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Abstract. The massless singularity of a ferromagnetic Gaussian measure on
Z + is studied by means of the coarse graining renormalization group method.
The result gives information about a singularity behavior of a continued fraction
and a time decay rate of a diffusion (random walk) on Z + .

1. Introduction: Problem and Results

We regard Uz+ as a measurable space with the σ-algebra generated by the cylinder
subsets of Uz+. Let us introduce the notion of ferromagnetic Gaussian measures
on Uz+. For bounded positive sequences J = (Jn)neZ+ and g = (gn)neZ+ satisfying

inf #„>(), (1.1)

the pair (J, g) is called a ferromagnetic pair. We define, for a ferromagnetic pair
(J,#), matrices H(J) and D(g) by putting, for n,meZ + ,

Hnm(J) = 0, | n - m | > 2 ,

= J

n*m> \n-m\ = l,

= -Jn-1-Jn, n = m, (1.2)

and
Dnm(g) = δnmgn, (1.3)

where n A m = mm(n, m) and J_ x — 0. The matrix D(g) — H(J) induces a bounded
linear operator on /CO(Z + ) = {(φn)neZ\ sup \φn\ < oo} and it has a symmetric

positive definite inverse (see Lemma 2.1 and 2.2). Then there exists a unique
Gaussian probability measure μJg on Uz+ with mean 0 and covariance (D(g) —
H(J))"1. We refer to the probability measure μJg as the ferromagnetic Gaussian
measure characterized by (J,g) and write
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for any integrable function F(φ) on UI+. In particular,

, (1.4)

holds. Our concern in this paper is the quantity:

= <Φ2o>(J,g).

Ferromagnetic Gaussian measures appear in the statistical mechanical theory
of spin systems under the name "Gaussian model" or "free field" (for example, see
[1]). In such a literature, Jnm is called a ferromagnetic (nearest-neighbor) interaction,
and gn corresponds to the square of mass. As is shown in Corollary 2.12, the
function /(J, tg) diverges as ί J,0, where (tg)n = tgn, neZ+. The aim of this paper is
to study the "massless singularity" of f(J, tg) as t[0. We show the following:

Theorem 1.1. If a ferromagnetic pair (J,g) satisfies

C1n~y^JnSC2n-\ n>0, (1.5)

for some constants Cί9C2>0 and y ^ 0, then it holds that

αo logί 7 + 2'

The theorem is restated in several ways. First we note that f(J,tg) has an
expression in the form of the continued fraction (see Appendix):

1 1 1 1

Then we have:

Corollary 1.2. Let (an)neZ+ and (bn)neZ+ be positive sequences such that

C3<an<C4, n^l,

C3n
y<bn<C4n\ w ^ l ,

for some constants C 3, C 4 > 0 and y ^ 0. Then, the continued fraction

1 1 1 1

ta0 +bo + ta1 +b1 +

satisfies

α o
log ί

Secondly a ferromagnetic Gaussian measure can be related to the diffusion
(random walk) problem o n Z + . Consider the diffusion equation:

~u(τ) = H(J)u(τ), τ>0, (1.9)
ατ

Mn(0) = <?<,„, neZ + . (1.10)

It is easily seen that the Laplace transform of un(τ) is given by the correlation
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function of a ferromagnetic Gaussian measure:

00

\un(τ)e-τtdτ = (φoφny{J,t\), neZ+,
0

where 1 = (1,1,... )e/°°(Z + ) . Then, employing the Abelian theorem, we obtain the
following corollary.

Corollary 1.3. Assume that the condition of the theorem is satisfied and that the
solution of (1.9), (1.10) has the estimate

C5τ-°l2<u0{τ)<C6τ^'\ τ > 1, (1.11)

for some C 5 , C 6 > 0 and D > 0. Then the exponent D is given by

D = - ^ (1-12)
7 + 2

The exponent D is called the spectral dimension [3] (see also Definition of d(J, g)
in Chap. 2.2).

The one dimensional diffusion problem has been extensively investigated by
several authors in a general situation [4]. In particular, the fact stated in
Theorem 1.1 may be obtained as a special case of the results of [5], where Krein's
theory was used. We shall show the theorem by a quite different method, i.e. the
coarse-graining renormalization group (block spin) method. Our analysis is an
application of the renormalization group method for free fields on fractals studied
in [6].

Our program is as follows. In Chap. 2, we shall show the well-definedness of
the ferromagnetic Gaussian measure and prove some basic estimates. In Chap. 3,
the coarse-graining renormalization for the Gaussian measure will be introduced.
This plays the central role in Chap. 4 which is devoted to the proof of the main
theorem.

Related problems are considered in [7,8].

2. Ferromagnetic Gaussian Measure

In this chapter we show the well-definedness of the ferromagnetic Gaussian measure
on one dimensional chain introduced in Chap. 1 and list basic properties that we
use in the proof of Theorem 1.1.

2.1. Well-Definedness of μJg.

Let M be the set of all real matrices A = (Anm)nmsZ+ satisfying

M | | = sup Σ \Anm\<oo. (2.1)
neZ+ meZ +

Then (M, || ||) turns out to be a Banach algebra with the identity / and acts on
I°°(Z + ) in the canonical sense.

Lemma 2.1. For a ferromagnetic pair (J,g\ we define H(J) and D(g) by (1.2) and
(1.3), respectively. Then H(J) and D(g) are in M and there exists a symmetric matrix
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R{J,g)eM such that

{D(g)-H(J))R{J,g) = I, (2.2)

R(J,g)(D{g)-H(J)) = I (2.3)

with the estimate

\\R(J9g)\\ύ(supgn) \ (2.4)
\nel+ J

Proof. It is easily seen that H(J), D(g)eM. Let us show the existence of R( J, g). Put

μn = gn + Jn-1+Jn, neZ+.

We decompose D(g) — H(J) as a sum of its diagonal part D(μ) and off-diagonal
part E{J):

where

\n -

00

Then the Neumann series ]Γ (D(μ)~1 E(J))N converges in M, and hence D(g) —

H(J) = D(μ)(I-D(μ)-1E(J)) has the inverse R(J,g):

R{J,g)= £ (DiμY^EiJyfDiμ)-1. (2.5)
N = 0

The symmetry of R(J,g) is trivial. In order to show (2.4), we rewrite (2.3) as

R(J,g)D(g) = I + R(J,g)H(J).

Put 1 = f(l, 1,.. .)e/G0(Z + ) . If we note that H(J)l = 0, we have

R(J,g)D(g)l = l. (2.6)

This implies (2.4). •

We now need a positive definiteness of R(J,g).

Lemma 2.2. For ξelco(Z + ) such that ξ Φ 0 and ξnφ0 only for finite n's, zί feoWs ί/zαί

<f,Λ(J j f lf)O>0. (2.7)

Proo/. Put fy = R(J,g)ξ. Then:

nel +

If we note that

«D(g)-H(J))η9ηy=
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we have the lemma. Π
By the help of the above lemmas, the standard method of the probability theory

ensures the existence of the ferromagnetic Gaussian measure μJg with mean 0 and
covariance R(J,g).

We now pick up some convenient formulas from the above argument.
Let us prepare some notations. For i9jeZ+9 we say that a sequence w =
(wo,w1,...,wN) ^Z+ is a walk from i to j if w0 = i9 wN = j and \wk — wk+ί\ = 1,
0 ^ k ^ N — 1. The set of all walks from i to j is denoted by W(i, j) For a walk
w = (wθ9w1> > wΛΓ)eί^Γ(i, j) and a ferromagnetic pair (J,#), we put

iV

μw= Π /w

Proposition 2.3. T/ẑ  correlation function of a ferromagnetic Gaussian measure
satisfies the following equalities:

<φtφjXJ,g)= Σ Jw/μ*, (2.8)

Σ<ΦtΦj>(J,g)9j = i (2-9)

< 0 ; </>; > (CJ, Cff) = C ~ ' < </),- φj > ( J , 0), (2.10)

where iJeZ+ and c> 0.

Proo/. The "random walk representation" (2.8) is equivalent to (2.5) and the
formula (2.9) is nothing but (2.6). The last equality is trivial. •

2.2. Basic Properties.

In the following, unless otherwise stated, (J,g) and (J',gr) are arbitrary ferro-
magnetic pairs.

Definition. Consider the quantity f(J,g) = (φl}(J,g). If the limit

no logί

exists, we say that the ferromagnetic pair (J, g) has the spectral dimension, and we
define d(J,g), the spectral dimension of (J,g), by,

no logί

In the remainder of this chapter, we shall study the behavior of f(J,g) and
d(J9g) under the change of the parameters J and g.
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Lemma 2.4. For a ferromagnetic pair (J,g\

, neZ+. (2.11)
(n + 1) mf g

Proof The positivity of (φ0Φn)(J,g) is trivial from the random walk represen-
tation (2.8):

<ΦoΦn>(J,9)= Σ —
weW(O,n) ^w

Since each term of the random walk representation is positive, we can make
resummations and throw away terms to obtain lower bounds. We follow the
method of stopping time arguments:

<ΦoΦn>(J,g)= Σ — Σ ' T ^ + I Σ ^ I + Σ » ^
weW(O,n) Mw w'μw' w"eW(n+1,0) μw» „ jUw

ftn w"eW(n +1,0) Mw" w"eW(n + 1,0) Mw"

Here the summation £ ' is over all walks W = (n,n+ 1) or (n, j1J2>- > Jm>n + 1)
(m = 1,2,...) starting from n and ending at n + 1 with the property that jkφn+\
for all feG{l,25...,m}, and the summation^]" is overall walks w = (w,7 l5i/2,...,jm,0)
(or (n, 0) if n = 1) starting from n and ending at 0 with the property that jkΦn + l
for all fce{l,2,...,m}. In the calculation, we have also used the fact that

Combining (2.12) with (2.9), we have

oo / \ n

1 = Σ Qm(ΦθΦmXJ>9)>\ i n f 9m) Σ (ΦθΦmXJ>9)
m = 0 \ meZ + J m = 0

bn}(J,g). •

Lemma 2.5. Lei (J, #) αnί/ (J, #') fee two ferromagnetic pairs. Define g(s) = (g(s)n)neZ+,

(0 S s ^ 1) fey,

^(s)n = f̂π s + gfπ(l — s). (2.13)

Then,

~f(J,g(s))= ~Σ(βn- g'nKΦθΦn>(J,9(s))2- (2.14)

Proof. From (2.2) and (2.3), we have, for s, s' > 0;

ίceZ +
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and

Σ Σ (ΦmΦn)(J>g(sΊ)(D(g(s'))-H(J))nk(φkφ0)(J,g{s))

n,keZ +

= <φmφ0>(J,g(s)). (2-16)

Multiply (2.15) by (φmφn}(J,g(s')\ sum over neZ+, and subtract (2.16) to obtain,

<φmφo>(J,gV))-<φmΦoXJ,g(s))

= Σ (g(s)-g(s')Uφmφnχj,g(s'))(φnφoXJ,g(s))
nel +

= Σ (gn-gn)(s-s')(φmφn)(J,g(s'))(φnφ0)(J,g(s)). (2.17)

From (2.17), we have the continuity of (φmφ0}(J,g(s)) with respect to 5. If we put
m = 0 in (2.17), divide by (s' — 5), and use the continuity of (φmφ0}(J,g(s)% we
obtain the desired result. •

Corollary 2.6. (i) //

then

(ϋ) //

then

(2.18)

',g')\^(mίgn\
\ n /

-2

(2.19)

Proof, (i). From the assumption and Lemma 2.5, the statement follows directly,
(ii). From Lemma 2.5, Lemma 2.4, and the assumption, we have,

Έf(J,g(s))

Therefore, using the assumption and (i),

-2

I log f(J,g) -log f(J,g')\ = ί -Us
log/( J,g(s))ds

f{J,grιΣ^+V~2(9'n-9n)- U

Corollory 2.7. Ifd(J,g) exists, then d(J,g') also exists, and d(J,g) = d(J,g').

Proof. Since g = {gn)neI+ and g' = (g'n)nel+ are bounded positive sequences satisfying
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(1.1), there exist positive constants M and M' such that

Mgn<g'n<M'gn, for all neZ+.
From (2.18),

f{J,tM'g)^f{J,tgf)^f{J,tMg), for ί>0.

Therefore if 0 < t < 1,

log f(J, tWg) ^ log f(J, ttf) ̂  log /(J,

logί ~~ logί "" logί

Clearly,

l i m l o g / ( J , t M g ) = l i m logf(J9tg) =}imlogf(J9tg) = 3(J9g) {

no logί ί i 0 l o g t - l o g M no logί 2

from which the statement follows. •
Corollary 2.7 shows that d(J,g) is independent of the choice of g = (gn).

Henceforth we shall write

3{J)=2(J9g).

Lemma 2.8. Let (J, g) and (J\ g) be two ferromagnetic pairs. Define J(s) = (J(s)n)neZ+,
(0 ̂  s ̂  1) by,

J(s)n = Jns + J'n(l-s). (2.20)
Then,

^f(J(sU)=-ψJn-J'n)Ί(<ΦθΦn>(J(s),ώ (2.21)

Proof Direct application of the method used in the proof of Lemma 2.5 proves

this lemma. •

Corollary 2.9. (i) //

Jn^J'n, neZ + ,
then

f{J'9g)ύf{J,9\ (2-22)

(ϋ) //

then

\logf(J,g)-\ogf(J\g)\^2-1(mϊgn) f{J\gYι Σ (n+iy2{J'n-Jn).

(2.23)

Proof (i) From the assumption and Lemma 2.8, the statement follows directly,
(ii). From Lemma 2.8, Lemma 2.4, and the assumption, we have,

j~f(J(s),g)
as
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Therefore, using the assumption and (i),

1 d
I log/(J,0)-log/(./ ' , 0)| = I τlog f(J(s)9g)ds

o ds

Corollary 2.10. Assume that d(J) exists. If there exist positive constants C and C
which are independent ofneZ+ such that,

CJn<J'n<C'Jn,

then d{J') also exists, and

d{J) = d(f). (2.24)

Proof. From (2.22),

f(CJ,tg)Sf(J',tg)Sf(CJ,tg), for ί>0.

Using (2.10), we have

/(J, tC-ιg)/C ύ f(J\ tg) ύ f(J, tC'-1 g)/C.

The statement is now reduced to Corollary 2.7. •

Lemma 2.11. Define a ferromagnetic pair (J,g) by

g« = g*l%

gn = g*, n= 1,2,3,...

Λ = J*, neZ + ,

where g* and J* are positive constants. Then

Proof. From (1.6) we see that f{J,g) must satisfy,

where

from which we obtain

X =

j \

X

-g */2 +

9

-1 -

(J

1

V

*g*-

\-X'

f^* 2/4) 1 / 2

( 1 2 5 )
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If we put this into (2.25), we see that f(J,g) must satisfy:

Since we already know that f(J,g)R(J,g)00 exists and is positive, we have the
statement. •

Corollary 2.12.

l im/(J,ί0)=oo. (2.26)

Proof. Since J = {Jn)neI and g = {gn)neZ+ are bounded sequences, there exists a
constant M( > 0) such that

Jn<M, and gn<M, for all neZ+.

Using (2.18), (2.22), and Lemma 2.11, we have

1 / 2 too, as ίJO. •

3. The Coarse Graining Method

In Chap. 2, we defined the spectral dimension d(J) which describes the "massless
singularity" of the measure μJg, and derived some properties of d(J), assuming its
existence. In this chapter, we prove a simple lemma which gives us a sufficient
condition for the existence of d(J). In this lemma, we assume that f(J,g) =
(Φl}(J,g) satisfies an identity (in the massless limit) under the scale change of
parameters (J,g). To obtain the identity, we then consider a marginal distribution
of μJg, by "integrating" the variables φ2n + 1,neZ+. The intuition of this procedure
came from the coarse graining renormalization group method, which appears in
statistical mechanics.

Lemma 3.1. Consider a ferromagnetic pair (J,g). If there exist positive constants a
and β such that β>a and

l i m /(J>*0) = 1

αo f(&J,βtg)

then d(J) exists, and

~ 2 log I

Proof. Put

x=-(logί)/log(£/α)
and define

From the assumption and (2.10),

lim {F(x) - F(x - 1)} = 0,
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from which we have

From the definition of x and F(x) we have

l i m

ί i 0 logt

Proposition 3.2. Consider a ferromagnetic pair (J,g). Define another ferromagnetic
pair (J,g) by

j _
Qln+1 ^~ J2n^~ J2n+l

= g + 2 > i + 1
§n = gin+- 7 , ^2n-l+- / , ^2n+l?

Uln-l ~i~ J2n-2~T~ J2n-1 U2n+1 + J 2 n + J 2n+l

Then
l ) . (3.3)

Proof The Gaussian probability measure μJg has mean 0 and covariance R( J, #) =
(D(g) — H(J))"1. Consider a measurable map

defined by;

The image measure

is again a Gaussian probability measure with mean 0 and covariance R(J,g) =
(^(J,όf)n m)^G Z +, where

R(J,g)nm = R(J,g)2n,2m (3.4)

As in Lemma 2.1, we decompose D(g) — H(J) into a sum of diagonal part D(μ)
and off-diagonal part E( J):

D{g)-H{J) = D{μ)-E{J\
where

nm = 0, nΦm,

As have been proved in Lemma 2.1,
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On the other hand, from the definition of D(μ) and E(J\ we have, for odd N,

Therefore,

^ 00

R(J>g)nm= Σ {(D(lA~lE{J))2ND(lA~1}2n2m
N = 0

N = 0

If we define D0,D1eM by

£>o,nm = 0, nφm,

DUnm = 0, \n-m\Φl,

= (E(J)D(μΓ1E(J))2nam, \n-m

we have

00 00

X {(D(μΓίE(J)D(μ)-1E(J))ND(μΓί}2nam= £ {(D^D^D^}nm
N = 0 iV = 0

where the last equality can be proved in the same way as Lemma 2.1. If we write
down the last expression explicitly, we find that it is equal to R(J,g). If we use
(3.4) we obtain, in particular,

/ ( J , g) = R(J, g)00 = R(J, g)00 = R(l g)00 = f(J, g). •

4. Proof of the Main Theorem

Proof of Theorem 1.1. For γ = 0, the theorem is a direct consequence of Lemma 2.11
and Corollary 2.10. Let us assume y > 0. We first consider the following nonlinear
eigenvalue problems:

J J . (4.1)
J 2n + J2n+1

The above set of equations has an explicit solution.

Lemma 4.1. For any fixed y > 0, (4.1) with α = 2~γ~1 has a solution:

Jn = J*9 neZ + ,
where,

j * = {α/(l - α)}(2α)[ log"/log2], n ^ 1, (4.2)

= 1, « = 0,

and for xeR, [x] is ί/ze largest integer k satisfying k^x.

Proof. Straightforward calculation proves the statement. •
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Next we consider the following set of equations:

J* J*

βg = g + 2 j J g + ^J 2n-2~T~ J 2n-l J 2n~r J 2n+l

where g_1=0.

Lemma 4.2. Equation (4.3) with β = 2 has a solution:

where,

= 3/{2(2-α)}, n = ί,

- α ) } , n = 0. (4.4)

Proof. Straightforward calculation proves that (4.4) satisfies (4.3). •
We put a = 2- y~x and β = 2 in the following. We define the family (J*(t), tg*(t)\

ί > 0, of ferromagnetic pairs on Z + by

fyln-l +^2n-2 + J*n - 1

H -p ^2π + i p neΈ+. (4.6)

Then (3.3) implies

f(J*,tg*) = f(aJ*{t)9βtg*(t))9 for ί > 0 . (4.7)

The following uniform estimates are easily derived by explicit calculations: For
neZ+ and t > 0 ,

C 4 « ~ y < J * < C 5 « ~ y , « ^ 1 , (4.8)

(4-9)

c ί̂, (4.10)

0<f l f*-^*( ί )n<C 2 , (4.11)

βg*{t)n>g*2n, (4.12)

where C i ? (/= 1,2,4,5) are positive constants independent of n e Z + and ί > 0 .
Next we define, for ί > 0,

f(<χj*,βtg*{t)) '

and

f(*J*,βtg*
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If we can show h^t), h2(t)-+l as^ |0, then (3.1) with α = 2~y~~ι and β = 2 follows,
and hence we have the value of d( J*).

Lemma 4.3. Suppose that we have the estimate:

- l o g / i J W ) ^

αo logί

/or some δ > 1 — 1/y. T/zerc zί /ϊo/ds ί/zαί

l imΛ i ( ί)= 1, Ϊ = 1,2,

which, (as we remarked above,) implies

2(J*) = 2/(γ + 2). (414)

Proof. First we note that

J*), if n > 0 . (4.15)

Let ε be an arbitrary constant satisfying 0 < ε < 1. For sufficiently small t > 0, we
can define,

N(ί,ε) = max{Λ/ reZ+ |J*(ί)Λ/i*>l-ε if O^n^N}.

(Since we assumed γ > 0, we have N(t, ε) < oo.)
Let us show that if ί > 0 is sufficiently small,

N(t,ε)γt>C3ε, (4.16)

where C3 is a positive constant independent of t and ε. We have, with N — N(t, ε):

N(t, εyt = N(t, εY4aJ% + 1 (J%+ JJ*(t)N+1 - 1) > N(t, εγ4oJ%+1 ε

) + l)~yε > C3ε,

where we used (4.15), J*(t)N+1/J%+1 ^ 1 - ε, and (4.8). Thus we obtain (4.16).
We also see from the definition of N(t, ε) that if 0 <£ n ̂  JV(ί, ε),

0 < l - J * ( ί ) n / J * < ε , (4.17)

and from (4.3), (4.6), (4.1), (4.5), J J Π ^ JJΛ + 1 , (49), and (417):

2n-2 JIn

(4.18)

Next we decompose fci(t):

_ f(oJ*(t),βtg*(t)) f(aJ(t\βtg*(ή)
l U f(aJ(t),βtg*(ή) f(aJ*,βtg*(t))
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where

= J*9 n>N(t9ε). (4.19)

Let us estimate P^t). From (2.10) and (4.13) we have

f(ccJ*,βtg*)^.oc ε β~ +εt~ + ε (4.20)

if t( > 0) is small enough. Using (2.23), (2.22), and (4.10), we have:

C7

°gP N(t,ε)tf(aJ*,tβg*y

where C7 is a positive constant independent of t and ε. Furthermore, by the help
of (4.20) and (4.16), we obtain

where C8(ε) is a positive constant independent of ί. Therefore, if δ > 1 — 1/y, we
have P^t)-* 1 as t | 0 by choosing sufficiently small ε. Let us estimate β i (0 Since
(4.17) implies

we have

f(x(l-ε)J*9βtg*(t))
= y i U

=

f(oJ*,βtg*(t)) l-ε f(*J*,βtg*{t))
where we also used (2.22), (2.10) and (2.18). Thus we see that

1 ^ limhj(t) ^ΰ

holds for any ε < 0 sufficiently small. This proves h1(t)-^l as t J,0.
The proof of h2(t)^> 1 as ί JO goes along the same line. We put

= g*9 n>N(t9ε)9

and decompose /z2W
 a s

f(*J*,βtg*{t)) f(aJ*,βtg(t))
2 U f(«J*,βtg(t)) f(«J*,βtg*)

= P2(t)Q2(t).

Equations (2.19) and (2.18) together with (4.11) and (4.12) imply

which, together with (4.20) and (4.16), yields
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where C11(ε) is a positive constant independent of t. On the other hand, since
(4.18) and (4.4) imply

we have

— ScΊ\ ) =
f(oJ*,βtg*) 1-ε f(oJ*,βtg*)

where we used (2.19), (2.10) and (2.22). This proves Λ2(ί)-» 1 as ί |0 . Π
Let us continue the proof of the theorem. For each y > 0, we denote by J y , the

interaction J* defined by (4.2) with α = 2~y~ \ and similarly, we define g r We have
proved that, if there exists a constant δ>l — ί/γ that satisfies

) ^ (4.21)
ίjo logί

then we have

2(J y) = 2/(y + 2). (4.22)

Since, from (2.26), we have the trivial estimate (4.21) with δ = 0, (4.22) holds for
0 < γ < 1, in particular, for 0 < γ ̂  1/2. Suppose that we have proved (4.22) for
γ ^ y. Then for any y satisfying y < y, we have:

αo logί α o logί y

Therefore (4.21) with δ = (y+ l)/(y + 2) holds. Since, for y ̂  y + 1,

(4.22) holds for y < 7 ̂  y + 1. Therefore we have (4.22) for all 7 > 0 by induction.
For any J satisfying (1.5), applying (2.24), we have d(J) = d(Jy). This completes

the proof. Π

Appendix

For a ferromagnetic pair (./,#), we prove

that is,

(φly{J,g)=\\mfn, (A.2)

where

— — — — - n>0

1 1 1 1 1 1
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S i n c e S e i d e l - S t e r n ' s t h e o r e m ( [ 2 ] p . 8 7 ) i m p l i e s I b e c a u s e of ]Γ {gn + J~1)= co I

l i m / 2 M = l i m / 2 π _ 1 ?
n-* oo n-> oo

it suffices to show that

(ΦlXJ,g)= Hm/2N. (A.3)

Put μo = go + Jo and μn = gn +Jn_1 + Jn, n>0.
From

- H{J))on

x, (A.4)

we have

μo<Φo>(J,g)-Jo<ΦoΦi>(J,g)=U (A.5)

μn<ΦθΦnXJ,g)-Jn-l<ΦθΦn-lXJ,g)-Jn<ΦθΦn+lXJ,9) = 0, Π £ 1. (A.6)

We modify the original ferromagnetic pair (J, #). Fix N >0. Put JN = 0 and increase
</JV so that the value of /% does not change. Write the resulting ferromagnetic pair
as (J,0). Put

Then the analog of (A.5) and (A.6) imply

f(J,g) =l/(go + Cl), (A.7)

+ c^i)}, N>n>0, (A.8)

+ ^ ) } (A.9)

As is easily seen from (A.7), (A.8), (A.9), and (A.I), it holds that

On the other hand, from the definition of (J,g), f(J,g) can be written in the form
of (2.8) that is a finite volume approximation of the original expression (2.8): i.e.,
the summation is now taken over all walks in W(090) not passing through the
point N + 1. Since the finite volume approximation of (2.8) converges to f(J,g) =
(ΦoXJ,g) in the limit JV-> oo, we have (A.3).
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