analysis of half-flat
space-times.

To be specific, let us consider self dual space-times. Then, it is easier to work
with (σα, +Aa) rather than (σα, ~Aa). As we just saw, self duality means the vanishing
of +Fab. For simplicity, let us assume that we can go to a gauge in which +Aa

vanishes on Σ. Then, constraints (5") and (6") (with upper signs) are trivially
satisfied and (23) reduces to:

δaσ
a = V. (10

Of the "evolution equations", (8") simply insures that if +Aa vanishes initially, it
remains zero. Finally, (T1} simplifies to:

da = 2]/2db(Nσ[aσb]}. (2f)

Thus, in the self dual case, Einstein's equation reduces to two first order equations
on σa, a linear constraint equation (Γ) and a non-linear "evolution equation" (20-
These equations can be further simplified by choosing the lapse N suitably. Let N
be time-independent and let it satisfy <3flN = 0 on Σ. [Since da is flat, we can just set
N = (det4)~ 1/2, where qab is a flat metric annihilated by 3.] Next, let us introduce a
triad F°i, (i=l,2,3) of vector fields on Σ and expand out the (undensitized)
soldering form Nσa

A

B in terms of (fixed, constant) Pauli matrices τl

A

B and the triad
FV

NσV^FV1/, (29a)

where τ1 are so normalized as to satisfy

[τ l,τ j]=j/2ε i j kτ k. (29b)

Then, multiplying (Γ) by N and using (29), we have

or, using the constancy and the non-degeneracy of the Pauli matrices,

W = 0. (1)

Next, multiplying (20 by N and using (29) and (1), we have:

-ε i jk[F i,F j]
ατk,

whence, non-degeneracy of τ1 implies:



Half-Flat Solutions to Einstein's Equation 643

Thus, the self dual Einstein equation is reduced to Eqs. (1) and (2) on a field of
triads on Σ. Finally, let us express the required half-flat four metric gab in terms of a
solution Kfli(ί) to (1) and (2) on Σ x R. We have, from (3'),

+ tatb), (3")
with,

$«b=Va.Vb

jδ
iί.

Here we have used the fact that the definitions of qab, qab, and N imply the relation
(det<?)2(det4)N6 = l.

Let us summarize and state the main result. Fix a 4-manifold M = Σ x R, where
Σ is a 3-manifold. Let the leaves of the natural foliation of M be labelled by
constant values of a coordinate t and let ta be the natural "vertical vector field"
whose affine parameter is given by ί. Fix a (^-independent) flat connection d on
leaves ί = const of the foliation. Then, each solution F^x, £), xeΣ, of

daV\ = 0, (1)
and

^^a

i = εi jk[F j,Fk]« (2)

defines a self dual, Ricci-flat metric gab via (3"), where N is given, up to a
multiplicative constant, by ^N=0 and da~N = 0. Conversely, given a Ricci-flat,
self dual metric gab on M, the field +FabA

B it induces on each leaf of the foliation
vanishes, whence the spatial soldering forms σa

A

B satisfy (23) and (7"). If Σ
admits a flat spin-connection, one can introduce a field of triads F^x, ί) on M,
satisfying (1) and (2). Finally, the metric gab is real and positive definite if and only if
the initial field of triads, F^foO) is real.

Remarks, i) To obtain anti-self dual solutions, it is simplest to work with (σα, ~ Aa)
and use Eqs. (23), (5")-(8") with lower (minus) sign. Anti-self duality implies
~Fαb = Q. Then, (5") and (6") are identically satisfied. By choosing the gauge in
which ~Aα vanishes, (8") becomes redundant and (23) and (7") reduce to,
respectively,

dασ
α = 0 and &α= -2]/2db(Nσ[ασb]).

By choosing the lapse and triads as before, these reduce to

dαV\ = 0 and F" i=-£i jk[F j,Fk]
α.

One could, of course, work with (σfl, + Aα) even in the anti-self dual case, although,
in this case, the equations are substantially more complicated. A solution to the
anti-self dual equations directly in terms of (σα, +Aα) would correspond to the
solution of the so-called "googly problem" in the twistor program [8], which asks
one to solve the anti-self dual equation directly on the dual twistor space, rather
than the twistor space.

ii) Recall that, in the general complex case, starting from (σα, + Aα), one can
recover (detq)~ 1/2, σα, and Kαb only up to sign. Given a σα, however, one can select a
preferred 3-orientation, εα6c, by fixing a convention:

ε f l* c:=-/2Trσ f lσV. (25'}
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Thus, once we fix (detg)1/2 by choosing one sign over another, σa, Kab, and sahc are
all uniquely determined and they all change sign if we change the sign of (detg)1/2.
Consequently, Eq. (28) and the subsequent 3-dimensional formulation of the
distinction between self dual and anti-self dual configurations is unaffected by sign
ambiguities.

iii) Given a pair (σα, +Aa], the 4-dimensional orientation can be fixed
ambiguously. Fix a convention for (detg)1/2, Then qah, Kab, and εabc are unique. One
can now select ςα uniquely by requiring ^^qab = Kab and then set

If one changes the convention on (detg)1/2, Kab, ζ
a, and εabc all change sign leaving

&abcd unaffected. This choice of εabcd - which is equivalent to that made through (1 8;)
- underlies our classification of half-flat metrics into self dual and anti-self dual
categories.

iv) Note that, given a solution (σfl, + Aa = 0) to the self dual equations (Γ) and
(2'), ( — σa, ~~Aa = Q) solves the anti-self dual equations given above. It is easy to
verify that, while the 4-metric gab is the same in the two cases, the orientation εabcd is
of opposite sign. Thus, we see once again that the 4-metric can be only called half-
flat. In the real, Riemannian case, one can do better. One can fix a fiducial έabcd and
admit only those (σα, ±Aa) which yield an εabcd with the same orientation as £abcd.
Then, if (σα, +Aa = 0) is admissible, ( — σα, ~ Aa = 0) is not, whence a given half-flat
metric gab is either self dual or anti-self dual and the redundancy present in the
general complex case is avoided.

5. Structure of Equations (1) and (2)

This section is divided into two parts. In the first, we use Eqs, (1) and (2) to obtain,
almost trivially, a class of half-flat metrics and in the second we analyze the
linearized version of these equations.

5. A Plane-Fronted Solutions

Let Σ be topologically R*. Introduce on Σ, a global chart, (x,y,z\ and make the
following ansatz for the triad Va

{:

(30)

Let d be the flat (time independent) connection on Σ given by the chart. Then the
triad (30) automatically satisfies the constraint equation (1) and the evolution
equation (2) for V3 on Σ x R. The remaining evolution equations impose
restrictions on functions a, b, c, d:

ή=-F2', V2=V{, (31)

where prime denotes differentiation with respect to the z-coordinate. The general
solution to these equations is given by:

V2 = (V-V)/2i, (32)
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where
V = xdx + βdy, V=3ίdx + ϊ!dy. (32')

Here α, β and α, β are arbitrary holomorphic functions of z + it and z — it,
respectively. Thus, we have obtained a large class - worth 4 holomorphic functions
of one complex variable - of solutions to (1) and (2) by a trivial integration.

Using (3"), one can now construct the inverse 4-metric gab. Evaluating its
components in the x, y, z, t chart and taking the inverse of the resulting 4 x 4
matrix, one obtains:

gabdxadxb = D~l l(ββ)dx2 - (α/?+ &β)dxdy + ααdj;2] + D[dz2 + dt2~\, (33)

where D = (uβ — δίβ)/2i. Each of these metrics is a (half-flat) solution of the vacuum
Einstein equation. Since the metric coefficients depend only on z and t, these
metrics have two killing fields, dx and dy. Next, since the dependence of the
coefficients on z and t is via z ± it, by analogy with linearized Einstein's theory, the
solutions may be called plane-fronted metrics. Finally, if we set α = α and β = β, the
resulting metrics are all real and positive definite.

Since the primary purpose of this subsection is only to show, by illustration,
that Eqs. (1) and (2) provide a powerful tool to obtain half-flat 4-metrics, we shall
not analyse detailed properties of metrics (33). We only note that it is not difficult to
introduce other ansatze to trivially integrate (1) and (2), and hence the self dual
Einstein equation. For example, Ashtekar and Mazur have found all (Bianchi type)
solutions in which the triad Va

i has the commutation relations of any three-
dimensional Lie algebra.

5.B Linearization

In order to reconcile the main result of this paper with our physical intuition about
half-flat solutions, let us now linearize Eqs. (1) and (2) off flat space and see if the
physical degrees of freedom in the resulting solutions correspond precisely to right
circularly polarized weak gravitational waves.

Let M — R4. Fix a flat Riemannian metric ηab on M. Foliate M by 3-planes and
introduce a covariantly constant orthonormal tetrad (ta, Va

{) adapted to the
foliation. Va

i will be our background configuration. To linearize, we will want to
consider a one parameter family of metrics gab(s) on M such that gflb(0) = ηab.

Since the right circularly polarized metrics are usually written in a gauge in
which they are transverse, traceless and orthogonal to ta and since

g°b(s) = (det 4(s))1/2N(s) (qab(s) + ta(s)t\s)) , (3")

it is convenient to work in a gauge in which N(s) (detg(s))1/2 = 1 and ta(s) = ta. Thus
we are led to consider a 1 -parameter family, Va

i(s\ of solutions to:

(Div(s))Kfl

l(s) = 0, (34)
and

(35)

on M, with Ffli(0) = Va

i9 where dot denotes Lie derivative with respect to the fixed,
^-independent vector field ta and Div(s) is defined with respect to the volume
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element N(s)~l = [detg(s)]1/2. The linearized field is:

(36)
ds s = 0

and it satisfies the linearized versions of (34) and (35):

daL\-V\db(La,Vj} = 0, (37)

and

A-2Cίjk[F j,Lk]
f l. (38)

Set Lab = LaiVb and consider the time evolution of its antisymmetric part, L[ab].
It follows immediately from (38) and (37) that L[ab] is time independent. Thus, as
one might expect, only the symmetric part of Lah carries dynamical information. In
fact, by taking the "dot" of (37) and using (38) one obtains, after some
simplification:4

0 = 3 A - dbL = - 2dada(εb

cdLcd) , (39a)

whence, using boundary conditions on Lαb we conclude

L[βfc] = 0. (39b)

Thus, in the gauge we have chosen thus far, linearized fields Lαb satisfying the
field equations (37) and (38) on M are necessarily symmetric. Furthermore, taking
the "dot" of L (the trace of Lαb) and using (39b) we obtain

L = 0. (40)

Thus, there is no dynamical information in the trace of Lαb either. One might
therefore expect that the trace can be gauged away.

To see if this expectation is correct, let us analyze the restricted gauge freedom.
Note first that since we had set +Aα equal to zero to obtain (34) and (35), the
"internal gauge" is completely fixed: we are not free to make local rotation of
triads. Secondly, since we have fixed the foliation and the vector field tα, we are now
free to make only those diffeomorphisms that leave this structure invariant. These
diffeomorphisms are generated by vector fields λα on M satisfying ηαbt

αλb = 0, and
^λt

α = Q. Under infinitesimal motions generated by these vector fields, the
background triad changes by V\-*V\ + £>

 λV\, whence, I2i-+I2i-&λVf is a
gauge transformation. [This is analogous to the fact that, since ηαb changes by
ηαb-^tlαb + 2d(αλb} under infinitesimal diffeomorphism generated by λα, yαb->yαb

— 2d(αλb} is a gauge transformation on linearized metrics yαb.~] Contracting with Vb

one obtains an equivalent form of the gauge transformations:

Lαb-+Lαb + d^α (41a)

with λαt
α = Q and &tλ

α = Q.
Finally, the requirement of compatibility with the previously chosen gauge

restricts the choice of permissible λα. Under (4 la), the vanishing of L[αb] must be
presented. The restricted freedom is given by (4 la) with

λα = d α f , where &J = Q. (41 b)

"" It is helpful to express L[αb] as L[αb] = 2d[αLb] + εαhco
cf, for some one form Lb and function /
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This freedom can be now exhausted by demanding that Lab be trace-free. Equation
(37) now implies that it is also transverse:

3«Lαb = 0, (42)

and (38) implies that it satisfies the evolution equation:

Finally, it follows from (3") and our choice of N(s) and ta(s) that the linearized
metric is given by 2Lab. Thus, the linearization of our self-dual framework in an
appropriate gauge yields linearized metrics which are symmetric, traceless,
transverse and which satisfy the first order evolution equation (43). Apart from
convention dependent numerical coefficients, this is precisely the standard
characterization of weak, right circularly polarized gravitational waves.

6. Discussion

The notion of half-flat metrics refers only to 4-dimensional fields. A priori,
therefore, it is surprising that a 3 + 1 decomposition (using appropriate fields)
simplifies the field equations so dramatically. The simplicity leads one to conjec-
ture that our triad, Va

i7 of vector fields may in fact be closely related to some
intrinsic mathematical structures that manifolds with half-flat metrics naturally
admit. Recently, Robinson [9] has shown that this is indeed the case. Let us begin
with a summary of his results. For simplicity, let us restrict ourselves to real,
Riemannian half-flat metrics. Then, it is well-known [10] that a manifold M
admits a half-flat metric gab if and only if it is hyperkahler, i.e., if and only if it
admits three distinct integrable, almost complex structures, Jjfl

b, i = l,2, 3,
compatible with the metric gα&, satisfying the quaternionic relation

Thus, a half-flat space (M, gab) admits three independent Kahler structures.
Furthermore, the Kahler forms, Jίab : = Jίa

mgmb, are themselves (anti-) self dual if gab

is itself (anti-) self dual. Therefore, given a foliation of M, Jiab are completely
determined by their "electric parts," Eia : = Jiabζ

b, with respect to the unit normal ζb

to the leaves of the foliation. Thus, the information about the hyperkahler
structure can be coded in a spatial, orthonormal triad Eia. Somewhat surprisingly,
however, it turns out that this natural orthonormal triad does not satisfy simple
differential equations. But if one scales all the triad vectors by a suitable scalar
density, the resulting orthogonal triad Va

i satisfies precisely our Eqs. (1) and (2)!
(Recall that our triad Va

i is orthogonal but not orthonormal with respect to gab.)
Thus, up to normalization, our triads do have an intrinsic geometric meaning. To
obtain analytically simple differential equations on geometrically natural struc-
tures, however, two unexpected steps are necessary: the introduction of a foliation
and scaling of the natural orthonormal triad on each leaf of foliation.

The interplay between hyperkahler structures and the variables used in this
paper suggests certain generalizations. First, since the notion of half-flatness
admits an extension to higher dimensions in terms of hyperkahler structures [11],
our characterization may also do so, thereby simplifying the analogous higher
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dimensional equations. Second, in 4-dimensions, there is an interplay between
Einstein spaces and quaternionic manifolds, i.e. manifolds that admit three
independent integrable almost complex structures, Jia

b, which satisfy 4DaJib

c

= (Tai

k)Jkb

c (rather than 4DaJib

c = 0 as in the hyperkahler case.) On the other hand,
Ashtekar and Renteln have shown that variables (σfl, ±Aa) can be used to obtain, in
a simple way, a large class of Einstein spaces with (anti-) self dual Weyl curvature
(see e.g. [12]). It is quite possible that, by analyzing the relation between the
hyperquaternionic structures and (σfl, ±Aa), one can show that all Einstein spaces
with self dual Weyl curvature can be obtained by the simple ansatz given in [12].

Let us return to the 4-dimensional half-flat case treated in this paper. The
reduced form, (1) and (2), of half-flat equations is simple and geometric. Equation
(2) in particular resembles Euler's equations for a rigid body. The rich literature on
generalizations of Euler's equations to infinite dimensional systems suggests that
(1) and (2) may be exactly integrable. In any case, these equations - unlike those
that naturally arise in the /ί-space and twistor programs - are in a form that is well
suited for a standard Hamiltonian treatment. It would be nice to cast them in a
Hamiltonian framework since self dual systems do not normally admit an intrinsic
phase-space description: in the Yang-Mills case, for example, the pull-back of the
symplectic structure to the self dual part of the phase-space (of all complex Yang-
Mills fields) is totally degenerate and the restriction of the Hamiltonian, identically
zero.
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