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Abstract. A Grassmann probability theory, with anticommuting random
variables and stochastic processes, is developed using an extension of Berezin
integration to infinite dimensional spaces. A Kolmogorov-type consistency
condition allows integration on spaces of paths in anticommuting space. One
particular stochastic process, Grassmann Brownian motion, is described and
the associated measure used to give a path-integral formula for the kernel of
the evolution operator in fermionic quantum mechanics. The Fourier mode
expansion of Grassmann Brownian motion is derived.

1. Introduction

Path integration techniques are among the most powerful in present-day quantum
physics; the quantisation of a new type of theory often proceeds, at least in the
first instance, by summing over everything, with more or less plausible weights.
While this is a good heuristic procedure, and formal manipulation of path integrals
often gives extremely valuable insight, ultimately the true meaning (if any) of the
path integrals in a theory should be established. This is particularly true in the
case of path integrals for fermions, where the integrals are not even the limits of
sums, and standard measure theoretical results do not apply. For instance, it is
usually assumed that the sum over paths can be replaced by a sum over fourier
modes, which is far from obvious when the word sum is being used in a formal
sense. (In fact one result of this paper will be to justify this procedure, and to give
the correct normalization.)

The analytic theory of path integration in imaginary time bosonic quantum
mechanics is fully understood. The basic approach, (which goes back to ideas of
Wiener, Feynman and Kac), together with many applications (and references to
original work) is described in the excellent book of Simon [1]. In this paper an
analytic theory of fermionic path integration is constructed, in a manner as closely
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analogous as possible to the bosonic method. An important difference is that there
is no existing integration theory for spaces of anticommuting variables of
uncountably infinite dimension which reduces to Berezin integration in the
finite-dimensional case; this paper constructs such a theory, in a manner analogous
to Bochner's treatment of conventional stochastic processes [2], where the primary
objects are the finite dimensional marginal distributions. It is generally the case
that fermions only involve finite dimensional algebra; here, because of the presence
of the continuous time parameter, some genuine analysis is required.

The approach in this paper is specifically designed to make it possible to extend
rigorous path integral techniques to theories involving both bosons and fermions,
and in particular to supersymmetric theories [3], and to fermi fields in curved
space. Path integrals not only give physical results, they also have mathematical
uses; for instance, the very simple proofs of the Atiyah-Singer index theorem using
supersymmetric quantum mechanics [4] use fermionic path integration.

In Sect. 2 the representation of fermionic quantum mechanics in terms of
functions of anticommuting variables [5] is reviewed, together with general
techniques for handling functions of such variables. Differential operators, and
their kernels, are defined; the path integral developed in later sections gives a
method for evaluating the kernel of the evolution operator of a fermionic system.

Brownian motion in a space of anticommuting variables is described in Sect. 3;
in order to do this, an extension of the Berezin integral to infinite dimensional
spaces is developed, together with a certain amount of what might be called
Grassmann probability theory. The Brownian motion is also expressed as a Fourier
sum of independent (Grassmann) Gaussians, thus making rigorous the heuristic
physicist's replacement of the sum over paths by the sum over Fourier modes with
anticommuting boundary conditions [6].

Section 4 contains a proof of the Feynman-Kac formula for fermions, that is
the expression of the kernel of e~Ht in terms of a path integral, the measure being
that associated with the Brownian motion developed in the proceeding section.
The formula is applied to calculate the heat kernel of the fermionic oscillator; as
is often the case when actually calculating path integrals, the Fourier mode version
is used. One reason for considering the oscillator in detail is that a fermi field can
be regarded as an infinite collection of such oscillators. (This approach to fermi
fields is described in detail in the book of Fadeev and Slavnov [7].)

There is a considerable literature on various non-commutative versions of
probability theory [8,9]; however these theories do not seem to be directly
applicable to the type of path integrals considered in this paper. The closest is the
work of Haba [9] but the anticommuting Brownian motion constructed there is
in position space, not phase space, and would not lead to the Feynman-Kac
formula presented here.

2. Differential Operators in Anticommuting Space, and the Grassmann Formulation
of Fermionic Quantum Mechanics

In this section a representation of the canonical anticommutation relations of
fermionic quantum mechanics is constructed using differential operators on a space
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of anticommuting Grassmann variables. The necessary techniques of "analysis" of
functions of Grassmann variables are described.

In the canonical quantisation of /t-dimensional particle mechanics, the classical
observables pι (momentum) and x* (position) ( ΐ = l , . . . , n ) are replaced by the
quantum operators pι and x1', also the classical Poisson brackets

{x\pj} = δίj (2.1)

are replaced by the quantum commutation relations

{x\pj} = ίhδij. (2.2)

The standard representation is the Schrodinger representation, where pι and xι

are represented on the space L2(Un) of square integrable complex valued functions
of Un by

pif(x)=-ίd/dxi(f)(x\ (2.3)

x{f{x) = x[f{x\ (2.4)

(As usual, units are used in which Planck's constant h is set to one.)

In an analogous fashion systems with spin in n dimensions may be considered
by introducing operators \j/l(i=l,...,ri) which act on the space of polynomial
functions of n anticomputing variables.

Following Berezin and Marinov [5], one begins with a "classical" Hamiltonian
H = V(ψ) (the φι being anticommuting variables) and symmetric Poisson brackets

{ψ\ φj} = 2δij. (2.5)

On quantisation one replaces the anticommuting variables ψι by operators \j/1

which satisfy the anticommutation relations

{ψ\ψj}=2δii. (2.6)

The "Schrodinger" representation is achieved [7, 10] by defining states to be
members of a carefully defined class of functions of n anticommuting variables
θ\..., θn, and setting

ψ^ddθ' + d/dθ1. (2.7)

Finally one considers the Schrodinger equation

df/dt=-H(ψ)f. (2.8)

(As with bosonic quantum mechanics, there may be ambiguities in operator orders
to be resolved in the transition from the classical H(φ) to the quantum H(φ).) The
fermionic system is solved if one can find the kernel of the evolution operator
exp (— Ht); the next two sections of this paper are devoted to developing a rigorous
path-integral method for obtaining these kernels.

Some details of the analysis of functions of anticommuting variables will now
be described. (Many further details may be found in [11].) Concrete rather than
abstract anticommuting variables are used because the language involved is much
simpler in the case of concrete variables.
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For each positive integer L, let BL denote /l(ίRL), the Grassmann algebra over
RL and let CL denote Λ(CL\ the Grassmann algebra over CL. Thus BL(CL) is the
algebra over the real (complex) field with generators l,bl9...,bL{\,c1,...,cL) and
relations

bibJ=-b,bi (2.9)

ciCj=-cjCi ( / , ; = {,...,L) (2.10)

respectively. The unique algebra homomorphism of BL into CL which maps bt onto
ct{i = 1,... ,L) defines an embedding of BL into CL. BL0 and BLΛ denote the even
and odd parts of BL respectively, while B™'n denotes the cartesian product of m
copies of the even part of BL and n copies of the odd part (with similar notation
for CL).

Some useful classes of functions of the space B^n oϊn anticommuting variables
will now be defined; basically all functions will be polynomials in the odd variables;
such different possibilities as there are come from allowing the coefficients to take
values in different spaces.

Definition 2.1. (a) iί 0 0 (££'", BL) denotes the set of functions

f'B^^B^
such that

f(θί,...,θ") = fφ+fjfiθ
i+ £ fijθψ+...= x fμθ*. (2.ii)

ι = l i < j = 1 μeMn

(Here μ is a multi index and Mn is the set of all multi indices μί...μk

1 < μx < ••• < μk < n, together with the "empty" index denoted φ, and each
fμ{μeMn) is a real number.)

(b) Using the embedding of BL into CL, f/°°(n) is defined to be the set of
functions of BΌ

L'n into CL of the form (2.11) with the coefficients fμ now allowed to
be complex.

(c) G//°°(5£'", BL) is the set of functions of the form (2.11) with the coefficients
fμ taking values in BL/2. (Here and elsewhere, the natural embedding of BL/2 in
BL, and of CL / 2 in CL, will be implicitly used.)

(d) GH00^) is the set of functions of the form (2.11) with the coefficients fμ

taking values in CL / 2 .
Differentiation with respect to θι takes the natural form

S/dθi(fμθμ)= -(-l)ι^^fμ\θμi..Jμr...θμk if i = μr

= 0 otherwise, (2.12)

extending linearly to all H"0 and GH™ functions. (Here \fμ\ denotes the Grassmann
parity of fμ)

In order to avoid unwanted cancellations, it is necessary to use a value of L
(the number of anticommuting generators) greater than In. Often in this paper
one has to use a space B{^n)N consisting of N copies of the space B^n; or even the
space Bf'n)A consisting of copies of B°L'n indexed by an arbitrary set A. In these
cases, again in order to avoid unwanted cancellations, rather than using true copies
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one must use a different set of generators for each factor; thus strictly

BΪ-n>N = Ή " x - x NB°L-\ (2.13)

where rBL(r = 1,..., N) is the Grassmann algebra with L anticommuting generators

rbl9...9rbL. B£ n)A is defined similarly.
Also if B is a finite subset of A,

BBL=1BLx~ xkBL (2.14)

with BCL defined similarly.
H^(nB) is the set of functions of B^'n)B into BC

L of the form

f(θia)= Σ fμ°
μ (2.15)

l*eMn\B\

with each fμ comphx. GH°°(nB) is the set of functions of the form (2.15) with the
coefficients fμ taking values in CL / 2 .

The norm used on each Grassmann algebra is the I 1 norm, since with this
norm the Grassmann algebras are Banach algebras.

A representation of the canonical anticommutation relations (2.6) on Jf°°(n)
(or on any of the other classes of functions of B%n which are defined above) is
obtained if one sets

(z = l,...,n). (2.16)

In order to include time evolution one must in fact consider an extended set of
functions with the coefficients of the polynomials in θ being suitably smooth
functions of the real variable time. The Schrδdinger equation (2.8) then has meaning,
and one last technical preliminary remains, the definition of the integration
measure which will be used to define the kernel of the evolution operator.

For integration on B^n one uses the familiar Berezin rule [12]

/!...„, (2.Π)

if f(θ) = f1...nθ1 ...θn + lower order terms. (In the next section this method of
integration will be extended to finite dimensional spaces.)

It is now possible to define the kernel of an operator on J/°°(π); the
Feynman-Kac formula (Theorem 4.2) will express the kernel of e~Ht as a path
integral.

Definition 2.2. Given an operator K on the space Hσ{n\ if there exists a function
[K] in H (In) such that

then the function [K] is called the kernel of the operator K. An important case
is the delta function, that is, the kernel of the identity operator /. As usual one has

which satisfies

= \dnφδ(θ9φ)f(φ). (2.20)
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For the derivation of the Feynmann-Kac formula in Sect. 4 it is useful to use the
Fourier-transform version

$ p (θ-φ)), (2.21)

where

P'(θ-φ) = &fjPψ-Φi)' ( 2 2 2 )
ί = l

Also, since the delta function is an H™ function, it can be shown that for any
differential operator K acting on H^in), one has

lK](θ,φ) = Kθ(δ)(θ9φ), (2.23)

where the subscript θ indicates that derivatives are being taken with respect to the
θ variable.

A useful application of this result is that

irW, Φ) = \dnp{θ + ipf exp /(- p.(θ - φ)\ (2.24)

where, if the mul t i index μ = μ1...μk,
t h e n

...φμ\ (2.25)

and so on.
So far a representation of the canonical anticommutation relations (2.6), that is

has been defined on the 2" dimensional complex vector space H°°(ή). Obviously
the anticommutation relations are simply the defining relations of the n dimensional
Clifford algebra, and for some applications it will be useful to construct the 2n/2

dimensional representations. This may be achieved by restricting to an appropriate
subspace of ff°°(w); the details are not relevant to the rest of this paper. Alternatively
one may represent the operators φ1 directly on the space of H functions of n/2
complex anticommuting Grassmann variables aj by

< p = i(a

j - d/δaj) j = 1,..., n/2, (2.26)

and modify the measure defined in Sect. 3 accordingly.
Physically meaningful answers are always of course real numbers, not

Grassmann numbers; these are achieved by taking traces. It is easily shown that,
for a linear operator K (acting on H™(ή) regarded as a 2" dimensional complex
vector space) with kernel [X] one has

traceK = \dna[K\(a, - a). (2.27)

(The minus sign in front of the second a simply compensates for sign changes
which occur when there are an odd number of anticommuting factors.)
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3. Anticommuting Brownian Motion

In order to construct a Feynman-Kac formula for fermions, a measure (in the
sense of some infinite extension of Berezin integration) on the space of paths in
anticommuting space B°L'n is required. In this section a general formalism for these
measures will be developed, along with concepts such as the Grassmann random
variable and the Grassmann stochastic process. One particular process, Grassmann
Brownian motion, and the associated measure, Grassmann Wiener measure, will
be constructed. This measure will be used in the Feynman-Kac formula for fermions
established in the next section. The Fourier-mode version of the process will also
be constructed; this is useful when actually evaluating path integrals. First some
informal comments which motivate the definition will be given.

In bosonic quantum mechanics the physicist's notation for the matrix elements
of states evolving according to the Hamiltonian H — p2Λ- V(x) is

(3.1)

where the integration is over all paths beginning at q and ending at q'. The
corresponding analytic formula is [1]

( \ \ (3.2)

where μ is the conditional Wiener measure on the space of paths in U. By including
the kinetic term x2 in the measure rather than in the integrand a true measure,
free from infinite dimensional normalisation factors and so on, is obtained. Using
the notation {b(t)}t>0 for Brownian motion, the joint distribution of {b{tx\
b(t2),...,b(tn))O<t1<-' <tnis

P s (0,x 1 )P t (x 1 ,x 2 ).. .P f (x B _ 1 ,x π )d"x, (3.3)

where s1 = tus2 = t2-tu...,sn = tn-tn_x and

Λ(x, y) = (2πtΓ 1 / 2 exp ( - (x - y)2βt\ (3.4)

This corresponds to the kinetic term contribution in the physicist's more heuristic
approach. Pt(x9y) is simply the kernel of the operator exρ( — tp2\ p2 being the
free Hamiltonian.

In the fermionic case, where the free Hamiltonian is zero, one might expect to
use the delta function (2.19) in place oϊPt(x,y). In fact to derive the Feynman-Kac
formula one has to use the phase space or Fourier transform expression (2.21) for
the delta function, and define a measure on the space of paths in Bl'2n. Thus one
is led to consider the B°^2n valued process {(θ^ί), p1 (t))}(i = 1,..., n)t > 0 with finite
dimensional joint distributions having the form

dnNθdnNpQχpί(-p1iθ1-b)-p2.(θ2-θ1) PNiθN-θN-J-kia-θn)),
(3.5)

a, b and k being three anticommuting parameters.
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At this stage this is simply a heuristic picture. The theory of Grassmann
probability spaces will now be developed to give these expressions meaning. First
one must define an extension of Berezin integration to functions on B{^n)A, where
A is an arbitrary topological space. (Generally A will be an interval of the real
line.) The literature contains various approaches to Berezin integration on
countably infinite dimensional spaces [13], mostly in the context of fermionic
quantum field theory, and also the earlier work of Segal on anticommuting
integration and non-commutative U spaces [14]. The approach taken in this paper
is somewhat different, being constructed with path integration specifically in mind.

Definition 3.1. An n-Grassmann probability space of weight weCL consists of
(a) a set A;
(b) the space B^n)Λ;
(c) for each finite subset B of A a function fBEGH^(n\B\) such that
(i) μmθfBφ) = w. (3.6)

(ii) if B = {bί9...9bs} a n d B' = { b l 5 . . . , & s - i } , t h e n

fB>{θil

9...9θ
is-1) = $dnθsfB{θil,...9θ

is). (3.7)

Such a space will be denoted (B^'n)A, {fB},dμ).
The idea in this approach has been to build Kolmogorov-type consistency

conditions into the definition and thus be able to integrate certain objects, not
quite functions on 2^°'")A, which will be called Grassmann random variables.

Definition 3.2. (a) A Grassmann random variable g on a Grassmann probability
space (B{£'n)A

9 {fB},dμ) consists of
(i) a set C c A.

(ii) a sequence Bl9B29... of finite subsets of C such that (J Br is dense in C.

(iii) a sequence of functions g1,g2> - with ^eG//°°(n5r) for each r= 1,2,...
such that §dnlB]θfB(θ)gr(θ) tends to a limit as r tends to infinity. This limit will be
denoted \dμg and called the expectation of g.

(b) A Grassmann random variable is said to be odd if each function gr takes
values in the odd part of BBL.

(c) Let {gk, k = 1,..., N} be a set of N odd Grassmann random variables based
on the same set C c A9 and the same sequence B1, B2,... of finite subsets of C. Also,
for each k = 1,..., N let gk

r(r = 1,2,...) be the sequence of functions which defines
the random variable gk. Then if, for each v in MN, the sequence gv

r defines a
Grassmann random variable, the set {gk, k= 1,..., N} is called an N-dimensional
Grassmann random variable.

(d) Let I be an interval of the real line. A collection {wk(t)\k= 1,..., JV, tel}
of N dimensional Grassmann random variables indexed by / is called an
N-dimensional stochastic process if each finite subset is a Grassmann random
variable of the appropriate dimension.

(e) If {gk I k = 1,..., N} is an N-dimensional Grassmann random variable, then
the function h in GH^iN) such that for each v in MN

(3.8)



Fermionic Path Integration and Grassmann Brownian Motion 361

is called the joint probability distribution of {g1,.. .9g
N}.

(f) Two iV-dimensional Grassmann stochastic processes

{wk(t)\tel} and {Wk(t)\tεl}

are said to be versions of each other if the joint distributions of

{Wfa),..., W(tN)}

and

{Wk{U),..., Wk(tN)}

are the same for each finite subset {t1,...,tN} of /.
At this stage it would be possible to develop a theory of Grassmann probability

spaces with many concepts and results analogous to those of Bochner's approach
to stochastic processes [2]. Here only those aspects relevant to fermionic path
integration will be developed. One concept which will be necessary is the concept
of independent random variables. Two Grassmann random variables will be said
to be independent if their joint distribution f(θ\ φs) factorises as g(θr)h(φs). If they
are of the same dimension it can be shown that the distribution of their sum is

fψ) = μnφg(θ - φ)h{φ) = μnφg(φ)h{θ - φ). (3.9)

Independence of a finite set of Grassmann random variables is defined similarly.
It will also be useful to have a concept of Gaussian Grassmann random

variables.

Definition 3.3. (a) An TV-dimensional Grassmann random variable (θr) r = 1,..., N
is said to be Gaussian if its joint probability distribution is of the form

i f> r 0 r ) - Σ (CrW
r = l r , s = l

where the Crs are real numbers and

σ*=-crs. (3.11)

(b) A Grassmann stochastic process is said to be Gaussian if all finite subsets
are Gaussian.

Part (a) of this definition allows a delta function to be a degenerate Gaussian
with Crs = 0. It may easily be shown that Crs is the covariance of {θ\θs\ (that is,
the expectation of θrθ\) and consequently the covariances of a finite set of jointly
Gaussian random variables determines their joint distribution. For a Gaussian
stochastic process one has the following result.
Proposition 3.4. Let A be an interval in U and C ^ x ^ ί ^ I R "

(s,t)^(Cij(s,t)l

with

CtJ{s,t)=~CJl(t,s). (3.12)

Then there exists a jointly Gaussian n dimensional Grassmann stochastic process
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{w\t)\teA} such that

E(\vi(s)wj{t)) = Cij{sj) (3.13)

for all U j = l , . . . , n and all s,ί in A. Also, if {W(t)\teA} is another n-Grassmann
stochastic process satisfying these conditions, then the two processes are versions of
each other. Outline of proof': (B{^n)Λ,{fB},dμ) with, given B = { ί l 5 . . . , ί Λ } a A,

i£p'-0' + Σ Σ C'i .ΦVs) (3-14)
r = l r , s = l i , j = l /

is an n-Grassmann probability space. Also {Θ^ήlteA} is then a Gaussian
Grassmann stochastic process with the correct distribution.

Another useful property of Gaussian Grassmann random variables is that the
sum of two independent N dimensional Gaussian Grassmann random variables
with covariances C and C" is an ^-dimensional Gaussian random variable with
covariance C + C".

The Grassmann probability space used in fermionic path integration can now
be defined, using the formal concepts just developed to make sense of the
distribution (3.5).

Definition 3.5. (a) Let A be the interval (0, oo) and a, b and k be odd elements in
BL. Then n-Grassmann Wiener space with parameters a,b,k is the 2n-Grassmann
probability space (B{^2n)A

9 {fB,dμ}) with, given B = {tί,...,tN} czA,

fB = exp i( - p1 -{θ1 -b)-p2'{θ2-θ1)...-pN-(θN-ΘN'1)- k-(a - ΘN)) (3.15)

(b) The corresponding 2π-Grassmann probability measure will be called
n-Grassmann Wiener measure between a and b with momentum k, and denote

(c) The n-dimensional Grassmann stochastic process w(ί)[α,fo,fc] with w(ί) =
θ(t) 4- ip{t) will be called n-Grassmann Brownian motion between a and b with
momentum k. (It is straightforward to check that the functions fB of Eq. (3.15) do
satisfy the consistency conditions (3.7).)

The extra parameter k (in addition to the parameters a and b which one might
expect by analogy with conventional conditional Wiener measure) arises because
one is working in phase space. It is possible to calculate the JV-point distributions
of Grassmann Brownian motion, and use them instead of (3.15), thus using an
n-Grassmann rather than a 2n-Grassmann probability space; for the results needed
in this paper (3.15) is generally simpler to use, and essential to the proof of the
fermionic Feynman-Kac formula. In other contexts, such as developing a lattice
approach to fermionic quantum field theory, the n-dimensional space might be
more useful.

A result concerning integration with respect to Grassmann Wiener measure
will now be proved. This result is crucial to the Feynman-Kac formula which will
be constructed in the next section.

Proposition 3.6. Let fl9...9fNeH°°(n) and tί9...,tN be real numbers with

0<t1 < ••• <tN. Then

wί^. ./̂ w Ĵ̂  (3.16)
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Proof.

1 - f e ) pN (θN - ΘN~1)- k(a- ΘN))

} (3.17)

foW\θN~ι)...UΛfoW\b)δφ\a) (3.18)

(using (2.18)),

)- (3.19)

(Equation (3.16) appears inconsistent because the right-hand side is manifestly
independent and the left-hand side not; in fact the t dependence of the left-hand
side is hidden in the ordering of the tt)

To end this section, an alternative version of Grassmann Brownian motion
will be given, involving a Fourier expansion in terms of independent Gaussian
variables. This version is useful when actually calculating fermionic path integrals,
as will be clear from the example of the fermionic oscillator considered in the next
section. This Fourier expansion corresponds to the physicist's technique of
replacing the sum over paths by the sum over Fourier modes with anticommuting
boundary conditions. As a preliminary the Gaussian process which it is natural
to call the Grassmann Brownian bridge is required.

Definition 3.7. The ^-dimensional Grassmann stochastic process {w(£)[0,0,0]|ίe
(0, oo)} is called the n-Grassmann Brownian bridge.

Two useful properties of this process are (a) that it is Gaussian, (as may be
shown directly by calculating its distribution), and (b) that

cov (wf(s), wj(t)) = - iδij if s < t

= 0 if s = t (3.20)

= + iδij if s>t.

The fact that Gaussian processes are uniquely characterised by their covariances
will now be exploited in constructing the Fourier expanded version.

Proposition 3.8. Let (Xιr, Yιr),r= 1,2,... be independent In-dimensional Gaussian
Grassmann random variables, each with distribution dnXdnY exp — ίY X, and let
[Bfjή)z,{fΉ},dμ) be the corresponding probability measure space. Thus

j) (3-21)

Also let

Cr = {2r+l)π ( r = l , 2 , . . . ) (3.22)

and, for se[0,1],

Zι

N(s) = X \2lyjCt) (sin Cts Xir + i cos Crs Yir). (3.23)

Then (i) the sequences {Zl

r(s)\se[0,1]} define an n-dimensional stochastic process
Zι(s) on (B{L'n)z,{fN},dμ); (ii) the process is Gaussian; and
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(iii) covarίance { Z \ s \ Z j ( ή ) = - i δ i j if s<t

= 0 if s = ί (3.24)

= iδij if s > t,

and hence Zι(t) is a version of the Grassmann Brownian bridge on [0,1].

Proof, (i) Suppose that v(l),...,v(k) are in Mn and s l 5 . . . ,s f c are in [0,1]. For N

an integer greater than zero, let

hN = μ»NXdnN YfN(X, Y)Z^)(s1)... Z f f e ) . (3.25)

Then

hN(\+aN) (3.26)
with

nk

aN=Σkp

NCrp, (3.27)
P= 1

where there exist constants quv(u,v = 1,..., k) and qp(p = 2,..., nk) such that

ί̂v = Σ ^UV s m ^>(5κ ~ sv) (3.28)

and

| ^ | < / , p = 2,...,nfc. (3.29)

Hence Σ^JV is convergent and Σ ( ^ N ) 2 *S absolutely convergent, and thus by standard
theorems hN tends to a limit as N tends to infinity.

(ii) and (iii). The sum of independent Gaussian Grassmann random variables
of the same dimension is also a Gaussian Grassmann random variable, with
covariance equal to the sum of the co variances of the independent random variables.
Thus, for each N = 1,2,... {Zi

N(s)\se[0,1]} is a Gaussian process with

N

covariance {Z{

N{s\ Zj

N(ή) = £ i sin Cr(s ~ t). (3.30)
r = 1

Hence, since Zl(s) is the limit as N tends to infinity of Zι

N(s\ it is a Gaussian
Grassmann stochastic process with

covariance {Z\s\ Zj{s)) = £ i sin Cr(s - t) (3.31)
r = l

= covariance (w f(s)[0,0,0]^^)[0,0,0]) (3.32)

for s, t in [1,0] (using standard Fourier analysis).

Corollary 3.9. Ift>0 Z^s/ή + ί?1' + k[ is a version of w'"(s) [fc,fe,fe] on (0,t).

4. The Fermionic Feynman-Kac Formula

Given a fermionic quantum mechanical system as described in Sect. 2, the time
evolution equation (2.8) can be solved if one has an expression for the kernel of the
evolution operator e~Ht. The theorem in this section (Theorem 4.2) establishes a
Feynman-Kac formula, which expresses the kernel [e~Ht^\(a,b) in terms of an
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integral with respect to anticommuting Wiener measure μ [a, b, fc]. First the random

( ι \
variable exp — j V(w(t) [α, b, fc] dt) , which is the integrated in the Feynman-Kac

V o /

formula, must be defined.

Proposition 4.1. Suppose that VeGH^in). Let

C=[0,ί] (4.1)

and, for N = 1,2,..., let

t} (4.2)
Also let random variables gN on n-Grassmann Wiener space with parameters a,b,k
be defined by

- Σ (t/2N)V(w(rt/2N))\. (4.3)

Then the sequence gN defines a Grassmann random variable on n-Grassmann Wiener
( t

space. This random variable will be denoted exp — j V(w(t)[a,b9k]dt).

Proof. Let fB be the finite joint distributions of n-Grassmann Wiener measure
with parameters a,b,k (Eq. 3.15). Then, by Corollary 3.9, (and with the notation
of Proposition 3.8)

= lim $dnkXdnkYexp

j 2'

r=l s=l )

= lim h(NJ) (say). (4.5)

Now

lim Σ(tβN)V{Zj(s/2N) + b + k)

N^oo s= 1

= ί V\ Σ (S i Π CrSXV + C 0 S CrS YΊ + b + k] (4.6)

= Σ PμΛJ)XvYv (say). (4.7)
Thus h(N,j) tends to a limit Q(j) as N tends to infinity. Now

/) = \dnjX dnj 7 exp - /• Σ X r Yr - £ Pμvϋ)Xμ Y\ (4-8)
r = 1 μ,veMnJ
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and it can be shown that

αJ ), (4.9)

where Σaj converges absolutely. Thus lim lim h(N,j) exists and thus also
j - * oo N-+ oo

lim lim h(N, j) exists and so the sequence gN defines a Grassmann random variable.
N -* oo j -* oo

Now the main theorem of this paper, which establishes the Feynman-Kac
formula for fermions, can be given.

Theorem 4.2. Let V be a function in GH^in) with

nol)= Σ KΘμ> ( 4 1 0 )
and let

H=V(φ) (4.11)

{that is, H = ^ VμΦ
μ> with φμ the operator defined in Eq. (2.25)). Then, ift>0,

μeMn

ί X \
[e~Ht~](a,b)=\dnkdμ[a,b,k']exΌ[ -\V(w(t))dt . (4.12)

Proof.

i\~(t/m)V(φ)-](θ,Φ)

= \dnpdnθexp(- (t/m) V(θ + ip) - ip (θ - φ)) + o(l/m). (4.13)

Hence, by the compound interest formula,

te-tH](a,b)= lim Q(m)(a,b\ (4.14)
W 1 - * 00

where

f m

2(m)(^b) = j ^ k i / n m e d " m p e x p ^ ^ - (t/m)V(θr + ϊ > r ) - ^ ( p 1 ' ^ 1 - a)

+ p 2 ( 0 2 - θ1) + ... + p m (0m - θm~ L) + /c (0m - fc)) 1. (4.15)

Thus

= \dnk dμ [α, b, k] exp - j V{w(s)) ds. (4.16)
o

As a simple example of the use of this theorem, the kernel of the evolution
operator of the two-dimensional fermionic oscillator will be calculated. This system
is defined by the Hamiltonian

H = icψιψ2. (4.17)

Hence

\ (4.18)
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Thus, by Corollary 3.9 (which gives the Fourier expansion of w(ί)[fc,ft,fc]) and

using the fact that
dμ [α, b, fc] - dμ [b9 b9 fc] exp - ik (a - b\ (4.19)

one finds that

le-Htl(a, b) = \dnk Π d2Xr d2 Texp - ίk-(a - b)
r = 1

Γ oc

exp< £ l-iYr-Xr~(2ίct/Cr)(XlrX2r-YirY2r)

^ifp1 + kι)X2r - (b2 + fc2)*1')]

(4.20)

Using standard techniques of Grassmann Gaussian integration [9] gives

ίe'Htl(a9b)

= \dnkexp - ik-(a - b) cosh ct exp ( - î fo1 + k1 )(b2 + /c2) tanh ct)

= \dnkexp - ϊfe (α - b) {cosh cί - i{bι + k1 )(b2 + k2) sinh cί}. (4.21)

Obviously this result could be obtained in other ways; the purpose of developing
a fermionic path integral is not to tackle the finite dimensional linear algebra which
purely fermionic systems involve, but to extend analytic techniques used for bose
systems to systems involving fermions and bosons, and in particular to super-
symmetric systems.

The approach to fermionic path integration developed in this paper has
deliberately been as closely parallel as possible to the bosonic method (as described
by Simon [1]), so that the two methods can easily be combined when considering
a system containing both bosons and fermions. The basic formalism described in
this paper thus leads naturally to several possible developments—path integrals
for supersymmetric systems, path integrals for fermions in curved space and path
integration on supermanifolds—ail of which are under active consideration by the
author. First steps in a theory of supersymmetric path integration have recently
been completed [3].

This paper demonstrates that Grassmann variable techniques are not simply
formal tricks, but are capable of being incorporated into a rigorous analytic scheme.
This should open up the possibility of new ways of handling fermionic fields, in
addition to the Matthews-Salam approach [15], where fermions are integrated
out at the outset.

References

1. Simon, B.: Functional integration and quantum mechanics. New York, San Francisco, London:

Academic Press 1979

2. Bochner, S.: Stochastic processes. Ann. Math. 48, 1014-1061 (1947)

3. Rogers, A.: Supersymmetric path integration. Phys. Lett. B193, 48-54 (1987)

4. Alvarez-Gaume, L.: Supersymmetry and the Atiyah-Singer index theorem. Commun. Math. Phys.



368 A. Rogers

90,161-173, (1983); Friedan, D., Windey, P.: Supersymmetric derivation of the Atiyah-Singer index
theorem and the chiral anomaly. Nucl. Phys. B235, 395-416 (1984)

5. Berezin, F. A., Marinov, M. S.: ZhETFPis. Red. 21, 678-180 (1975) [ = JETP letters 21, 320-321
(1975)]

6. Dashen, R. F., Hasslacher, B., Neveu, A.: Semiclassical bound states in an asymptotically free
theory. Phys. Rev. D12, 2443-2458, 1975

7. Fadeev, L. D., Slavnov, A. A.: Gauge fields, introduction to quantum theory. London, Amsterdam,
Ontario, Sydney, Tokyo: Benjamin/Cummings 1980

8. It is not possible to give a full list; some examples are: Applebaum, D., Hudson, R. L.: Fermion
Ito's formula and stochastic evolutions. Commun. Math. Phys. 96, 473 (1984); Barnett, C,
Streater, R. F., Wilde, I. F.: The Ito-Clifford integral. J. Funct. Anal. 48, 172-212 (1982);
Hudson, R., Lindsay, J. M.: A non-commutative martingale representation theorem for non-Fock
quantum Brownian motion. J. Funct. Anal. 61, 202-221 (1985); Kummerer, B.: Markov dilations
on W*-algebras. J. Funct. Anal. 63, 139 (1985); See also: Quantum probability and its applications.
Accardi, L., von Waldenfels, W. (eds.). Lecture Notes in Mathematics, Vol. 1136. Berlin, Heidelberg,
New York: Springer

9. Haba, Z.: Euclidean formulation of quantum spinning particles, Bielefeld preprint no 214, (1986)
10. DeWitt, B. S.: Supermanifolds. Cambridge, London, New York, New Rochelle, Melbourne, Sydney:

Cambridge Univ. Press 1984.
11. Rogers, A.: A global theory of supermanifolds. J. Math. Phys. 21, 1352-1365 (1980); Rogers, A.:

Graded manifolds, supermanifolds and infinite-dimensional Grassmann algebras. Commun. Math.
Phys. 105, 375-364 (1986)

12. Berezin, F. A.: The method of second quantization. New York: Academic Press 1966
13. Seiler, E.: Constructive quantum field theory: Fermions. In: Gauge theories: Fundamental

Interactions and rigorous results. Dita, P., Georgescu, V., Purice, R. (eds.). Boston, Basel, Stuttgart:
Birkhauser 1982 (and references therein); Kupsch, J.: Measures for fermionic integration. Universitat
Kaiserslautern preprint, April 1986

14. Segal, I. E.: A non-commutative extension of abstract integration. Ann. Math. 58, 595-596 (1953)
15. Matthews, P. T., Salam, Abdus: Propagators of quantised fields. Nuovo Cimento 2, 120-134 (1955);

Gross, L.: On the formula of Matthews and Salam. J. Funct. Anal. 25, 162-209 (1977)

Communicated by B. Simon

Received December 22, 1986; in revised form March 30, 1987




