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Smoothness of the Density of States in the Anderson
Model at High Disorder

Anton Bovier, Massimo Campanino*, Abel Klein** and J. Fernando Perez***
Department of Mathematics, University of California, Irvine, CA 92717, USA

Abstract. We prove smoothness of the density of states in the Anderson model
at high disorder for a class of potential distributions that include the uniform
distribution.

1. Introduction

The Anderson model is given by the random Hamiltonian Hε= — ε/2Δ + V on
l2(Zdl where

(Δu)(x)= X u(y)
y.\y-x\ = l

and V(x), xeZd, are independent identically distributed random variables with
common probability distribution μ. The characteristic function of μ will be denoted
by /z, i.e., h(t) = \e~itvdμ(v). The "disorder" is measured by ε~ 1 , ε>0.

If A is a finite subset of Zd, we will denote by Hε Λ the operator Hε restricted
to I2(A) with zero boundary conditions outside Λ.

The integrated density of states, Nε(E), is defined by

Nε(E)= lim \A\~^{eigenvalues of Hε,Λ^E).

It is a consequence of the ergodic theorem that for almost every potential the limit
exists for all E and is independent of the potential [1-4]. Nε(E) is always a
continuous function [5-7], being log-Holder continuous under mild conditions [6].

In one-dimension a lot is known about the integrated density of states. Under
mild conditions it is always Holder continuous on compact intervals [8,9] and
under some minimal regularity assumptions on μ it is differentiable, even infinitely
differentiable [10-12].
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But in more than one dimension very little is known about the differentiability
of Nε(E). There is an argument due to Edwards and Thouless [13] that shows that
the density of states is analytic away from the edges of the spectrum if μ is the
uniform distribution. If μ is absolutely continuous with respect to Lebesgue
measured with a bounded density, Wegner [14] proved that Nε(E) is absolutely
continuous with a bounded derivative. (See also [15].) Under the weaker hypothesis
that μ is Holder continuous, Carmona, Klein and Martinelli [9] obtained bounds
on the differentiated density of states that suffice for the Frόhlich-Martinelli-
Scoppola-Spencer method for proving localization.

Further results have required high disorder or low energy. Constantinescu,
Frohlich and Spencer [16] proved that if μ has a density analytic in a strip around
the real axis, then the integrated density of states is analytic for \E\ large enough.
If μ is Gaussian they proved that for high disorder Nε(E) is a real analytic function
of E. Carmona [4], using an idea of Molcanov, has given a simple proof that if
h(t) is exponentially bounded, then Nε(t) is analytic at high disorder. Another
simple argument for the same result due to Simon can be found in [16].

Differentiability results were obtained by Klein and Perez (unpublished). Using
the supersymmetric replica trick and a cluster expansion Klein and Perez used the
decay properties of h(t) to derive differentiability for Nε(E) for high disorder or
large \E\; their method also gave analyticity results. Their results for high disorder
are:

Theorem 1.1. (i) Suppose (1 + t)d+nh(t)eL\ where ne{0,l,2...}. Then there exists
ε0 > 0 such that Nε(E) is (n + l)-times continuously differentiable on the whole real
line for all 0 ^ ε < ε0.

(ii) Suppose (1 + t)d + nh(t)eϋ for all n = 0,1,2,.... Then there exists ε0 > 0 such
that Nε(E) is infinitely differ entiable on the whole real line for all 0 ^ ε < ε0.

(iii) Suppose e~ath(t) is bounded for some α > 0. Then for any 0 < a1 < α there
exists ε 1 = ε 1 ( α 1 ) > 0 such that Nε(E) is analytic in the strip \lmE\<a1 for all
0 ^ ε < ε 1 .

In one dimension a similar result can be derived for any disorder by the methods
of Campanino and Klein [11] as in their proof of Theorem 1.5, with the integrability
condition on (1 + t)d+nh(t) being replaced by the boundedness of that quantity.

In Theorem 1.1 as in the previous results for the multidimensional case (except
for [15]), one gets out as much in regularity properties for Nε(E) as one puts in
for the potential probability distribution μ. Notice that the conclusions of
Theorem 1.1 are valid for ε = 0.

In this article we modify the methods of Klein and Perez to get out more than
we put in, as done in [10-12] for the one-dimensional case. In particular we will
obtain the infinite differentiability of Nε(E) for small ε (but ε φ 0; the result is not
true for ε = 0) if μ is the uniform distribution.

Our condition will be stated in terms of the characteristic function h of the
potential probability distribution μ. We will only consider h(t) for t ^ 0 (of course,
h( — t) = h(t)) and differentiability at t = 0 will mean right-hand side differentiability.
Our result is
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Theorem 1.2. (i) Suppose h is differentiable with (1 + t)h(i) bounded, i = 0,1. Then
for any 0 < Eo < oo there exists 0 < ε0 such that Nε(E) is continuously differ entiable
on ( — E0,E0) for 0<s<εo.

(ii) Suppose h is 2n-times differ entiable (n ̂  1) with (1 + t)h{i) bounded ί =
0,1,..., In. Then for any 0 < Eo < oo there exists 0 < ε0 such that Nε(E) is
(n + lytίmes continuously differ entiable on (— E0,E0) for 0 < ε < ε0.

(iii) Suppose h is infinitely differ entiable with (1 + t)h(i) bounded, i = 0,1,2,
Then for any 0 < Eo < 0 ί/zere ̂ xisίs 0 < ε0 swc/z ί/zαί Nε(E) is infinitely differ entiable
on ( — E0,E0) for 0 < ε < ε0.

Corollary 1.3. Suppose μ is the uniform distribution. Then there exists 0 < ε0 such
that Nε(E) is infinitely differ entiable on the whole real line for 0 < ε < ε0.

We approach the density of states through the Green's function. Let

where x,yeZd,lmz>0. Then (e.g., [4,17]) Gε(z) = E(Gε(0,0;z)) is the Borel
transform of the measure dNε(E), i.e.,

and we have
i) Gε(E + iΰ) = lim Gε(E + ίη) exists for a.e. EeR.

riϊO

ii) If dNEiΆC denotes the absolutely continuous part of the measure dNε, we have

iii) dNEtSing = dNε — dNεac^ is supported by the set

<EeR\limImGε(E + iη)=

Thus Theorems 1.1 and 1.2 will follows from

Theorem 1.4. (i) Suppose (1 + t)d + nh{t)eϋ, where ne{0,1,2,...}. Then there exists
ε0 > 0 such that Gε(E + iθ) exists for all EER and is n-times continuously differ entiable
for all 0 ^ ε < ε o .

(ii) Suppose (1 + t)d + nh(t)eϋ for all n = 0,1,2.... Γ/zβn ίΛere exists ε0 > 0 such
that Gε(E + iO) exists for all EER and is infinitely differ entiable for all 0 ^ ε < ε0.

(iii) Suppose e~ath(t) is bounded for some α > 0. Then for any 0 < (x1 < α there
exists ε1 = ε1(ot1) > 0 swc/z that Gε(z) has an analytic continuation to Imz > — ocί for

Theorem 1.5. (i) Suppose h is differ entiable with (1 + t)h(i) bounded for i = 0,1. Then
for any 0 < Eo < oo there exists ε0 > 0 such that Gε(E + zΌ) exists and is continuous
on the interval (— E0,E0) for 0 < ε < ε0.

(ii) Suppose h is 2n-times differ entiable (n ̂  1) with (I + t)h(ί) bounded, i =
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0,1,..., In. Then for any 0 < Eo < oo there exists ε0 > 0 such that Gε(E + zΌ) exists
and is n-times continuously differentiable on the interval ( — E0,E0) for 0 < ε < ε0.

(iii) Suppose h is infinitely differ entiable with (1 + t)h{i) bounded for all i =
0,1,2, — Then for any 0 < £ 0 < oo, there exists ε0 > 0 such that Gε(E + iO) exists
and is infinitely differ entiable on the interval (— E0,E0) for 0 < ε < ε0.

The strategy of our proofs will now be described. Let A be a hypercube in Z d

centered at the origin, and let

We have Gε(z) = lim Gε,Λ(z) for Imz > 0.

We will use the supersymmetric replica trick [18-21,11,22] to rewrite Gε Λ(z)
as a two-point function of a supersymmetric field theory. We will then perform a
cluster expansion and do explicitly the integrations over the anticommuting
variables. We will estimate the terms in the expansion and show convergence for
small ε. This is the approach used by Klein and Perez and gives a proof of
Theorem 1.4; this will be done in Sect. 2.

To prove Theorem 1.5 we will need to modify the cluster expansion. The
assumptions of Theorem 1.5 do not give enough decay for the straightforward
cluster expansion to converge. We will write h = h1 + h2, where hx will have good
decay properties. We will use a cluster expansion between sites equipped with hx

and we will estimate the islands of /z2's taking oscillations into account. This is
done in Sect. 3.

2. A Supersymmetric Cluster Expansion

2.1. The Supersymmetric Replica Trick. The supersymmetric replica trick says that

i £ (x\Hε,Λ-z\y>Φ(x)-Φ(y) \@ΛΦ,
χ,yeΛ )

(2.1)

where A is a finite subset of Z d , x 1 ? x 2 e Λ , I m z > 0, Φ(x) = (φ(x\ ψ(x), φ(x)), where
φ(x)eR2, ψ(x) and φ(x) are anticommuting "variables" (i.e., elements of a Grassman
algebra),

Φ(x) Φ(y) = φ(x)'φ(y)

and Q)AΦ= γ\ dΦ(x)9 where dΦ(x) = (l/π)dφ(x)dφ(x)d2φ(x). Notice that

Since we are working on a finite lattice (2.1) is fully rigorous. To compute
functions of φ, φ we expand in power series that terminate after a finite number
of terms due to the anticommutativity. All {φ(x\φ(x);xeA} anticommute. The
linear functional denoted by integration against dφ(x)dφ(x) (it is not an actual
integration) is defined by [23]

J(α0 + axφ(x) + a2φ(x) + a3φ(x)φ{x))dφ(x)dφ(x) = - a3.
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To simplify our notation, we will abuse it by writing

Φ(x)2 for Φ(x) Φ(x) and φ{x)2 for φ(x) φ(x).

Recalling the definition of HEfΛ, we have

• i £ F(x)Φ(x)2 + i z £ Φ ( x ) 2

xeΛ xeΛ

+ iε Σ Φ(x) Φ{y)\@ΛΦ, (2.2)

where by <x,y}eΛ we denote a pair x,ysΛ with \x - y\ = 1, the summation being
over all such pairs in Λ.

If h is absolutely continuous with a bounded derivative, we can average over
the random potential in (2.2) to obtain [11]

XGΛ I (x,y)eλ

where β(r;z) = h(r)eίzr.
Thus

£ Φ(x)-Φ(y)\ ® ΛΦ (2.3)
<x,y>eΛ )

2.2. The Cluster Expansion. To perform a cluster expansion, we rewrite (2.3) as

G.tΛ(z) = i\Φ(O)Φ(O) Π /?(Φ(x)2;z) Π [ ( e i ε Φ W Φ W - 1) + 1 ] ^ Λ Φ .
^eΛ <x,y>eΛ

Thus

GβfΛ(z) = /Σί^(0)^(0)Πi 8 ( φ W 2 ^) Π ( ^ φ ( x ) Φ ω - l ) ^ Λ ^ (2.4)

where by Γ we denote a subset of nearest neighbor bonds. Notice that by xeΓ
we mean that x is a vertex in Γ, (x,y)eΓ means the bond <x,y> is in Γ. We will
denote by bΓ the number of bonds in Γ and by vΓ the number of vertices in Γ.
Notice that vΓ^ bΓ+ 1.

We now use the fact if F(Φ1,..., Φn) is a supersymmetric function (with respect
to the same supersymmetry acting on all the super-variables; see e.g., [24]), such
that all of its components are integrable, then

.,0). (2.5)

This can be easily proved by induction. The case n = 1 is just Lemma 4.3 in [24].
Using (2.5) on (2.4) we get (note that β(0;z) = 1)

GeM = i Σ ί^0)<A(0)Π£(Φ(x)2;z) Π (eiεΦ{x)φ{y)-l)®ΓΦ, (2.6)
OeΓczΛ xeΓ (x,y}eΓ

where the sum is now only over connected graphs Γ containing the origin.
We will now fix the connected graph Γ, OEΓ a A, and perform the integration
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over the anticommuting variables. To do this notice that

z) + β'(φ2;z)φφ, (2.7)

(2.8)
\ L * J

It follows that

$ψ(0)ψ(0)Y\β{Φ(x)2;z) f ] {eiεφ{x)φ{y)-\)@ Φ
xeΓ (χ,y}eΓ

is a sum of terms of the form

±\Y\βHφ(*)2\z) Π $(χ,y)(φ(χ),φ(y))@rφ, ( 2 9)

where β#x is either β or β\ and $(x,y)(φ(x),φ(x)) can be either {eiεφ{x)'φ{y) - 1),
(iε/2)eiεφix)-φiy) or (β

2/4)e ί ε 9 > ( x )^ ( y ) and Q)Γψ = f ] d2φ{x)/π.
xeΓ

If in Theorem 1.4 we had also made assumptions on the derivatives of h similar
to the ones made on h, we could now estimate each term in (2.9) to prove a version
of Theorem 1.4 that would look more like Theorem 1.5. In particular our choice
of ε0 would depend on the energy interval ( — E0,E0).

To avoid the assumptions on the derivatives and the dependency of ε0 on the
energy interval, let us look again at (2.9). Notice that if β#x = β\ then it follows
from the integration over the anticommuting variables that we must have
$(x,y)(φ(x),φ(y)) = eiεφixyφiy)-l if (x,y}eΓ. We will exploit this fact when
performing an integration by parts on the variable φ(x) to get rid of the derivative.
We have

(2.10)

Thus, with Im z > 0 (we omit z),

\φ2y1φ f\ (e^ - l{\d2φ
l J

J fl
. 7 = 1

= - \β{φ2){2φ2)

= -\β(ψ2) Σ j Y [
7 = 1 Ifj

(2.11)
k

since V (2φ2)~1 φ = δ(φ), and β(φ2) Y\ (eiεφ'φj — 1) is continuous and equal to zero
. 7 = 1

at φ = 0.
We may also have to do an integration by parts when we had already done

an integration by parts on one side of a bond. In this case, we have

= -iε$β(φ2)(2φ2Γ1φ-V(φ-φ1(2φ2

1Γ
1eί"»^)d2φ

] (2.12)
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Thus each term in (2.9) can be written as the sum of at most (2dfΓ terms of the
same form except that β#x is always β and $(x9y)(φ(x)9 φ{y)) can also be

ίε(2φ(x)2y1φ(x) φ(y)eiεφ(x} φ(y\

or
iεφ(x) φ{y){2φ{y)2yιeiεφ{xyφ{y\

or

In any case, we always have

\$(x,y)(φ(x),φ{y))\ ^ ε(l + |φ(x)|)(l + \φ(y)\)

with the important restriction that for a given x at most one of the bonds for
which x is a vertex contributes a (2\φ(x)\)~1 factor.

Thus each term in (2.9) can be bounded by εbr(2d)VrCv

ί

Γ

9 where C1 is the
biggest of

Ύ- (2.13)

or

d2φ

Since \β(φ2;z)\ ^ \h(φ2)\,C1 can be chosen independently of z. Notice that C1 < oo
by the hypothesis of Theorem 1.4.

Since the number of terms in (2.9) is ^ 2yr3^Γ, we have that

$ψ(0)ψ(0)llβ(φ(x)2;z) Π (eiεΦix)Φiy)-l)@ΓΦ
Γ

^ εbr(2d + Cί + 2 ) W r 3 6 r g Cb

2

Γ+ιε r

for C 2 = (2J + C 1 + 2 ) 3
It now follows from (2.6) that

OGΓC/1

if
ε<(4d2C2yK

Under the above assumptions GεΛ(E-\-ίη) can be extended to η = 0 as a



446 A. Bovier, M. Campanino, A. Klein and J. F. Perez

continuous function. Since all our bounds are uniform in £eR and ^ O w e can
conclude that Gε Λ(E + iη) converges as A -> 7/ uniformly on EeR and η ^ 0. Since
for η > 0 the convergence is to Gε(E + iη\ we can conclude that Gε(E + ιΌ) exists
and is a continuous function on the whole real line.

We now turn to the differentiability of Gε(E + ίO) with respect to E. Since
β(Φ2;z) = h(Φ2)eizφl, it is clear from (2.3) that GεΛ(z) can be differentiated with
respect to E for η ^ 0. If we use (2.4) we get

2;z) Y\ (e

ιεφ(xyΦiy)-
U±J OεΓc/lxeΓ xeΓ <x,y}eΓ

As before each term in the sum can be bounded by C3C
b

2

Γεbr, where C 3 is
calculated like Cx except that we replace β in (2.13) by φ2β. Notice that C 3 < oo
is the hypothesis of Theorem 1.4 for the differentiability of Gε(E + ίO).

Thus we have the bond

vΓC3C
b

2

Γεbr^ C 3 f (1 + n)(4d2C2ε)n < oo
z Λ w = 0

if, as before, ε<(4d2C2)~\
The same procedure works for higher derivatives.
Since h' does not appear in our bounds we can remove it by an approximation

argument. This concludes the proof of Theorem 1.4 (i) and (ii). To prove the
analyticity in (iii) the same procedure works since Gε Λ(z) is analytic for Im z > — α.
One proves uniform bounds for Imz ^ — ac1 and uses Vitali's Theorem.

3. The Modified Cluster Expansion

3.1. Basic Idea. We will now modify the cluster expansion of Sect. 2 to prove
Theorem 1.5. For technical reasons we will use the supersymmetric replica trick
for ε~1Hε = -\A + ε" 1 V. Thus (2.3) is rewritten as

$ Y \ βε(Φ2(x);z)exp\ί Σ Φ(x)'Φ(y)\ ® AΦ, (3-1)
x e Λ L <χ,y>G/l J

where βε(r;z) = β(ε~xr;z).
We will write βε = βx + β2, the decomposition depending on ε. βx will be chosen

to have compact support and β2 will be the tail. Our approach will be to perform
a cluster expansion only on bonds between lattice sites equipped with β 1 ? and
choose βx and β2 in such a way that the integrals over the regions equipped with
β2 are small. The convergence of the expansion will then depend on a delicate
balancing of bounds.

3.2. The Decomposition of βε and Bounds. Let χ be a fixed infinitely differentiable
function on R such that O ^ χ ^ l , χ=l on [— ,̂{J] and suppχ<= [—1,1]. We
will use χ to denote the characteristic function of [— 1,1].

We now fix ε > 0 and define (we omit the complex energy z)

βΛt) = βε(t)χ(ε-δtl β2(t) = βε(t) - β^t) = βe(W - ή^δt)l (3.2)
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Here 0 < δ < 1 is to be chosen later. Our assumptions are that

\h{\t)\^C{\ + i)-1 for i = 0,l. (3.3)

By C we will always denote an appropriate finite constant (not always the same).
We will derive bounds on βx and β2 that will be needed for the convergence

of the modified cluster expansion. We now fix 0 < Eo < oo. All our bounds will be
uniform in E and η for | £ | < Eo and 0 ̂  η ̂  1.

Notice that

^ f ( l + ί ) - 1 Λ = l o g ( l + ε - 1 + a ) ^ C | l o g ε | (3.4)
o o

and

00 00

j(l + tΓ2{l-χ(ε1-δt))2dt^ ί ( l + ί ) " 2 ^ = ( l + ΐ ε " 1 + ' 5 ) " 1 ^ C ε 1 - ' .
0 l/2s" 1 + ί

(3.5)

From now on we will always consider βί,β2,h,h', etc. as functions of φ2, and
all the II norms will always be with respect to d2φ.

From (3.2), (3.3), (3.4), and (3.5) we get:

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3-15)

(3.16)

For 1 < p < oo we have

" (3-17)

(3.18)

(3.19)

(3.20)

For 1 ̂  p < 2 we have

1 ^ 1 " (3.21)
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1 ^ (3.22)

For f < p < oo we have

\\\φ\-1β2\\pZCe1-«3'2-ί*\ (3.23)

For 2 < p < oo we have

1"*, (3-24)

p " . (3.25)

Another bound we will need is

|| (^•"' - l)χ(ε" V ) z ( e " V 2 ) II« ̂  Cε' (3.26)

3.3. T/ie Modified Expansion. From (3.1) and (3.2) we have

-iεGeιΛω= Σ J>(O)<A(O) ΠA ω (ΦW 2 ;2)eχpj i Σ
k(x)=l,2 xeΛ I (x,y)eΛ

xeΛ

= Σ ίΦ(0)Φ(0) Π βΛΦ(χ)2) Π ^(ΦW 2 ) Π eι«*> *<»®ΛΦ.
/ljc/1 êΛi xeA\Ax (x,y)eΛ

We will perform a cluster expansion only on bonds between sites in Aγ. For
a fixed Λί c Λ we let /1 2 =

T o perform the cluster expansion we rewrite (3.27) as

-iεGεtΛ(z)= Σ ίΨΦ)Ψ(O) Π ^i(^W2) Π βiiΦW
A1 cz A xeΛi χeΛ2

. r-| [(β««*>- ω _ i ) + i ] ΓJ

= Σ Σ JΆ(O)»A(O) Π ^ x (φ(χ) 2 ) Π

. J-j (eiΦ(x)Φ(y)_Vj J-J- ^

We now use (2.5) and the discussion before it. Taking into account that βx (0) = 1

and j82(0) = 0, we get

-i*GΛtA{z)= Σ Σ ί « 0 ) # ) Π βiiΦW2)
Λ2<=Λ ΓG^(Λ2) xeΛ 2

Π βi(Φ(x)2) Π ( e i Φ W Φ ( r t - l )
xe[(Λ2uΓ)\Λ2] <x,y)eΓ

• Π eiΦ{x)'Φiy)@ruA2

φ> ( 3 2 8 )

where ^ ( Λ 2 ) = { Γ 6 s f ( Λ 1 ) | Γ u Λ 2 is a connected set of nearest neighbors bonds
with 0 G Γ U / Ϊ 2 } .

We now perform the integration over the anticommuting variables. If we fix
Λ2

 c Λ9Γe^{A2), the corresponding term in (3.28) can be written as a sum of
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terms of the form (recall (2.7) and (2.8))

±J Π ft(φ(χ)2) Π βt(φ(*)2)
xεΛ2 xe[(ΓuΛ2)\Λ2]

• Π $(x,y)(e™xyφ<y)-b{x,y)) Π ti^yy^^^r^ψ, (3.29)
<x,y>eΓ <x,y>εΛ2

where

β^ is either βt or #,1=1,2,

b{x,y) is either 0 or 1, (3.30)

${x,y) is either 1,- or -.

There are constraints on the possible choices in (3.30). We are not going to
take these constraints into account except for the following: if at a given site x we
have β\{φ{x)2) then we have b(x,y) = 1 for all (x,y)eΓ.

3.4. Integration by Parts. The IP-bounds (3.11) and (3.20) for β'2 diverge like ε~δ

with δ > 0. If we have a term in (3.29) with many β2, our estimate will give us a
large factor. To avoid this problem we will thin out the number of β'2 by performing
integration by parts.

So let us fix a term in (3.29) and write Λ2 = BKJB\ where B is the subset of
Λ2 where we have β2, and B' is the subset of A 2 where we have β'2. We want to
perform an integration by parts in a sufficiently large subset B" of B' such that
the sites in B" are sufficiently far apart from each other.

Notice that

Z d = U ( 7 Z d + α), (3.31)
α

the union being over all αeZ d with a;e{0,1,2,3,4,5,6}, i=l,2,...,d.
Since (3.31) expresses Zd as a disjoint union, there exists at least one such α,

say α, such that

-d\B'\. (3.32)

We choose

d oί). (3.33)

For xeB" we perform an integration by parts similar to (2.11). Since β2 = 0 in
a neighborhood of the origin we get

jβ'2(φ(x)2)exp]iφ(xy

= -*' Σ

exp< ΐφ(x)
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= - ' Σ tίβ2(φ(χ)2)L2φ(χ)2r1φJ(χ)φJ(y)
y . , y > 2

ί/φ(x) Σ φ(yψ
I y:(x,y)sΛ2 J

expί/φ(x) Σ φ(yψ2φ(x). (3.34)

After performing the integration by parts (3.34) at all sites in B", we can still
express each term in (3.28) as a sum of terms of the form given by (3.29), except
that now

β\x is either βί or β\ if xeΓ\Λ2,

or βuβ'uφjβuφjβ'1J=l,2, if xeΓnΛ2;

βf is either β29β
f

29φjβ29φjβ
f

29 (3.35)
or [2φ2y1φjβ2, j= 1,2, b(x,y) and $(χ9y)

are as in (3.30)

3.5. Convergence of the Expansion. Let us fix a term of the form (3.29) with the
choices for the functions in the integrand being done according to (3.35). We are
going first to integrate over the variables in each connected component of Λ2. The
functions at each site of Λ2 are not in L1 except for those at the sites in B" where
an integration by parts has been performed, but they are in all LP for p > 1 with
the possible exception of one of the nearest neighbors of each site in B" where we
need p > 2. We must use the oscillations given by the bond functions in order to
be able to estimate the integrals. This will be achieved by interpolating between
different estimates using LP norms.

The crucial estimate is given by the following lemma:

Lemma 3.1. Let

κ = κ(Λ29r9#,$9b) = $ _Π βHφ(χ)2) Π β#Aφ(χ)2) Π $(χ,y)eiφix)'φiy)

xeΛ2\Λ2 xeΛ2 (x,y)eΛ2

• Π l$(x,w)(eiφixyφiw) ~ b(x,w))χ(ε-δφ(x)2)χ(ε-δφ(w)2)WΛ2<P-
(x,W}eΓ,xeλ2 ^36)

Then there are 1 <p < 2 , 2 < r < oo,l <q = q(r) < oo with lim q(r) = 1, and a
r^2

constant C = C(p, q, r) < oo, all independent of Λ2,Γ,#, $, b, such that

\κ\zόx* Π WβfII2.PΠH^IIΓ Π Wfc111.,Πll#111.2
xeΛ2\I χεl xe[(/l2\Λ2)\£/] xeEj

• Π . ll^,w)(e ί^^ ( M ' )-fe(x,w))χ(ε-χx)2)χ(ε->(w)2)||C 0, (3.37)
(x,w}eΓ,xeΛ2

where I = {xeΛ2\βi

2

c = φ 3β2 or φjβ'2,j= 1,2}, Eι is a subset of Λ2\Λ2 with

\E,\ g | / | , and || ||Pl,P2 = i{ll IU + II U
The proof of this lemma will be postponed to Subsect. 3.6.
Lemma 3.1 and the U bounds of Subsect. 3.2 allow us to estimate K in terms

of ε and \Λ2\.

Lemma 3.2. For δ>0 sufficiently small there exists δγ >0, depending only on the
dimension d, such that for all ε > 0 sufficiently small we have

\K\S sδllλ21 Π II $(x> w)(^ ( *^ ( w ) - b(x9 w))χ(e-δφ(x)2)χ(ε-δφ(w)2) || „.
<x,wyeΓ,xeΛ2 (338)
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Proof. Let

N1 = \LΛ2\Λ2 ]\EJ\9

N2 = \{xeΛ2\βlx is either β2 or (Pjβ2}\,

N2 = \{xeA2\β\x is either β'2 or φjβ'2}\.

We recall B" = {xeΛ2\β#

2

x = L2φ2y1φjβ2}.

Applying Lemma 3.1 and the bounds (3.6)—(3.25) we get

\K\ < C ' ^ 2 ' ε ( 1 " δ ) N l ε ~ δ N ' 2 ε { ί ~ δ ) l B " 1 ε ~ ( 1 ~ 1 / q ) N l ε ~ 1 / 2 | £ / l A ,

where

A= Π _ \\$(xM(eiφixyφiw)-b(xM)Us-δφ(x)^
(x,w}eΓ,xeΛ2

Now using (3.32) and (3.33), |ΛT2| + \B"\ = \B'\9 the fact that | / | ^ | F ' | by
construction, \EI\^\I\9N1^\Λ2\9\N2\ + \Bf\ = \Λ2\ and \Λ2\^(2d+l)\Λ2\, we
get

\K\ <
d 1 d 1 ' l -δ-{\ -q

The lemma now follows by taking q sufficiently close to one and δ sufficiently
small.

We can now prove the convergence of the expansion (3.28), by estimating it
uniformly in A and in \E\ < Eo,0^ η^l.

Theorem 3.3. For any Eo < oo we can choose δ > 0 in (3.2) for which there exists
ε0 > 0 such that the expansion (3.28) converges as A-+Zd, uniformly in 0 < ε < ε0,
\E\^E0 and O^η^l.

Notice that Theorem 1.5 (i) follows from Theorem 3.3.

Proof of Theorem 3.3. From (3.28) and (3.29) we have

βt((φ(χ)2) Π βb(φ(χ)2)
xe[(Γu/i2)\7l2]

$(x,y)(eiφ(xyφW-b(x,y))

_ λ2φ, (3.39)
(x,y}eΛ2

where the sum in #,$,b is over the allowable choice (3.35).
Using (3.36) we have

|eG,,Λ(z)|S Σ Σ Σ\κ(Λ2,Γ,#,$,b)\
Λ2czΛΓe$2(Λ)#,$,b

• Π l l ί (* , :v ) (e M x ^
<x,y}eΓ
x,yφλ 2

• Π II/frill-
xeΓ\Λ2

For fixed Λ2,Γ,#,$,b, let us write
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Γ1 = {(x,y)eΓ\b(x,y)=l},

L={xeΓ\Λ2\βf = βι},

We now choose δ > 0 and ε0 > 0 by Lemma 3.2, so (3.38) holds for all 0 :§ ε < ε0.
Using (3.38), (3.6), (3.7) and (3.26) we have

lβG4 > /i(z)|g Σ Σ Σ ε ' l M ~ 2 ' ( C ε l l o g ε l ) V
Λ2cΛ Γe<$(Λ2)#,$,b

where frΓl is the number of bonds in Γί.
By the remark after (3.30) we have \L\ ̂  bΓι. Thus

Λ 2 c/l ΓG$(Λ2) #,$,b

^ Σ Σ Σ ε' 2 l Γ ^ 2 ' (3 4°)

for some <52 > 0.
We now estimate the sum on the right-hand side of (3.40) by first choosing the

set D = ΓuΛ2, which must be a connected set containing the origin, and then
summing over all possible choices of Λ2,Γ,#, $, b compatible with D. The number
of possible choices is bounded by C |D| for some finite constant C which depends
only on the dimension. Thus we get

00 OO

\εGCίΛ(z)\^ X c\Diεt2m= £ (2d)2n(Cεό>)n = Σ(4d2Cεδ2)n. (3.41)
OeD connected n=l 1

It suffices thus to choose ε0 > 0 such that 4d2Cεδ

0

2 < 1.
This finishes the proof of Theorem 3.3.

3.6. Proof of Lemma 3.1. At each site xeΛ2 we consider a function fx(φ(x)) and
define

M(fx;xeλ2) = $Ylfx(φ(x)) Π_ $(x,y)ei«x) φ»)®λ2φ. (3.42)
xeΛ2 (x,y}eΛ2

M(fx;xeΛ2) is a multilinear functional. We will establish bounds for M in
terms of several possible choices of norms for the {fx;xGΛ2} and interpolate
between these norms to obtain the desired bound that implies (3.36).

We start with some definitions. Let J be the set of isolated points in Λ2, i.e.,

J = {xeA2\{xiyyeA2 implies yeAx},

and, for α as in (3.31), let

where / is a given fixed subset of Λ2 with |x — y\ ^ 5 for x9yel,x Φy. For each
xel such that there exists (x,y)eΛ2 with yeΛ2\Λ2, we choose such a y which
we denote by y(x). We define

EI = {y(x)\xeI with dist(x,/ϊ2\/l2) = 1}.

Notice that | £ 7 | ^ | / | .
We first prove:
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Lemma 3.4. For any r, 2 < r < oo, there exists p, 1 < p ̂  q, where l/q = ̂ + 1/r, such
that

\M(fx;xeλ2)\SC^ [Ί II/JI2 Π IIΛHPΓΊ Wfχl
xeHa\J xeHanJ xel

• Π ll/χlli.2 Π ll/χl l i . β Π IIΛIIi Π H/χlli.2 (3-43)
xe/l2\(Hβu/uJ) xe/l2\(/i2u£/) xeJ\Ha xeEj

Proof. We will first integrate over some of the variables in (3.42) and then estimate
what remains by the Z^-norm. The integration will be done in several steps.

Step 1. Integration over the variables labeled by J n / / α and one nearest neighbor.
Since the sites in J n Ha do not have nearest neighbors in common we can do

the integration over the corresponding variables obtaining

Π /.( Σ _
eJuHα \y:(x,y}eΛ2

φ[y) , (3.44)

where f(φ) = \eiφ'φ'f{φ')d2φ'. We recall the Hausdorff-Young inequality
(2π)2-2lP\\f\\p for l ^ p ^ 2 , l / / ? ' + l/p = l. Notice that if xeJnHa and we fix
yeΆ2,\x — y\ = 1, then (3.44) is in U'{d2φ(y)\ uniformly in the other variables. Thus

Σ ψ(y) d2φ(y)S2π\\f.[\p\\fx
.[\p\

y:(x,y)eΛ2

Step 2. Integration over the variables labeled by xeHa\J such that dist(x,/)> 1
and over one nearest neighbor.

For each such x we pick z = z(x)eΛ2\H0C, \z — x\ = 1. We then integrate over

φ(z\ obtaining fJ ^ φ(y) I, which is in L2(d2φ(x)) uniformly in the other
\y.(y,zyeΛ2 J

nearest neighbors of z. We obtain

f,( Σ d2φ(x)S2π\\fx\\2\\f:x\\2 \\Jz\\2'

Step 3. Integration over the variables labeled by I and two nearest neighbors.
Here we must consider several cases.

Case 1. xel and there is yeH^ with \x — y\ = 1 (in particular yφJ).

We integrate over φ(y) to obtain fyl Σ φ(z) J, which is in L2(d2φ{x))
\z:(z,y)eλ2 J

uniformly in the other variables. We then choose another nearest neighbor z of x9

which must be either in Λ2\Λ2 or in A2\Ha. Integrating over φ(z) we get

fz[ Σ ψ(w) ) w m c h is in Ώ(d2φ(x)\ where l/t=l — 1/r —-^ uniformly in the
\w:<w,z> = l /

other variables; here we pick an r,2 < r < oo. We set 1/q = 1/r + ^. We can then
b o u n d t h e i n t e g r a t i o n o v e r φ(x) b y (2π)2\\fx\\r\\fy\\2 \\fz\\q.

Case 2. xel, dist(x,Ha) > 1 but dist(x,Λ2\/l2) = 1.
We pick y(x)eEj and another nearest neighbor z of x and repeat the procedure

of Case 1. We must now be careful if there exists weH,, such that w and x have a
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common nearest neighbor u. If in step 2 we chose a different nearest neighbor u'
of w over which to do the integration we can take z = u. If however we already
used u in step 2 we must take zφu. This can always be done except if we are in
dimension d = 2 and x is a corner of the box Λ, so x has only two nearest neighbors
in A. In this case we must enlarge Eι slightly (by four more points, one for each
corner of A) and use this new site of Eι in step 2 if necessary to free the two nearest
neighbors of x for the present case. This slight enlargement of Eι makes no
appreciable difference and we will simply ignore it.

Case 3. xeJ, dist(x,Hα)> 1, dist(x,.Λ2\/l2)> 1.
We proceed as in case 2, but we pick the two nearest neighbors of x in Λ2\Ha.

Step 4. We now estimate all the remaining integrals by the L1-norms.
If we now pick p in step 1 such that 1 < p ^ q, where q was chosen in step 3,

we obtain (3.43).
This proves Lemma 3.4.
We will now use complex interpolation between Banach spaces to interpolate

between the bounds obtained in Lemma 3.4 for different choices of α. An application
of the three lines theorem as in [25] gives

Lemma 3.5. Let L(fx;xeA) be a multilinear functional on (L1 nU°)A such that

CYl\\fΛx,ux (3.45)

and

\L(fx;xeA)\ίCγ\\\fx\L,Vχ, (3-46)
xeA

where tX9ux9vxell, col
Then

\L(fx;xeA)\£CU\\fx\\tχ,Wχ9 (3.47)
xeA

where

We are now ready to finish the proof of Lemma 3.1. Let a(n\ n=\,2,...Jd

denote an ordering of the α's as in (3.31). We apply Lemma 3.5 to M(fx\xeA2\
where we have A = Λ2\I and fix the variables in Λ2\A. We apply Lemma 3.5
iteratively. We start by choosing α = α (1) in Lemma 3.4 so we have the bounds
(3.45) and (3.46) with

tx = 2 for xeΛ2\(IvJ),

tx = p for

ux=l for

ux = p for

vΎ=l for xeA.
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Applying Lemma 3.5 we get (3.47). In the next step we take α = α ( 2 ) in Lemma 3.4,
and use Lemma 3.5 with tx,ux as before but with vx equal to wx obtained in the
previous step. If we perform this procedure for all α(n), n = 1,..., 7d, we are able to
obtain an estimate of the type (3.47) with all wx> 1 for all xeΛ2\L If we now
select p to be the smallest of all wx we obtain the estimate of Lemma 3.1.

3.7. Differentiation. Since (d/dz)β(Φ2;z) = iΦ2β(Φ2;z), it follows from (3.1) that for

Im z > 0 we have

-f^Gε,Λ(z) = iε-<" + 1> Σ <Ψ(0)Ψ(0)Φ(xi)2 • Φ(Xn)2>e,Λ, (3-48)

where

(φ(0)ψ(0)Φ(Xl)
2...Φ(xn)

2}ε,Λ

= $ψ(θ)ψ(θ)Φ(Xl)
2...Φ(χn)

2γiβe(φ(χ)2;χ)™p\i Σ
x e Λ I <χ,y>eΛ

(3.49)

We will now show that if h is In-times differentiate with (1 + t)h{i\t) bounded,
ΐ = 0, l,...,2n, we can apply our modified cluster expansion to each term of the
form (3.49) and obtain convergence of the expansion we get from (3.48) in the same
region of the parameters for which we proved convergence for the expansion of
Gε Λ(z) (i.e., for the parameters as in Theorem 3.3). Since for fixed Eo < oo we will
choose ε0 > 0 independent of n, we will obtain a proof of Theorem 1.5 (ii) and (iii).

Applying the modified cluster expansion (3.28) to each term of the form (3.49),
we get (we surpress ε)

(φ(0)φ(0)Φ2(x1)...Φ2(xn))Λ

= Σ Σ <*A(0)^(0)Φ(xJ2...φ(xJ2> (3.50)
Λ2^ΛΓe<g(Λ2;xί,...,χn)

where

<A}Γ,Λ2 = $AY\ β2(Φ(x)2) Π /MΦW2)
x e A l xe[(Λ2uΓ)\/l2]

. ΓT ίeiΦ(χ)Φ{y) _ γ \ ΓT eiΦ(χ) Φ(y)@

(x,y)eΓ <x,y)eΛ2

and

It now follows from (3.48) and (3.50) that

-ur"£Ga*)=i Σ Σ Σ
UZ k 0 Λ

ixMxd Π Ψ(XJ)2>Γ,M- (3.51)
i = l j = k + l

If we now perform the integration over the anticommuting variables in each
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term on the right-hand side of (3.51), we obtain a sum of terms of the same form
as (3.29), except that:

(i) For x = x1,x2,...,xk, we have βfx = βh i= 1, 2.
(ii) For x = xk + l 5 . . . 5 x B ) β*fx is replaced by φ2mβfx, where m denotes the number
of x/s, j = k + 1,..., m, such that x = Xj.

Since we did not assume that φ2mβfeL2, we will have to perform integrations
by parts to obtain terms we can bound. In addition to the bounds of Subsect. 3.2,
we will need:

Uφ^βΛtύe^Wβih, (3.52)

\\\φ\mβψ\\a^2δm\\β(iK ( 3 5 3 )

These bounds hold for all 1 ̂  q g oo and all m ̂  0. Also,

\\\φ\βψ\\^^Cε-ι + 1-^. (3.54)

Since we assumed the same decay for h(l) as for h, we have that || β[ι) \\q and ε~ι \\ βt \\q

satisfy the same type of bounds, with i = 1,2, with perhaps different constants.
Notice that the bounds (3.52) imply that for the terms in (3.51) with xteA\A2

our previous estimates suffice. Problems arise from XιeA2. We will show that such
terms may, however also be estimated in essentially the same way as before, the
bounds being changed by constants depending only on n and ε.

For fixed Λ2 and Γ we consider a rather general term,

= ί Π lβ*Λφ(χ)2)φnχ)φl2x(χΏ Π

2

(x,w)eΓ
x e λ l (3.55)

Here #, m, / are multi-indices taking values in the non-negative integers, and by
β^.x we mean the #x-th derivative of βx, $ and b are the same as before, except that
we will put b(x, w) = 0 whenever mw + lwΦ 0. It is easy to see that Z(#, m, /) can be
estimated as in the previous sections provided

(i) lx + mx ^ 1 for all xeΛ2.
(ii) The distance between points with lx + mx = 1 is sufficiently large, e.g., bigger
than 6 in each coordinate direction.

Our purpose is to rewrite Z(#, m, /) as a sum of terms satisfying these conditions.
This is achieved by using partial integration to move around powers of φ until
they are sufficiently diluted. The key to success is that the number of terms generated
this way depends only on the number of powers of φ originally present, i.e. on n,
and that the bounds on the resulting terms differ from the bounds obtained
previously only by factors depending on ε and n. The following describes a simple
algorithm to achieve this. Note that we do not strive for optimal bounds. We use
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the following notation: |m| = £ mx, |/|, | # | being defined the same way. Let π be
xeΛ

a fixed (lattice) hyperplane intesecting the boundary of A. For xeΛ, let d(x) =
dist(π,x). We denote by πp a (hyper) plane parallel to π such that dist(π,πp) = p.
We are only concerned with πps that intersect Λ2. For any such plane let

σp(mj) = Σ mx + lx. (3.56)
xe/l2ππ,,

A plane πp with σp(m91) = 0 is called "empty" and a plane with σp(m, /) = 1 is called
"clean." We will rewrite Z(#, m, I) as a sum of similar terms in which all planes will
become clean or empty, and such that between two clean planes there will be at
least six empty ones. Let

, l) = {xeΛ2\ either σdix)(m, I) > 1, or σd(x)(m, I) = 1 and σd.(m, l)φθ

for some d! with | d(x) -df\^6}

and

Δ(mJ)= Σ ^x + ^

The following lemma provides the elementary operation we need:

Lemma 3.6. Let x0eΛ2. Let x1 be the nearest neighbor ofx0 such that φ q ) = d(xQ) — 1.
Let N1 be the set of nearest neighbors ofx1 in Λ2uΓf and N° = Λ/Ί\{x0}. Then

Z(#,m,/)= £ Z(#(3/),m,/(3;)) + l ;c lZ(#?m,l(x1)) (3.57)

ι/ lXQ > 0, and

Z(#,m,/)= X Z(#(y\m(y)J) + mXlZ(#,m(xx)J) (3.58)

if mXo > 0, where

my+l if x = yeN°ί,
m

Xί + 1 */ x = Xi β^ίi ^ = x 0 ,

m X l - l if x = Xi aπJ y = xί9 (3.59)

mx otherwise.

lx(y) is defined in the same way and

#x(y) = #x1 —1 if x = Xi and y = x0, (3.60)

# x otherwise.

Proof. Consider the case lXQ Φ 0. We may use in (3.55) the identity

φl2°(xo)eiφ{xo)'φ{Xl) = ω^Uxn)] eiφ(χo) φ(χθ I
Udφ2(Xi) J

Performing then an integration by parts with respect to the variable <p2(xi) a n d
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computing the derivatives that arise we get

,m,o = ί Π fc(φ(χ)2)φΊ*(χ)φι2'{χ) Π $(*,y)ei

xfxi <χ,y>eΛ2

• Π $(χMίφ?"Mφϊ(Φiφix)mφ(w)

<X,W>6Γ

xeΛ2

U"?

Φ. (3.61)

Equation (3.61) is strictly correct only if iV? c Λ2. If Nj contains points yeΓ but
.y^^, the b(x9y) corresponding to that term in the sum disappears. This is in
accordance with our convention that b(x, w) = 0 if mw + Zw Φ 0. Taking this remark
into account, Lemma 3.6 can be read off Eq. (3.61).

Note that the multi-indices appearing in Lemma 3.6 satisfy

^ | m | + |Z|, (3.62)

, /) = σp(m, l(y)) = σp(m, I) if p > d(x0) = σp(m, /) - 1

if p = d(x0), (3.63)

and

ι#ι + i (3.64)

We may use Lemma 3.6 successively in a given plane πp until that plane is "clean"
or "empty." Keeping track of the terms that are produced gives:

Lemma 3.7. Let πp be a plane such that σp(m, I) ̂  1. Let τ = 0 or 1.
Then

£ m ? , / a (3.65)
ΐ = l

where

(i) σp(mτ

i9Tj) = τ for all i,

(ii) |mϊl + | Γ ϊ | ^ | m | + |Z|,

(iii) σp,{m}jτ

i) = σp{mj) for p' > p,

(iv) | # J | ^ | # | + σ p (m,0-τ,

(v) #]x^#x + σp(mJ)-τ for xeπ p . 1 }

= #x far xφπp_1
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(vi) K S \_2d + σp_ x(m, /) + σ > , l)γW~\

Proof. The lemma follows by applying Lemma 3.6 σp(m,ϊ) — τ times.
We now apply Lemma 3.7 consecutively on non-empty planes starting with

the one farthest away from π. In the first plane we choose τ = 1, thus leaving it
"clean." In the subsequent 6 planes we apply, if necessary, Lemma 3.7 with τ = 0.
The 7th plane again is treated only until "clean" and so on. For each seven planes
we treat we reduce thus Δ(m,l) by one. Therefore, the total number of times we
need to apply the lemma is no larger than 7 2r, if Δ(hJ) = 2r at the beginning,
until Δ(m, I) = 0. But this guarantees that powers of φ in Λ2 that appear are all at
most one, and furthermore widely separated. More precisely, we have

Proposition 3.8. Let Λ2 be fixed, \m\ + |/| = 2r, and # a multi-index with #x ^ 1 for
all xeλ2. Then

Z(#, m, /) = X Z(#(/), m(i), f(0), (3.66)
i = 1

where

(i) 4(m

(ii) |m(0l

(iii)

(iv) #x(ΐ)£#x + 2r-l^2r for all x,

(v) K S (2d + 4r)(2r)2.

Proo/. Again, the proposition follows by using Lemma 3.7 as outlined above and
keeping track of the bounds, using that in particular σp(m, I) ̂  2r in each plane πp

and at each stage of the process.
A term Z(#, m, Γ) can now be estimated in || || ̂  -norm like a term K in Lemma

3.1., after we perform integrations by part on a set B" c B'. To avoid complications,
we choose B" as in Subsect. 3.4, but remove from it all points such that Tx + mx = l.
There are at most 2r 2d such points, and will therefore affect our bounds only by
a factor ε" 2 r 2 d .

Taking this into account and using Lemma 3.2 with the bounds (3.52)-(3.54)
gives then that

(x,w)eΓ
xeΛ?

(367)

where a(r) is a constant depending only on r. [Note that a(r) takes already into
account the fact that some (but no more than 2r) terms in the product on the right
of (3.67) appear modified in Z(#,m,T).] Note that δλ is the same that appears in
Lemma 3.2. Combining this estimate with the bound on in Proposition 3.7, we
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get that

l-te"+ 1^G ε,Λ(Z)i^2» Σ Σ Σ Σ
a z xi...xn6Λ/v2\Λ Γe^(Λ2;xlv..,xm) #,$,b

(x,y}eΓ

x,yφΛ2

• Π \\β*ix\\i^ Σ \D\nCMz~a{n)Cmehm; (3.68)
xeΓ\Λ2 OeD

connected

here C^n^aiή) depend only on n, and C,δ2 are constants independent of n. The
latter sum converges, as (3.41), provided ε0 > ε > 0, if

4d2Cεδ

0

2^L (3.69)

This proves Theorem 1.5 (ii). Since ε0 given by (3.69) is independent of n, we
proved Theorem 1.5 (iii) as well.
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