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Abstract. For a general monopole the algebraic curves defined by Nahm are
shown to be the same as the spectral curves.

1. Introduction

It is shown in [6] that an SU(n) monopole or solution of the Bogomolny equations
with maximal symmetry breaking at infinity has associated to it a collection of
n— 1 algebraic curves 5 l 5 . . . , 5 π _ 1 whose intersections SinSi+l decompose as
Si + lti + Si-lti. Following [3] these are called spectral curves and a general
monopole is completely determined by these curves and the splitting of St nSi + 1 [6].

Nahm, using his adaption of the Atiyah-Drinfeld-Hitchin-Manin (ADHM)
approach to instantons, has shown how to associate to a monopole a possibly
different set of n — 1 curves. The purpose of this paper is to show that the spectral
curves and the Nahm curves always coincide for a general monopole. It provides
in the particular case of SU(2) a replacement for [4] Sect. 7, which is incorrect
due to a sign error.

In Sect. 2 some basic facts and the construction of Nahm's spectral curve is
reviewed. Each of Nahm's curves is constructed from a vector space Wz and three
endomorphisms Ti(z)eEnd{W2), i= 1,2,3.

Section 3 shows how to realize the spectral curves by applying Nahm's methods
to a different vector space Vz and endomorphisms Hi(z)eΈnd(Vz). In the final
section an isomorphism is constructed from Vz to Wz which intertwines H^z) and
Ti(z) for i = 1,2,3, and thereby proves the identity of the curves. This isomorphism
is provided by the Penrose correspondence between solutions to zero rest mass
field equations and elements of sheaf cohomology groups, reduced to the
three-dimensional situation. It is the link between the algebraic geometry of the
spectral curve and the analytical origin of the Nahm curve.

As this paper relies heavily on the methods of [4] we shall, in the interests of
brevity, assume that the reader has a copy of it near at hand. Throughout we shall
adopt the same notation for a holomorphic bundle and its sheaf of sections, in
particular Θ(k) will denote the holomorphic line bundle one F1 of Chern class k
or its pullback to TP X .
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2. Review

We review the notation and results for an SU(n) monopole (A, Φ) with maximal
symmetry breaking at infinity [6]. The asymptotic expansion of the Higgs field
can be assumed to be

Φ(0,0,r) = i
o"

o

I

Ύt

0

o
(1)

where £ μi = £ kt = 0 and μί > ••• > μn. The magnetic charges of the monopole
i = l ί = l

are defined by m1 =kί,...,mn-1 = kι + ••• + feπ_x and are all non-negative.
When (A, Φ) satisfies the Bogomolny equations and appropriate boundary

conditions [6] it defines a holomorphic bundle E of rank n on the space 2Γ = ΎVX

of all oriented lines in R3. The fibre over a line y is the vector space of all functions
s:y ->C" satisfying

(V y -iΦ)s = 0, (2)

where Vy is the covariant derivative defined by A restricted to the line. The collection
of all lines through xeR3 defines a P x c ^ the real section determined by x, and
£ is holomorphically trivial on real sections. Substituting (1) into (2) and studying
the asymptotic decay of solutions in the + oo and — oo directions along the line
defines two families of holomorphic sub-bundles,

£ f c ». <=£„" = £ , (3)

with quotients

and

ί = l , 2 n - 1.

The line bundle Lμ is constructed from a 17(1) monopole with A = 0, Φ = iμ and is
defined in [3]: Lμ(/c) is Lμ tensored with the pullback from P x of the holomorphic
line bundle with Chern class k.

The pth spectral curve Sp is defined to be the set of y, where E£ c\E~_p Φ 0 or
as the divisor £Γ determined by the zeros of

φp:Λ?E;^Λp(E/E^p). (4)

It is worth noting that if we work with Φz = Φ— zz,zeR as Nahm does [8], then
for each z we can consider the set Sz where (2) has integrable solutions and then

and
ze(μp-ί9μp)

Sz = 0 otherwise.

Nahm's method of defining algebraic curves associated to a monopole is as follows
[8].
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For each z solve the Dirac equation for spinors coupled to C", that is,

(DA + Φz)φ = 0, (5)

where DA is the covariant Dirac operator. Using an index theorem and vanishing
theorem Nahm calculates that Wz, the space of integrable solutions to (5), satisfies

Wz = 0, z<μn, μγ<z,

dim Wz = mp9 zε(μp+1,μp).

This defines a vector bundle W on each (μp+1,μp) which is a sub-bundle of
the trivial bundle L 2 (R 3 ,C 2 ®C M ) x (μp+1,μp). If π is the orthogonal projection
onto W, then Nahm defines three endomorphisms and a connection on W by

ίπ(xjφ), j= 1,2,3, (6)

These satisfy Nahm's equations

VzT^lT^T^ (8)

and all cyclic permutations.
Now consider P x embedded as a conic in P 2 and let z1,z2,z3 be the sections

of Θ(2) over Px induced by the co-ordinates on P 2 . In terms of the co-ordinates
used in [3],

Zl=-i(l + ζ2), z2 = \-ζ\ z2=-2ζ. (9)

Denote also by zt the pullback of these to βΓ and note that because
?Γ ~ Θ(2) the bundle Θ(2) pulled back to £Γ has a tautological section η. In fact
in [3] it is shown that η,z1,z2,z3 form a basis of H°(<T, Θ{2)). Now using the map
det:End(VFJ->C we can define a section of Θ(2mi) on 3~ by

det(Vl+ Σizjτλ
\ J = I

if zG(μp + ί,μp). The divisor of this section is, in fact independent of ze{μp + ί,μp)
(see [8 or 4]) and determines a curve Np. We shall show that Np = Sp the pth

spectral curve.
The method of proof is to produce a space Vz isomorphic to Wz and

endomorphisms Ht(z) which are equal to Tt(z) under the isomorphism. Because
we shall show that the above construction applied to Vz and H^z) gives Sp the
result will follow.

3. The Twistor Viewpoint

In this section we construct using twistor methods the bundle Vz and the
endomorphisms Ht(z) and show that the divisor of

) ( 1 0)

is the spectral curve Sp if ze(μp+1,μp).
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The space used for Vz in the SU{2) case [4] was H°(S9LΓz(Et nE^)(2m1 - 1))
and this suggests that we look at

H°(Sp,L-zIp(2mp-l)l (11)

where Ip = Ep nE~_p is the pth intersection bundle (more correctly a sheaf with
support on Sp). To make Ip behave reasonably we must look only at general
monopoles. Recall that SinSi+ί splits as S ί > ί + 1 uS ί + 1 ( ί [7], then we have

Definition 12. A monopole is general if

(1) The Sf>i + 1 and Si + ίti are sets of distinct points without multiplicity, and
(2) The Su + ί and Si + ίti do not intersect the singular set of the spectral curves.

Any SU(2) monopole is general, and it was shown in [7] that general monopoles
form a non-empty open set in the space of all monopoles.

Now we also have

Lemma 13. The spectral curve of a general monopole has no multiple components.

Proof. If the curve Sp has a multiple component, then we must have Sp_ί=φ and
Sp+ί = φ9 and then the proof in [4] can be applied.

Using this definition we have

Proposition 14. For a general monopole dim(Ip) = 1 at all points of Sp.

Proof If we examine the definition of the S/7 and the Bruhat decomposition of
the flag manifold, we see that the points of SPiP+ί9Sp+ίtP9Sp-ίtP and SPfP_1 are
characterised as follows:

p^2. (15)

It follows that if dim£* n £ ~ _ p ̂  2 at some point on Sp9 then that point is in
all the above sets. But for a general monopole these sets are all disjoint.

From now on we shall assume that the monopoles is general. Now we should
like to show that

H°(Sp9L-*Ip(2mp-l)) = mp. (16)

First we prove a vanishing result.

Proposition 17. H°(Sp,L-zIp(2mp-2)) = 0 for ze{μp + 1,μp). (18)

Proof The proof is merely a matter of checking that the proof in [4] can be
generalized to this case. Firstly we have the injection

H°(Sp, L~zIp(2mp - 2)) -H°(S p 9 L~zE{2mp - 2)),

and the sequence

- 2)) - H°(Sp,L^E{2mp - 2)) -±^H\^,L^E{- 2)),

which is exact at the middle term. But using the fact from [4] that H°(3Γ, L"(p)) = 0
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if μ Φ 0 for any p, and the filtration of E (3), we have

H ° ( ^ , L - z £ ( 2 m p - 2 ) ) = 0 for ze(μp+1,μp).

So the composed map

H ° ( 5 p , L - 2 / p ( 2 m p - 2 ) ) ^ H 1 ( ^ , L - 2 £ ( - 2 ) ) (19)

is injective. The latter space in (19) is, by the twistor correspondence [2] the space
of all solutions (p:R3->C" of

(d*dA + ΦΪΦΣ)φ = 0. (20)

If we can show that anything in the image of (19) is integrable on R3, then the
vanishing theorem argument of [4] will show that it must be zero.

Because Ip is contained in both Ep and E~_p, we shall show that the class in
the image of (19) can be represented by two forms

Θ+EΩ°^{^9L-ZE;{-2))9 θ-eΩ°^(^,L-zE-_p(-2)) (21)

with θ+ — θ~ = dγ and θ + ,θ~,γ, all having support in a compact neighbourhood
of the spectral curve Sp.

If we pull everything back to θ±, γ on R 3 x S1, then these forms satisfy an
equation like (2) on the fibres. If we choose x outside of some ball of radius R, the
intersection of the real section through x with the compact neighbourhood of Sp

is two disjoint sets VN and Vs which are neighbourhoods of x/||x|| and — x/||x||.
Because of (21) it follows [4] that for || x || ̂  R there are constants C and ε ̂  0

such that

\\θ+(x,u)\\^Cεxp(-εχ μ) ueVN,

ε|x μ|) ueVs. (22)

Write y = γN + ys, where yN = y\ VN and ys = y\ Vs and let θ = θ+ — dys. The form

θ is cohomologous to θ+ and satisfies θ\ VN = θ + , Θ\VS = Θ~, so that

| | θ (x ,μ) | | ^exp(-β |x u|) (23)

for all u. Notice that Θ is only well-defined for || x || ̂  R, but as the twistor
correspondence can be applied between a neighbourhood of any point in R3 and
a neighbourhood of the corresponding real section in &~, it follows that the function
{x| || x || ̂  R} -» C defined by θ is the restriction of the function R3 -• C defined by
θ + . The function R 3 ^ C therefore has the right decay properties to apply the
argument in [4].

The forms θ+, θ~ exist as in [4], but to get y having the correct support we
have to be more careful. We can split the bundle E smoothly as

id θ\ id 0\ (A B
with d operators - and _ . These are intertwined by a map 1,

\0 oj \θ o J \C D J
where we think of element of E and E' as column vectors.
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If σeH°(Sp,L~zIp(2mp - 2)) we can extend it smoothly in a neighbourhood of

S and then Θ+ =(δσ/φp,θy. Applying the map ( ), we obtain

\B DJ
( 0 λ

A B\(dσ/φ;
c D)\O δj\ o

ΨpJ <Pp J

N o w A is the projection £^->£/£„""_ p , hence Aσ vanishes on Sp which has n o

multiple components, so Aσ/φp is well defined. Writing (24) as θ+ = θ~ + δy, we

see that θ+,θ~, and y satisfy (21) and have the correct support.

Letting square brackets a round a divisor denote the line bundle defined by

that divisor we have

Lemma 25. / , ~ L"< + ' ( - mp - mp + 1 ) ® [ S p + , _ p ] .

Proo/. Consider the m a p ξ p defined over 5 P by

Λ ' ( £ / £ " _ p )

Φp/ T'ίp -\ίP (26)

Using the definitions (15) we see that ξp is a surjection except on S p + l p . The

identity Λp~ιEp ~ £ + * ® d e t ( £ p ) shows that ξp defines a m a p

vanishing only on S p + 1 > p whose image is in Ip. In fact the m a p

has the form

E;

i = 1

and if some y^E^_p, then because yh...,yp form a basis of Ep , some linear

combination of yi9...,yt-. 1,yi+ ί,...,yp is in E~_p and the coefficient in front of y{

vanishes. Hence we have a map Lμp+1( — mp — mp+1)-+Ip vanishing on Sp + ltP. It

cannot vanish with multiplicity because we know that the induced map

has divisor 5 p + l j P + 5P_1 > P [7]. This completes the lemma.

From [7] we have that

as line bundles on Sp, and therefore

L-^/ p (m p + /) = [ S p _ l j P + 2 S p > ; i + 1 + ( / - 2 m p + 1 - m p

where i7 is a fibre of 5Γ '-»P1 which avoids the singularity set of S
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From Hartshorne [1] we have the Riemann-Roch Theorem for a possibly
singular curve

dim H°(Sp, [£>])- d i m i ί 1 ^ , [£>]) = \D\ + constant, (27)

where D avoids the singularity set of Sp. Letting D = SpnF, and applying
Riemann-Roch for compatified twistor space as in [4], we calculate the constant
as \-{mp- I)2. So

dimiί o (S, - L-"*Ip(mp + /)) - dim if1 ( S ^ ί Γ ^ m , + /)) = mβ - mp) + 2mp.

The argument of [4] can now be applied to give

and ze(μp+ uμp).
In particular we have now proved that

dxmH°(Sp9L-*Ip(2mp-l)) = mp

for ze(μp+1,μp). So let Vz = H°(Sp,L~zIp(2mp - 1)), and following the argument
of [4] we have the multiplication map

H°(SP, (9{2)) ®VZ-+ H°(Sp, L~zIp(2mp + 1)) (28)

with kernel Kz and

Proposition 29. The map Kz -• Vz defined by

is an isomorphism, therefore there exist endomorphisms H^z), so that Kz is the span of

o Σ
7 = 1

and the spectral curve Sp is the divisor of

detfol + i f ZJHJ(Z)).
1

f
7 = 1

Proof The proof that Kz-+Vz is an isomorphism is the same as in [4]. Then
3

det(τ/l + ί Σ zjHj(z)) defines a curve of the same degree as Sp, and this determinant
7 = 1

clearly vanishes on Sp, so as Sp has no multiple components this curve must be Sp.

4. The Identity of the Curves

To show that curves St and JVf are the same it now suffices to find an isomorphism
Vz -> Wz which intertwines the action of Ht(z) and Tt(z). It would, in fact, be enough
to do this for some ze(μp + ίiμp), but it will follow from the method of proof that
it can be done for any ze(μp+1,μp).
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The isomorphism follows from the twistor correspondence between solutions
of the Dirac equation and a sheaf cohomology group, described in four dimensions
in [2].

Proposition 30. The twistor correspondence gives an isomorphism from Vz to the
space Wz of L2 solutions of

(DA + Φz)s = 0. (31)

Proof Again as in Proposition 17 we use a coboundary to inject Vz into
H1(^~,L~2E(— 1)), and from the general twistor correspondence (see [2] for the
four dimensional case which can be readily adapted) these cohomology classes are
in bijective correspondence with the solutions of (31). Because dim Vz = dim Wz, it
suffices to show that the image of Vz under these two maps corresponds to integrable
solutions of (31).

First let us review the twistor correspondence and for simplicity ignore the
bundle E. Let θ, then represent a cohomology class in H1(^~,Θ(— 1)) and pull θ

( 3 \

back to θ on C 3 x P l 9 which fibres over J* via the map (x\ζ)\-^[ £ xιzι(C)Λ0 )>

(see [3]). The vertical tangent vectors to the fibres of

form a sub-bundle Tv of the trivial bundle C 3 on each P 1 ? and we have

There is a vertical derivative dv on C 3 x P x obtained by projecting from C 3 to
T*, and we have dvθ = O because it is pulled back from 3Γ. If we think of P x as
the quadric of all null lines in CP 2 , then the fibre of Tv is the orthogonal plane
to each null line. Because the lines are null they are contained in their orthogonal
plane, and we have the exact sequence

O->0(-2)->7;-»C->O. (32)

Now H1(Pl9Θ(-l)) = 0, so for each form θ we can find an s(x,ζ)eΓ(C3 x
P 1 ? 0( - 1)) with θ-dPis = 0 on P x . The s(x,ζ)is unique because H°(FU(9(-l)) = 0
and is smooth in x because it satisfies an elliptic partial differential equation with
smooth coefficients. We shall see later that we can construct 5 quite explicitly.

3

If p:C3 -> Γ* is the projection, we have dv = £ p{ei)(d/dxi), where each p(ei) is
_ i=1 _ _

holomorphic, so {dv, dP ] = 0. It follows then that dp dvs = dvdP s = dvθ = 0, and
therefore dυs takes values in i/°(P l 5 T*(—1)). From the exact sequence (32)
H°(Pl9T*(-l)) *H°(Fί9Θ(ϊ)) ^ C2, and this defines the Dirac field. Under these

3

identifications it can be checked that dvs = £ zf(ds/<bcf). Note that dvs depends
ίr1 _

only on the class of Θ. In fact if θ' = θ + dμ, then p*θf = p*θ + dp*μ. By the
uniqueness of the solutions of p*θ' = ds\ we have s' = s + p*μ. Hence dvs' = dvs +
dυp*μ = dΌs + 0.

We can proceed now as in the proof of Proposition (17) and show that a class
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in the image of Vz inside H1(^~,L~ZE(— 1)) can be represented by two forms θ +

and θ~ with θ+=θ~— δy, θ+,θ~ and y, all having support in a compact
neighbourhood of the spectral curve and

These forms can be lifted to R 3 x S 2 ^ C 3 x P t and identified with forms θ + ,θ~
taking values in C"(χ) G( — 1) satisfying the differential equation Vy — ίΦz along the
fibres of R3 x P ^ f . Choose an R > 0 so that the intersection of the compact
neighbourhood of Sp with any real section for an x with || x || ^ R consists of two
disjoint sets VN and Vs which are neighbourhoods of x/ \\ x || and — xj || x ||. From
the standard theory of the asymptotic behaviour of solutions of Vy — ίφz (see [3])
we have

||θ + || < Ce~εlx'μl on VN9 \\ θ~ \\ < Ce^x'A on Vs

for some ε > 0 and C fixed. Let us now work only on the set {x| || x \\ ^ R} x P x .
Then letting γ = yN + γS9 where yN,ys have support on VN and Vs, we can define
θ = θ+ - dys so on VN, θ = θ+ and on Vs, θ = θ+ -dys = (θ+ - δy)\Vs = θ~. Because
θ is cohomologous to θ+ it will induce the same Dirac field on {x\ \\ x || ^ R} and
we have that on

VN9 \\θ\\<Ce~^\
and on

VS9 \\θ\\<Ce-°M.

To obtain the Dirac field we want to solve

This can be done explicitly using the Cauchy kernel. Recall that iϊf(ξ) has compact
support in C then

is smooth and satisfies (δ/δμ)Kf = f.
The Cauchy kernel K has, however, a coordinate-free interpretation on P 1 , if

we use the line bundle Θ(— 1). Since the cotangent bundle of P 1 in Θ( — 2), which
has with respect to a local affine coordinate ξ a trivialization dξ, then a local
trivialization of Θ(—\) is given by dξ1/2. Now if we change coordinates by
ξ = (aξ + b)/(cξ + d) and μ = {aμ + b)/{cμ + d) with ad-bc=ί9 then

dξ1/2dμ1/2 _ dξ1/2dμ1/2 C 1 )dξ1/2dμ1/2

(ξ — μ) (cζ + d)(cμ + d)< Iaξ + b\ ίaμ + b\> (ζ — μ)
I 1 — I I

\\cξ-\- d J \cμ + d J J
Then if θ is a (0,1) form with values on Θ{— 1), we may write θ = f(ξ)dξ1/2dξ
locally and
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is a well-defined global section of Θ( — 1) satisfying ds = θ. What we want to estimate
now is the asymptotic behaviour of dvs, but this is

and as in [3], if a solution of Vy — ίΦz decays, so do its derivatives, so this gives
us control over the asymptotic decay of dvs which is our Dirac field.

Because the Dirac field decays exponentially it is integrable as required.
We have seen that under the twistor correspondence the space Vz =

H°(Sp,L~zIp(2mp — 1)) is isomorphic to the space Wz of integrable solutions to
(DA + ΦΣ) Ψ= 0. Now consider the map

H°(Γ9 Θ(2))®Vz^UH°(Sp,L-zIp(2mp + 1)),

which was used to define the Ht. The space H°{Sp,L~zIp(2mp - 1)) can be mapped
by a coboundary to H1(έF,LΓzE(l)). Consider a (0,1) form w representing a class
in Hγ(β~,L~zE(X)\ This can be pulled back to C 3 x P x to give w. Just as with
H1(3Γ^L~zE{—\)) we can solve dp s = w, but now s is not unique but can
be changed by adding elements of1 H° (P u L~z E(ί)). Letting Ψ=dvs:C3->H°
(Pi, Γ*(l)) ® C ^ S1 ® S2 (x) C1, where Sk is the irreducible representation of SU(2)
of dimension k, it can be checked that ί ' is in the H1 of the elliptic complex

(see [2] for the four-dimensional version of this). If we let e1,e2,e3 be a basis for
C 3 ^ s / ( 2 , C ) with ej= —l,eίe2 = e3, etc., then we have that T is the twistor
operator

-\t(DΛ- Φz)(ejΨ)®βj (33)

and

Σ f {(DA - Ψz)φί®ei}, (34)
i = l / i l

where s y m : ^ 2 ® ^ 1 - ^ ^ 3 is the symmetrization map 5 2 (C 2 )®C 2 ->5' 3 (C 2 ).
If η.ZieH0(^,0(2)) it can be readily checked that the multiplication map is

3 3 3

+ i Σ zj®Ψj^ Σ χi(Po®ej+ Σ ί(Pj®ej-
7 = 1 J = l 7 = 1

Finally we have

3

Proposition 35. The element η® φ0 + î  Σ zj® <Pj is in the kernel of m if there is
7 = 1

some χ R 3 -*^ 1 with

3 _ I 3

Σ (xι>o + iψj) ®ej = -^~Σ (DA ~ Φz)
7 = 1 l 7 = 1
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or

xίφ0 + iφj=-^(DA-Φz)ejχ ί= 1,2,3. (36)

Now let us assume that χ is integrable. Then DA — Φz is the adjoint of DA + Φz,
so if π is the projection L^R 3 ,^ 1 )-* {kernel of DA + Φz) = W2, applying π to Eq.
(36) gives

in(xj<p0) = q>j.

Comparing with (6) this means the kernel of the multiplication map is all
3

η® Ψo + ΐ- X zι® Ti(z)φ0 and we therefore have
i= 1

Proposition 37. The isomorphisms Vz-> Wz intertwines the endomorphisms Tt(z) and
Hi(z), and hence Nahm's curves Nt and the spectral curves coincide for a general
monopole.

Proof. It remains to show that χ is integrable. Return to Proposition 17 and 30
and let θf9j = 0,1,2,3 be the representative form for the class isomorphic to ψj
as used in those proofs. Then from the construction of φf there are μ± having
support in the compact neighbourhood of Sp and satisfying

and

7 = 1

μ+=μ

When we form θ = θ+ — dy\Vs, we can also form μ = μ+ — y\v and we have

3

iΣ
7 = 1

Pulling back to R3 x P x gives

η o t j j μ
7 = 1

and if θj = dsj9 j = 0,1,2,3, then

3

ηs0 - i X ZjSj = μ + χ (38)
7 = 1

is the equation defining χ : R 3 ^ i : ί 0 ( R 1 , L ~ z £ ( - 1)).
Using the Cauchy kernel argument we can obtain decay estimates on the Sj,

and because the μ has the same support properties and takes its values in the same
sub-bundles as θ we can also obtain decay estimates on μ. It follows from (38) that
χ must decay exponentially at infinity and therefore is integrable.
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5. Conclusion

We have seen that Nahm's curves are the same as the spectral curves of a general
monopole. In fact a lot more is true, namely that any collection of spectral data
satisfying the vanishing conditions in Proposition 17 arise from a monopole. These
results will appear in [5].

The ADHM construction and therefore Nahm's construction really only work
for SU(n) (and hence the other classical groups with suitable modifications).
However the spectral curves are defined for the exceptional groups also and it
would be interesting to know if, as has been suggested by Atiyah, one can perhaps
solve Nahm's equations on the "dual" of the Dynkin diagram for a general
monopole.
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