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Holomorphic Coordinates for Supermoduli Space
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Abstract. Two-dimensional supergravity provides complex coordinates for
supermoduli space compatible with its natural complex structure. Such
coordinates are useful for investigating questions of holomorphic factorization
of superdeterminants. They also demonstrate explicitly that the complex
structure on supermoduli space is indeed integrable.

1. Introduction

In the first quantized theory of bosonic strings, string amplitudes are expressed as
integrals over the space of all Riemann surfaces. The integrands of such integrals
satisfy a remarkable holomorphy property, which serves as the basis for
applications of algebraic geometry to strings.1 Namely, the moduli space M of all
Riemann surfaces has a natural complex structure, so that it makes sense to ask
whether functions, forms, and so on are holomorphic on this space. The regulated
determinants of 2d quantum field theory, while a priori only smooth functions of
the moduli, occur in a combination with a special relationship to the complex
structure [2, 3]. We can state this property precisely as follows. If we take the string
measure μ and divide by

μo = ( d e t I m τ Γ 1 V Λ . . . Λ V

3 g " 3 | 2 , (1.1)

then the result is locally the absolute value squared of a holomorphic function on
Jέ. Here τ is the period matrix of the Riemann surface in some marking and {ψ1}
are a basis of quadratic differentials chosen to vary holomorphically. Given
another such basis, or a different marking, (1.1) changes by the absolute square of
some holomorphic function, so our statement of the holomorphy property is well-
defined.

To establish that Jί has an integrable complex structure one first singles out
certain tangent directions to Jί as holomorphic, and then shows that the tangent

1 For a review see [1]
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subspaces thus defined are natural and satisfy a differential condition, the
vanishing of the Nijenhuis tensor [4]. In complex geometry this condition suffices
to guarantee the existence of good complex coordinates on patches of Jί, by an
integrability theorem [4]. More directly, one can simply find a set of good complex
coordinates near any (nonsingular) point oϋJί^ compatible with the given choice of
holomorphic directions.

In this paper I will work through the corresponding situation in the case of
super Riemann surfaces (SRS). Here we get a moduli superspace Jί, which again
has a natural choice of holomorphic directions satisfying a differential condition
[5]. To show that they define a good complex structure on Jί (again away from its
singular orbifold points) one must either generalize the integrability theorem or
else construct complex coordinates t, ζ. Since the latter are useful in their own right,
I will follow this route. For example, a function on Jl is holomorphic exactly when
it is an analytic function of t and ζ in the usual sense; the nonlinearity of the
holomorphy condition in [5] is already subsumed in the definition of these
coordinates, which are holomorphic to all orders.

The strategy is to use the solution to the torsion constraints of Id supergravity
given in [6], suitably modified for compact euclidean 2-surfaces. One must then
show that these coordinates are compatible with the almost complex structure
of M, a fact which is not obvious from inspection. Throughout I will take the
view of SRS advocated in [8, 9]. In particular, a superconformal structure is
defined globally, not on patches, by a framing defined up to a certain group. No
connection on the SRS is introduced. This fact simplifies some of the formulas
and focuses attention on the geometry of the SRS.

Instead of the Wess-Zumino gauge solution which we will use, one could
introduce the general solution to the torsion constraints given by Gates and
Nishino [10], fixing the gauge only at the end. Such an approach may simplify the
intermediate stages of the derivations given here.

Another approach to finding coordinates on supermoduli space is the
generalization of the Bers embedding studied in [11]. One can also divide the super
half-plane by the action of a Fuchsian supergroup [12-14]. The latter coordinates
do not show the complex structure, however, so we will not use them here.

The considerations here can all be straightforwardly transcribed from
nonchiral superfields to the case of heterotic geometry [15]. Again one obtains
good holomorphic coordinates for chiral supermoduli space using a solution to
the torsion constraints [16].

It is possible that the special family of local coordinate systems for M defined in
the sequel induces extra structure on M besides a complex structure. Thus for
example one can think of the class of inertial frames in special relativity as the
physical construction which determines the metric, and not the other way round. I
will mention this possibility at the end.

2. The Classical Case

To describe the complex structure on ordinary moduli space M we take its
complex tangent TcJί at each point and split it into the sum of two conjugate
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subspaces: the holomorphic tangent space Tγ^M and its complement T0ΛJί
= Ύι^Jί. To accomplish the splitting, represent a given complex structure by a
family of local real frames ea

0^ α = l,2 on a fixed covering {UΛ} of the fixed real
2-surface X. We will always look at just one patch and so drop the subscript α,
keeping in mind that our constructions should not change if eo

a is replaced by
efa = eo

bRa

b for some function R from X to GL(2,#).
Let eo

z = eo

1 + ίe0

2 and eo

z = Έ^. Then we can rephrase the above remark by
saying that eo

z represents the same complex structure as e'z=feo

z, where / is a
nowhere-vanishing complex function. Let C x denote the group C —{0}, so that
/ :X->C\

A small fluctuation δea represents a tangent to moduli space. Define δez, δez as
before. For a complex tangent vector these will not in general be complex
conjugates of each other, so we can define holomorphic tangents as variations with
δez + 0, δez = 0. More precisely, let

ha

b = (δea")en

b.

Then fluctuations of the form

K\ K (2.1)

produce no change at all on Ji, being purely Weyl scalings or 1/(1) rotations of eo

a.
Also

hz

z = DzV
z; hz

z = D-Vz (2.2)

are pure gauge, where Dz is the Riemannian covariant derivative associated to eo

a.
Of the remaining tangent directions we declare that hf spans the holomorphic
tangents while hz spans the antiholomorphic ones. Thus the complex structures
on Jί and on X itself are entwined: the division between z and z tensor indices
defined by e0 itself is used to produce a division between hf and hz variations
away from e0.

Actually, so far we have only defined an "almost-complex" structure on moduli
space [4]. To show that there exist good local complex coordinates we must
establish the integrability of the almost-complex structure. For this it is sufficient
to verify that the torsion of the almost-complex structure [4] (its "Nijenhuis
tensor") vanish. For the case in question, however, it is just as easy to find explicit
complex coordinates. Consider the family of frames

ez(t) = du + μ%tidΰ. (2.3)

Here tι are coordinates for a neighborhood of zero in2 C3 9~3, and u is any
complex coordinate in which

eo

z = φdu (2.4)

for some nonvanishing complex function φ. Clearly, if we replace eo

z by /• eo

z for
some C x function / the same coordinate u will do. If we change u to some new ύ
satisfying the same condition then (2.3) suffers only an overall C x transformation

by —-. Hence the complex structure defined by some starting point eoeJi and a

point teC39~3 is globally well defined on the surface X.

2 For simplicity we will always assume that the genus g> 1 in the sequel
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We must now check three things. First, the coordinate system defined by (2.3)
does not degenerate in a small neighborhood of e0 if the Beltrami differentials μ*
are chosen appropriately. For example, if a metric is given and ea are taken to
be orthonormal in every patch, then one can take μι = \φ\2ψι, where {ψ1} is a
basis of quadratic differentials for the complex structure given by e0. With this
choice δe\eo is in fact orthogonal to the gauge directions (2.2) [17].3 Second, our
splitting of the tangents into hz

z; hz

z can be seen to be gauge-invariant, so it
really does descend to Jί.

Third, we must show that (2.3) is holomorphic, not just at e0 but throughout a
finite neighborhood. This follows at once since if δf φ 0 but δtι = 0 we have δezφ0
but δez = 0, and so ft/ = 0.

We can if we like substitute (2.3) into the bosonic string action,
S = j(deteo)d2w dzX-dzX. The result to first order is, for a holomorphic variation
about some nonzero t,

δS = $(dete)d2u(dzX)2μz-z,

where

μ-^φφ-'μϊδt1. (2.5)

Thus we have the familiar result that a holomorphic variation of the coordinate ύ
leads to the insertion of a certain mode of the Id stress tensor.

3. The Super Case

In the superconformal case ea gets replaced by a frame for a real superspace X of 2|2
dimensions. The frame is EA = dyNEN

Λ, where A runs over z,z, + , — and yN runs
over the four coordinates of X. It must satisfy certain integrability conditions, as
explained in [6,8,9]. EA is also defined only up to a group of frame rotations which
this time is not C x but the group G of invertible complex matrices of the form

I [8, 9]. Such a frame defines a super Riemann surface, or SRS.

The general solution to the torsion constraints can be written succinctly with

the following conventions. Begin with a Riemann surface X with frame eo

a. Let e

denote the family of one-forms (2.3), so e = ez(t). Let u be a local conformal

coordinate for e as in (2.4). Over the fixed smooth 2-surface X choose a fixed spin

structure. Given the initial conformal structure represented by eo

a, we now

construct a real "square root" ]/TX of the 2-dimensional real tangent TX:4

]/TX is the bundle whose complexification is | / r Ϋ c = (T 1 °J ! ί) 1 / 2 e(Γ 0 1Ar)1/2.

Let θ denote the local section of ]/TXc whose square is e. Construct X, the

supermanifold (X, A ]/TX). The notation means that the body of X is X, while

the anticommuting coordinates transform as spinors. Thus we can take as

coordinates for X u, w, θ, and θ, where now θ, θ are viewed as anticommuting

generators of Λ \/TX®C Let \θ\2 denote Bθ, and so on.
3 Strictly speaking, what we have are coordinates for Teichmύller space, since we have neglected
the possibility that e0 may be a fixed point of a large diffeomorphism. Since the almost-complex
structure is defined by equations invariant under both large and small diffeomorphisms, however,
it is well-defined even at such a singular point. A similar remark applies to the discussion of the
next section
4 I thank Y. Dellapietra for helping clarify this construction
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Using e we can define a connection ω = ωz on the base manifold X. We have

[dz9dϊ]= -i(ωd-z + ώdz),

where dz = φ ~1 — is a vector field on X and 0 is the factor in (2.4). In turn ω defines
ou

a covariant derivative D = DZ. Finally, choose a set of 2g — 2 sections χι of

K®K~1/2, where K is the holomorphic tangent of X in the complex structure e

and X 1 / 2 its holomorphic square root determined by the choice ]/TX. Let ζ* be a

set of anticommuting generators for Λ C29~2, and

X = *Γί\ (3.1)

where the function χz

+ is χι expressed in terms of the frame. We then have (see [6])

The normalization chosen is convenient in that in the flat case we get the usual

Ez= —,E+ = ~- + 0 — . We define Ez and E~ to be conjugates of these, with the
OU OU OU

rule that θχ = θχ, \θ\2 = — \θ\2, etc. One can show that EA and EΛ are dual, and that
they satisfy the integrability condition for a superconformal structure [8]:

(3.3)

and the conjugate equations, where [βA, Eβ] = tAB

cEc defines tΛB

c. These con-
straints include the three "essential" ones defining a superconformal structure as
well as the two which fix the gauge group from G to superweyl and local (7(1) [8].
Note that in (3.3) and below we never introduce a connection V on X.

We interpret (3.2) as follows.5 Let V be a neighborhood of 0 in C39"3. We can
use (2.3) to make VxX into a complex manifold of dimension 3g — 2, a
holomorphic family of Riemann surfaces. Letting V=(V, ί\Cl9~2) we can
similarly regard (3.2) as making VxX into a complex supermanifold of dimension

5 Another construction of families of SRS appears at the end of [15]. The two approaches appear
to be equivalent. Also, as mentioned before a generalization of the Bers embedding is given in [11]
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3g —2|2g — 1 , a family of SRS. This family depends on the original family of
ordinary frames e and on the choice of the χ\

One can now ask whether (3.2) varies holomorphically with t and ζ. This is
not so obvious. Indeed, the various appearances of θ, e, D, χ, and ώ in Ez, E +

make it clear that dEJdϊ\ etc., will not vanish. Nevertheless, it is possible that
these variations vanish modulo gauge, i.e. they may induce holomorphic tan-
gents to Jί. This is what we will show in the next section.

Before proceeding, however, we should check that (3.2) is globally defined on
X. Suppose that we replace e bye=f2 e, where / is a map to (7(1). Then θ becomes
3=fθ cindάΘ=f'άθ + (df)'θ, while ώ=f-\ωΛ-2if~γdJ\ It is easy to see that
the transformations of άO and ω combine to make the new frame EΛ defined by (3.2)
a phase rotation of EA. Thus EA defines the same superconformal structure as EA;
in particular, this structure is continuous across patch boundaries.

Similarly, if e=f2e, where / is a real nonvanishing function, then EA suffers
only a superweyl transformation. Thus our family of SRS depends only on the
given family of Riemann surfaces, not on the slice chosen to represent it.6

4. Complex Structure

Following the classical case we can define a holomorphic complex variation of a
frame EA to be one for which δEz = δE~ =0. This is essentially the prescription of
[5] since supermoduli space sits inside the space of all complex supermanifolds
[8, 9]. More precisely, we begin with a given SRS.7 There are many representations
of its superconformal structure as frames on X, and we choose any one. Let
HA

B = (δEA

N)EN

B represent a small fluctuation. We call it holomorphic if HA

Z and
HA~ both vanish up to gauge fluctuations. The latter include the generators of
local G-transformations, H.X^G, as well as small diffeomorphisms:

δEA = lV,EAγ, H/=Vctc/-dAV
B, (4.1)

where V is some vector field on X.
One must show that the above definition factors through the gauge equiva-

lences to define a splitting of the tangent spaces to J(. For the
this follows simply because by definition G does not mix EZ,E+ with EZ,E~. For
diffeomorphisms it follows because the vanishing of H/,HA~ is a set of scalar
equations.

Of course not just any HA

B is permitted. The frame EA + δEA must satisfy the
same torsion constraints as EA itself. To write these out we must first derive certain
relations among the components of tAB

c, similar to the Bianchi identities in [6].
If a frame E satisfies the constraints (3.3), then we have

, (4.2)

(4.3)

6 For this to work it is important that the super-slice be determined by tensors χ in K®K 1/2, not
K3/2, so that χl and not χQg is Weyl invariant. For this and other reasons the alternate choice made
in [20] is not useful
7 In fact, we are always implicitly considering families of SRS, as in [19]
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where τ = t+ +

 + is an odd function. For the particular solution (3.2) we have

i —\
-χω + Dχ), (4.4)

but for now we proceed in a general gauge. Using (4.3) and the Jacobi identities we
can rewrite [£ z, £ + ] in terms of τ, to get

tz+

 + = ±d + τ; tz +

 z=-τ; tz+~ = tz +

 z = O, (4.5)

where d+ is E+ regarded as a differential operator. Similarly,

tzJ = τ\ tz_
z = 0; tz_- = -\d+τ. (4.6)

Now consider the distorted frame EA + HA

BEB. It has torsion tAB

c + δtAB

c

9 where

δtAB

c = dΛHB

c + HA

EtEB

c-{-)ΛB(A~B)-tAB

DHD

c.

(Compare the formula with connections in [21, 7].) Setting the variation of the
constraints (3.3) equal to zero we find that HA

B must obey five equations and their
conjugates:

(4.7)

Of the six remaining complex degrees of freedom in UA

B, two are Weyl and (7(1)
and can be removed by setting

H+

 + =H_-=Q, (4.8)

analogously to our earlier elimination of hz and h-z.
We can now give a solution to (4.7) and (4.8) which is holomorphic in the above

sense: let H_z be an arbitrary superfΐeld and

(4.9)

All eleven of the other components vanish. Furthermore, one can choose

H_z = θmz--\θ\2κz_, (4.10)

where m is a quadratic differential and K is a differential of spin f, times an
anticommuting parameter.8 Equation (4.10) is essentially the super-Beltrami
differential considered in [11] and elsewhere.

8 This differs from the prescription in [5]. One can show that the lowest term in H _z can be gauged
away and hence cannot contain the supermoduli
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To show that the family of SRS defined by (3.2) is holomorphic we could
choose δt\ <5ζι + 0; δt\ δζ^O and show that the resulting δEA is gauge-equivalent
to a fluctuation of the form (4.9). This procedure requires that we find the explicit
gauge transformation taking (4.9) into the Wess-Zumino gauge of (3.2). Instead
we can simply substitute both (3.2) and (4.9) into the string action and verify that
the fluctuation (4.9) has the same effect as a certain μ [see (2.5)] and a certain δχ
[see (3.1)].

Begin with the action [6]

S= j(detEN

A)(d2ud2θ) d + X • d_X,

where det is the Berezin determinant and dudθ is the Berezin integral form. One
then shows that detEN

A = \φ\2(l +il^l2 |/l2) Expand the superfield X as
y + θψ + θψ &s usual we can drop the auxiliary field in the last term. Substituting
(3.2) gives [see (2.4)]

The variation (4.9) gives to first order

δSwz = ί \φ\2d2u{m(ψdzψ -(dzy)2 + (8zy)χψ) + κ((dzy)ψ - \χ\xp\2)}.

Thus the holomorphic fluctuation (4.9) is the same as the variation μ = m, δχ = K,
μ = δχ = 0 [see (2.5)], so that our coordinates are holomorphic to first order about
every (t,ζ). Therefore, they are holomorphic coordinates to all orders. In
particular, any other local coordinate system (t, ζ) for Jί built in this way using a
different holomorphic family of Riemann surfaces and a different family of {χ1} will
differ from (t, ζ) by an analytic map of c3g~3{2g~2 to itself, and so Jί is a complex
manifold away from its orbifold points.

Finally, we also learn that the coordinates (t,ζ) are nondegenerate for an
appropriate choice of {χ1}. This follows since once can show that (4.10) cannot be
gauged away, using (4.1), (3.3), (4.5), (4.6), and (4.4).

5. Conclusion

The Wess-Zumino gauge solution to the constraints of 2d supergravity supplies a
class of special coordinate systems (ί, ζ) for the superspace Jί of all super Riemann
surfaces. These coordinate systems all have something in common: each singles
out a subspace of ΎcJί defined by δΐ= 0, δζ= 0, and the holomorphic tangent space
defined in this way is independent of the choices made in defining the coordinates.
Moreover, it agrees with the natural almost-complex structure on Jί. It is
possible that the family of coordinate systems defined by (3.2) contain more
invariant information than just a complex structure. For example, they may
reduce the structure group of Jί, just as a superconformal structure on X reduces
its structure group [8]. Such additional structure on M (or a generalization of this
space such as the one described in [22]) may prove to be essential to specify fully
the integration prescription on Jί needed in the fermionic string.

Notes added, (a) G. Moore as pointed out that the complex coordinates constructed here are not
the most general ones, and that other choices may be important. One obtains the most general
coordinates by composing the choice here with a holomorphic map from £30~3I20~2 to itself.
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Equivalently one generalizes (2.3) and (3.1) from functions linear in ί, ζ, respectively to general
analytic functions of both t and ζ.

b) The frame (3.2) can be simplified if we require only that it satisfy the essential torsion
constraints. A G-transformation which is neither superweyl nor local 1/(1) suffices to remove
the middle term of E+, though it modifies the last constraint in (3.3).
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