
Communications in
Commun. Math. Phys. 113, 49-65 (1987) Mathematical

Physics
© Sprmger-Verlag 1987

Hyperscaling Inequalities for Percolation
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Abstract. A set of critical exponent inequalities for independent percolation
which saturate under the hyperscaling hypothesis is proved. One of the
consequences of the inequalities is the lower bound dc §: 6 for the upper critical
dimension. The proof is based on a rigorous version of the finite size scaling
argument which extends easily to other systems such as Ising ferromagnets.

1. Introduction

In the present paper, we prove the following critical exponent inequalities for the
independent percolation [1]

(1.1)

(1.2)

(1.3)

dv^2Δ-y , (1.4)

dv"£Δ' + β , dvmax^Δ+β , (1.5)

(d-2 + η)μδ^2 , (1.6)

dμ^l + ί/δ . (1.7)

These inequalities are of particular interest because of their close relation to the
so-called hyperscaling hypothesis. If the hyperscaling hypothesis is valid, all the
inequalities (1.1)-(1.7) become exact equalities.

Usually it is believed that the hyperscaling relations hold only in sufficiently low
dimensions. As for independent percolation in two dimensions, Kesten [2] has
recently proved almost all of the expected hyperscaling relations. However the
validity of the hyperscaling hypothesis in dimensions higher than two is still wide
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open, even on a heuristic level. It should be mentioned that the corresponding
problem in the three dimensional Ising model has been an extremely difficult open
problem for more than two decades [3].

On the other hand, in dimensions higher than the upper critical dimension, it is
believed that the critical phenomena are governed by simple mean field theories.
Therefore, in these dimensions, all the critical exponents assume dimension
independent mean field values, and the hyperscaling relations are violated.

One of the most interesting features of our inequalities (1.1)-(1.7) is that they
provide us with information about the upper critical dimension. More precisely,
they are all inconsistent with the complete mean field type critical phenomena when
the lattice dimension is smaller than six. This implies that the critical phenomena of
percolation in dimensions two, three, four, and five are inevitably not mean field-
like. In terms of the upper critical dimension dc, our inequalities provide us with a
rigorous lower bound dc ^ 6. Note that the lower bound dc ^ 6, as well as Aizenman
and Newman's sufficient condition (triangle condition) for the mean field behavior
[4], is consistent with the general belief dc — 6.

Though there have already been some critical exponent inequlaties which imply
dc^4 [5], and dc^6 [6], our inequalities are the first ones that are believed to be
sharp in sufficiently low dimensions. See [7, 8] and the references therein for other
interesting critical exponent inequalities for percolation.

It should be mentioned that the first rigorous critical exponent inequality which
saturates under the hyperscaling hypothesis was proved by Fisher [9] for Ising
ferromagnets. Moreover the inequalities corresponding to (1.!)-(!.3), (1.6), (1.7)
and special cases of (1.4), (1.5) have already been proved for certain ferromagnetic
spin systems [9]. Since those proofs are based on the correlation inequalities and
some specific features of the spin systems, none of them extend easily to percola-
tion.1 Therefore instead of looking for possible extensions of the existing proofs, we
here develop a new argument which is based on the finite size scaling idea [10]. It
then turns out that the argument naturally leads us to the desired hyperscaling
inequalities. Moreover our technique can be easily extended to other lattice systems
such as Ising ferromagnets.

The organization of the present paper is as follows. In Sect. 2, we give precise
definitions of the percolation system, some physical quantities, and various critical
exponents. In Sect. 3, we discuss a consequence of our inequalities to the problem of
the upper critical dimension. Then, in Sects. 4-7, we prove our critical exponent
inequalities. In the Appendix, we extend the present method to Ising ferromagnets.

2. Definitions

For simplicity, we restrict ourselves to the neares neighbour bond percolation on
the ^/-dimensional hypercubic lattice. However all of our results extend automati-
cally to any translation invariant short range bond or site percolations.

1 It is interesting that most of the existing proofs of the critical exponent inequalities which

saturate under the scaling hypothesis (e.g., Fisher's (2—η)v^.y [9]) automatically extend to

percolation without an}/ modifications
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Let Zά be the ^-dimensional hypercubic lattice whose elements x,y,. . . are
called sites. We denote by 0 the origin of the lattice. A bond is an unordered pair
[x, y} of two sites satisfying ||x —y\i = 1. In independent percolation, each bond in
the lattice is occupied {respectively, unoccupied) independently with probability p
{respectively 1 —p). The occupation probability/? is our only model parameter. Let
us denote by Pτobp ( . . . ) and <. . . ) p the probability and expectation value
associated to the above process.

For a given configuration (i.e., occupation status of all the bonds in Z d ), we say
that two sites x,y are connected if there exists path of occupied bonds which
connects x andjμ. More precisely, x and y are connected if there exists a sequence of
sites {*!,. . . ,xπ}, where xt =x, xn=y, and each {xi9xi + ι} is an occupied bond. We
also say that a site x is connected to a set (of sites) Y if there exists a site y in Y which
is connected to x. Finally a cluster C{x) is defined as a set of all the sites which are
connected to x. \C(x)\ denotes the number of the sites in C(x).

Now let us define some physical quantities of interest. The connectivity function
τp{. . .) and truncated connectivity function τ'p{. . .) are

τp{xγ, χ2,. . ., xn) = Probp (C(xx) 9x 2,. . ., xn) , (2.1)

τ'p(xux2,. . .,xn) = Probp(C(xί)3Jc2,. . . ,x n , |C(Xi)| < oo) . (2.2)

The mean (finite) cluster size χ{p) is

Στ;,(0,x) , (2.3)

where X(A) = \ (or 0) when A is true (or false). The correlation length ξ{p) is

ξ{p) = mf{ξ\τp{0,x)Se~]xl/ξ for any xeZd] . (2.4)

Finally the order parameter M{p) and its finite volume counterpart M{p;L) are

= Probp(|C(0)| = oo) , (2.5)

0 is connected to dSJ , (2.6)
where

dSL = {x\\x\=[L/2]} . (2.7)

Throughout the present paper, we use the metric defined by

I x l ^ m a x ϋ ^ l , |*2|,. . ., \xd\} = \\x\\x .

In the system with J ^ 2 , it is known [8] that there exists a critical probability/^
(0<pc<l) which is characterized by

M{p) = 0 if p<pc ,

M(p)>0 if p>pc •

It is also known that the mean cluster size χ{p) and the correlation length ξ{p)
diverge when/> approaches pc from below [1, 4]. Note that if p <pc, the truncated
connectivity function τp{. . .) is nothing but the connectivity function τp(. . .), since
the condition \C{xι)\< oo is automatically satisfied.
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For the values ofp close to or equal to/?c, the percolation system is believed to
exhibit various critical phenomena. More precisely, in this region many physical
quantities are expected to show power law singularities characterized by the critical
exponents. In the present paper, we do not assume the existence of the power law
singularities, and introduce the critical exponents through the following formal
definitions.

Let the relation f(x)<xλ as x\0 be an abbreviation for f(x)^s(x)xλ forx^O
with a slowly varying function s(x) (i.e., lims(tx)/s(t) = l for any x>0, e.g.,

ί\0

s(x) = const, s(x) = |ln x\). Then the critical exponents y, yr, y, v, V, β, Δn, A'n,η9 and δr

are defined as the optimal constants satisfying the following relations.2

As p/pc ,

G
('•

(2.

(2.

(2.

(2.

2.8)

2.9)

10)

11)

12)

13)

as p\pc ,

M(p)<{p~pc

{\cmn~1χ{\cm<^)y
at p=pc ,

τPc(x,y)>\x-y\-«-2 + r» , (2.15)

M(pc;L)<L-1/δr . (2.16)

Here the specific choice of upper or lower bound is merely from technical
considerations. Usually one believes that the above relations with < or > replaced
by ~ (f~xA means f<xλ and / > x Λ ) are valid. (Thus, in particular, we have y = y.)
See Sect. 7 for the definitions of the other critical exponents.

3. Critical Dimension

In a suitable mean field theory (e. g., Cayley tree model, rf-> oo limit) for percolation,
one can easily calculate the critical behavior of many quantities explicitly. Then we
find that many quantities exhibit strict power law behaviors [the relations like
(2.8)—(2.16) with < or > replaced by ~] with the critical exponents y = / = l,
v = v/ = l/2, j8 = l, An = Δ'n = 2, η = 0, δr = 1/2, μ = 1/4, and δ = 2. (See Sect. 7 for the
definitions of the exponents μ and δ.)

2 Note that our definition of the gap exponent Δn differs from that in some articles (such as [2]) in
percolation. But ours is a natural extension of the standard definition in the spin systems
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Let us substitute these mean field values of the critical exponents into our
inequalities (1.1 )-(l .7). Then we find that each of the inequalities leads us to a single
inequality d^tβ. This implies that the complete mean field type critical phenomea
are inconsistent with our critical exponent inequalities (and with their counterparts
for the original physical quantities such as ξ, χ, and M) if the lattice dimension is
smaller than six. In other words, the upper critical dimension dc of the translation
invariant short range independent percolation cannot be less than six!

Note that the lower bound dc ^ 6 was already mentioned in [6], where the bound
was concluded from the other critical exponent inequalities (which were however
not optimal as the present ones).

4. Basic Inequalities

In the present section, we prove our most basic inequalities (1.1) and (1.2). Although
the derivation of these inequalities is rather elementary and straightforward, it
contains some of the essential ideas of the present rigorous finite size scaling
approach.

Proposition 4.1. For arbitrary positive integer L and xeZd with \x\=L, we have

τp(0,x)^M(p;L)2 . (4.1)

From the above inequality with/? =pc and the definition of the critical exponents
η and Or, we immediately get

Corollary 4.1. The critical exponents η and δr satisfy

Ϊ 2 . (4.2)

Proof of Proposition. Observe that when 0 and x are connected, each of them must
be connected to some site at a distance [L/2] of each (Fig. 1). Since the latter two
events take place in the two separated regions in the lattice, we get the desired bound
(4.1). D

0

s_
x

Fig. 1. The event that 0 and x are connected
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0
ς

1 >"2

x2

F2 Fi

y ! χ 2 >ε
Fig. 2. A sufficient condition for the hyperscaling relation (d — 2 + η)δr =

Remark. Let L = 4« with a positive integer «. We consider the percolation system in
a finite lattice {y\(-3l4)LSyiSQI4)L, ly^Lβ (i = 2,... ,d)}. We define (see
Fig. 2)

* Ί = {yh i = - ί /4, l> d S Lβ 0 = 2 , . . . , < / ) } ,

Xi = (— L/4, 0, 0,. . .), and x2 = (L/4, 0, 0,. . .). Consider the following condition (see
Fig. 2):

ProbPc (x1 and x2 are connected | x1 is connected to F2, x2 is connected to F^^

holds with ε > 0 uniformly in L. Here Pΐob (A\B) = Prob (A, B)/Prob (B) denotes
the conditional probability. Note that the above probability is nothing but the
intersection probability of two large clusters at/?c. Then it is not difficult to show that
the above condition [along with (4.1)] implies the relation τPc(0, (L, 0, 0,. . .))
— M{pc\L)2 which reduces to a hyper'scaling relation (d — 2 + η)δr = 2. However we
do not know any methods of proving (or disproving) the above condition in the
dimensions higher than two.

In order to eliminate the rather unfamiliar exponent δr from (4.1), and to get our
next inequality (1.2), we will make use of the idea of the heuristic finite size scaling
theory [10].

In the finite size scaling theory, it is argued that the finite size order parameter
M(pc L) behaves almost similarly to the full order parameter M(p) evaluated at the
value of p(p >pc) which satisfies ξ(p) = L. Although it is very hard to justify this
conjecture in general (but see [2] for the results in two dimensions), the following
weaker version can be proved very easily.

Lemma 4.1. For arbitrary p >pc with ξ(p) ^ Cί, we have

M(p)^M(p;L)^2M(p) (4.3)

when L = 2dξ(p)\ln ζ(p)\. Here CΊ is a constant which depends only on the dimension.

Here the choice of constants 2d and 2 are rather arbitrary. In two dimensions,
Nguyen [11] has proved the above bound without (unwanted) In ξ factor.

Proof. The first inequality is trivial since whenever the origin is connected to infinity,
it must be connected to dSL. Let BL be the event that the origin is connected to dSL.
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To prove the second inequality, note that

= {i -Pτobp(BL, |C(0)| < ooVProbp^)}"1 Probp(BL, |C(0)| = oo)

BL)}-1 M(p) . (4.4)

Let us construct an upper bound for the prefactor. Recall that Simon's argument
[12] combined with the percolation version of Simon's inequality [4] implies that

Σ t p(0,x)^l if p^Pc . (4.5)
x e 3SL

Therefore one can find x in 0SL with the property τp(0, x)^:(2dLd~1)~1. Thus we get

1y1 . (4.6)

On the other hand observe that

Prob p (£ L , |C(0) |<oo)^ £ τ'p(0ix)^2dLd-1e-Llξip) , (4.7)
x e 6SL

where we used the definition (2.4) of ξ(p). Substituting (4.6), (4.7) into (4.4), we get

For L = 2dξ(p)\\n ξ(p)\ and sufficiently large ξ(p), the right-hand side of the above
bound is bounded by 2M(p). D

Let us define the quantity p{L) by the following formula:

= mf{p\p>pc,2dξ(p)\lnξ(p)\^L} . (4.8)

Note that if ξ (p) is a monotone continuous function (as is expected), p (L) is nothing
but the inverse function of 2dξ(p)\ln ξ(p)\.

Proposition 42B For arbitrary L^C1 and x with \x\=L, we have

τPc(0,x)S4M(p(L))2 , (43)

provided thai c(/?)/'αc as p\pc.

Proof. Since M(p;L)^M(pc;L) for p^pc, (4.9) follows immediately from
Proposition 4.1 and Lemma 4.1. Π

If we note that the relation ξ (p) < (p —pc) ~v' implies p(L) —pc<(p —pc)~llv\
we get

Corollary 4.2O Whenever ξ(p)/Όo asp\pc, the critical exponents η, v\ and β satisfy

(d-2 + η)v'^2β . (4.10)

Remark. Combining the consequence of Simon's argument (4.5) and the present
idea, we get the following strict lower bound for the finite size order parameter
M(p;L\

M(p;L)^(2dd)~1/2L~id~1)l2 if p^pc .
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This bound, which was first proved by Aizenman [13], is a generalization of van den
Berg and Kesten's result in two dimensions [14].

5. Inequalities for v, y9 and β

In the present section, we prove the inequalities (1.3). We think that these are the
best critical exponent inequalities among those proved in the present paper, since
they only include simple and standard critical exponents which are also "approach
exponents". Here the "approach exponents" means the critical exponents defined
through the singular behavior which takes place when the system approaches its
critical point.

Proposition 5.1. For arbitrary p>pc with ζ(p)^C2, we have

2dξ(p)\lnξ(p)\

x(p)ύc3 Σ L'-'MipiL))2 , (5.1)
L = {(d/2)ξ(p)\lnξ(p)\}1/d

where C2 and C3 are constants which depend only on the dimension, (p (L) is defined by

(4.9).;

Let us again assume that ξ(p)/oo &sp\pc. Then as/? approachespc, any/?(L)in
the summation in (5.1) also approaches pc. Then we can substitute the critical
behavior of the quantities into (5.1) to get

2dξ(p)\lnξ(p)\

(P-PCΓ'Z Σ Ld-ιL-2"^{p-pc)-'l}'' + 2f •
L = l

This immediately implies

Corollary 5.1. Whenever ξ(p)/co asp\pc, the critical exponents v', yr, and β satisfy

dv'^γ' + 2β . (5.2)

Proof of Proposition. Let us bound χ(p) by the following three terms:

χ(p) = Στ'p( °'χ)^ Σ ! + Σ τp(0,x)+ Σ τ'p(O,x) ,
x x;\x\^Lι x;L1<\x\^L2 x;L2<\x\

where Lx = {(rf/2)ξ(»|ln ξ(p)\Y'\ L2 = 2dξ(p)\\nξ(p)\. Here we have used the
trivial inequalities τ'p(0,x)^τp(0,x)^l. Using the bound (4.5) (which is a
consequence of Simon's argument), the first and second terms in (5.2) can be related
as

From the definition of ξ(p), the third term is bounded as

Σ τ'P(^x)^ Σ 2dLde-Llξ{p)^ξ(pΓa

x ; L 2 < | x | L>L2

with a>0 and ξ{p)^C\ where C is a sufficiently large constant. Combining these
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bounds together we get an upper bound

χ(p)Sconst £ τp{Q,x) ,
x;L1<\x\^L2

provided that ξ(p)^C2, where C2 is a constant which depends only on the
dimension. Now noting thatp(L) ~§:p for L ̂  L2, we can repeat the arguments in the
previous section to get

τp(0,x)^4M(p(L)f for x with |x| = L ,

which leads us to the desired bound (5.1) when summed over L. •

By a slight modification of the above proof, we can also show the following
result for the behaviour of the mean cluster size in the low density region.

Proposition 5.2. For arbitrary p<pc with ζ(β)^C2, we have

2dξ{p)\\nt{p)\

l(p)SC, Σ L"-ιM(p(L))2 , (5.3)

L = {(d/2)ξ(p)\\nξ(p)\}Vd

provided that ξ(p)/oo as p\pc.

Note that ξ(p)/ao as p/pc is known rigorously [1, 4].

As before we get the following critical exponent inequality from (5.3):
v') . (5.4)

If v/v' ̂  1, (5.4) implies dv ̂  y + 2β. On the other hand if v'/v ̂  1, we multiply (5.4) by
v'/v to find dv'"^:y(vf/v) + 2βέiγ + 2β. Therefore we get

Corollary 5.2. Whenever ξ(p)/co as p\pc, the critical exponents vmax = max(v, v'),
y and β satisfy

(5.5)

6. Inequalities for Gap Exponents

In the present section, we prove the inequalities (1.4), (1.5) for the gap exponents
Δn and Δ'n.

First let us state a simple inequality which will be used in the following proofs.
(The inequality was also noted by Nguyen [4].)

Lemma 6.L For arbitrary p and n^.3, we have

(\C(0)\"-lX(\C(0)\< ^)> p /< |C(0)Γ 2 X( |C(0) |< oo)>p

g<|C(0)|"Λr(|C(0)|<oc)>p/<|C(0)|"-1Λr(|C(0)|<oo)>J, . (6.1)

Proof. By the Schwarz inequality we get

<|C(0)Γ- 1 Z(|C(0) |<«))> p =<lC(0)r / 2 |C(0) | ( «- 2 ) / 2 Z(|C(0) |<α))> p

g« |C(0) |"Jr( |C(0) |<oo)> p <|C(0) |"- 2 Z(|C(0) |<α))> p ) 1 / 2 ,

which is nothing but (6.1). D
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Remark. Note that if we assume the power law behaviors

)-d» as pfPc ,

1 o o ) > 1 , - 0 ' - p c ) - / l - as p\pc ,

the inequality (6.1) implies the critical exponent inequalities

Δn^Δn + 1 , Δ'nSΔ'n + ι . (6.2)

These inequalities become equalities under the scaling hypothesis. Therefore they
are believed to be sharp in any dimensions.

The following inequality (6.3) is essentially a simple consequence of the van den
Berg, Kesten inequality [14]. But it leads us to our first hyperscaling inequality for
the gap exponents.

Proposition 6.1. For arbitrary n^3 andp<pc with ξ(/?)^C4, we have

«|C(O)r-1>p/<|C(O)r-2>I,)2^C5(^(^)|lnί(^)|)dχθ7) , (6.3)

where C4 and C5 are constants which depend only on the dimension.

Since we know rigorously that ξ(p) diverges when/? approachespc from below,
this leads us to

Corollary 6.1. The critical exponents v, Δn («^3) and y satisfy

dv^2Δn-y . (6.4)

In order to prove the proposition, we have to state a simple geometric lemma.
Let { q,. . ., xn} be an arbitrary set of sites (which need not to be distinct). For a
configuration (i.e., occupation status of all the bonds) which satisfies
C(x 1 )9i 2 , ,xn,

 a P a* r of sites {y,y'}^{x\, . . ,xn} is called a separable pair if
there exists a path of occupied bonds ω which i) connects y and y\ and ii) all the sites
in {%!,...,xn}\{y,y'} remain connected with each other when we remove all the
bonds on ω (see Fig. 3).

Fig. 3. A separabel pair {j7,./} and a path ω
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ϋi

Fig. 4 {x«,j;i} becomes a new separable pair

Lemma 6.2. For an arbitrary set of sites [xί,. . ., xn} and an arbitrary configura-
tion where C(x1)sx2,. . . ,xn, there exists at least one separable pair {y\y'}

Proof Since the statement is trivial when n = 2, we proceed by induction. Let n>2.
First, by omitting the site xn, we may apply the lemma for n — 1 to find a separable
pair {yι,y2}^{x\,. . >,xn-i} a n d a P a t n ω' which connects j ^ and y2. When
we remove all the bonds on ω' from the configuration, the site xn may be i)
still connected to {xi,. . . ,xn-ι)\{yiτyi} o r n ) disconnected from
ίxi,. . . ,xM-i i\ί Vi, V?). If i) is the case, we are done by taking {y, y'\ = \yλv2).
Let us assume ii). Then we can find a path of occupied bonds of (with ω' nω" = φ)
which connects xn to a site z in ω'. Decompose ω' as ω1 u ω 2 by cutting it at z.
(WeassumeωjBjVi.) Observe that the set {x l9. . ., xn-i}\{j;i, J2} must be connected
to at least one of ωγ or ω 2 (which we call ωf) without using the bonds in ω''.
(If this is not the case, it contradicts with our assumption ii) (see Fig. 4). Then
{y>y'} = {χn>yj} O'+y) is a separable pair {xί,. . ., xn} with the corresponding path
ω = of u (Oj. •

Proof of Proposition. From the expression |C(0)|=Σ ^(C(0)3.x) and the trans-

lation invariance, we have x

< | C ( 0 ) | " > p = Σ τ p ( ^ , x 2 , . . . , x w + 1 ) .

Let i ) m a x be an abbreviation for max {\x2 — xx |, |x3 — x^, |x4 — x j , . . ., \xn + 1 —Xι\}.
Then, since τp(x1,. . ., xn + 1 )^τ ί ? (x 1 ,x ί )forany/, we get the following finite volume
estimate for <|C(0)Γ%.

Σ Σ
C6ξ(p)\lnξ(p)\ X2,...,xn+i

n(2Lγd'1e~L'ξ{p)Sξ(p)'α'



60 H. Tasaki

Here a! > 0, and the final inequality is valid when ξ(p) ̂  C" with sufficiently large
C". Now by applying Lemma 6.2, we immediately get

τp(xl9. . .,xn +

n ξ(p)\

Σ Σ
pairs X2, -. - ,xn+ l ,Dmax^C6ξ(p)\lnξ(p)\

Probp {(x :,. . ., Xi,. . ., Xj,. . ., xw + 1 are connected) o (χi9Xj are connected)} ,

where xt denote omitted sites. Here A°B stands for the event that two events A and B
occur disjointly [14]. For positive events A, B, van den Berg and Kesten [14] have
proved that Probp (A o B)^Ϋrobp(A) Probp (B). Therefore the right-hand side of
the above inequality is bounded as

S Σ Σ τP(xi, .,Xi, ..,Xj,'. ,
pairs {ιj} C{1,. . . ,« + l} X2 x n + i

l)f2}<\C(0)Γ2)pχ(p)(2C6ξ(p)\lnξ(p)\)d .

Combining this result with (6.1), we get the desired inequality (6.3). D

Finally we state inequalities which follow from a combination of the methods in
the present and previous sections.

Proposition 6.2. For arbitrary n^3 andp>pc with ξ(p)^CΊ, we have

({\C(0)rlX(\C(0)\ < π))pK\C(0)Γ2X(\C(0)\ < o))>,)2

C6ξ(p)\\nξ(p)\

SC8 X L'^Mip'iL))2 , (6.5)
L = {(C6/2)ξ(p)|lnξ(p)|}i/d

where C6, C7 and C8 are constants which depend only on the dimension. Also assume
that ξ(p)/co as p\pc. Then for arbitrary «Ξ>3 and p<pc with ξ(p)^C7, we have

C6ξ(p)\lnξ(p)\

( ( I C W Γ ^ K I C ^ Γ 2 ) ) , ) 2 ^ Σ Ld-ιM{p'{L)f. (6.6)
L = {(C6/2)ξ(p)\lnξ(p)\}i/d

Herep'(L) is defined by p\L) = M {p\C6ξ(p)\\nξ(p)\^L}.

As in the previous section, these inequalities imply the following critical
exponent inequalities.

Corollary 6.2. Whenever ξ(p)/co as p\pc, the critical exponents v\ vmax

= max {v, v'}, An, Δ'n (n^3) and β satisfy

dv'^Af

n + β , (6.7)

dvmΆX^Δn + β . (6.8)

Proof of Proposition. The proof is almost a repetition of those of Propositions 6.1,
5.1, and 5.2. The only essential difference comes in when we bound the n + 1 point
connectivity function by the product of n — 1 point and two point connectivity
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functions. (See the proof of Proposition 6.1.) The estimate used here is

T p ( x l 9 . . . , x n + 1 ) ^ Σ P r o b p { ( x 1 ? . . . , x i 9 . . . , x j , . . . , x n + 1 a r e c o n -
pairs{i,/)c{i,...,« + i} nected by a finite cluster) ° (xt, Xj are

connected)]

where the final inequality follows from the van den Berg, Fiebig inequality
[15]. D

Remark. Note that, in the above proof, we cannot replace the upper bound for
τ'p(xu. . .,xn + 1 ) b y

Probp {(xι,. . ., Xj,. . ., Xj,. . ., xn + 1 are connected by a finite cluster)

° (Xj, Xj are connected by a finite cluster)} .

This is the reason that we are not able to prove the inequality corresponding to (6.4)
for the exponents Δ'n.

7o Inequalities for Critical Isotherm Exponents

In the present section, we briefly describe our final inequalities (1.6) and (1.7) for the
critical isotherm exponents.

First we define the percolation system under positive external field h^.0. Let us
add a "ghost site" g to our lattice Zd. We assume that each ghost bond {g, x}, x e Zd

is occupied independently with probability 1 — e~h. Then various physical quan-
tities can be defined by regarding the "ghost site" g as "infinity", and replacing the
condition |C(x)| = oo in (2.1)-(2.6) by the new condition C{x)3g.

When we fix p at its critical value pc and let h approach zero, various critical
phenomena are expected to take place. Let us define some critical exponents as the
optimal constants satisfying the following relations when h\0.

M(pc,h)<h1/δί ,

Then, by a straightforward modification of the methods in the previous sections,
we can easily prove the following.

Proposition 7.1. Whenever ξ(pc,h) /oo as /z\0, the critical exponents η, μ, and δt

0" = 1,2,4, 6, 8,. . .) satisfy

2 , (7.1)

in-ί) for « = 2, 4, 6, 8,10,. . . . (7.2)
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If M(pc,h) exhibits the following simple power law behavior (as is expected):

we have δι = δ for any i. Then (7.2) reduces to a single inequality

dμ-£l+(l/δ) . (7.3)

Appendix. Extension to Ising Ferromagnets

In this appendix, we briefly describe the extension of our methods to the Ising
ferromagnets.

First let us define Ising model. For an arbitrary positive integer L, let SL and
<3SLbe

SL = {xeZd\\x\S[L/2]}
and

dSL = {xeSL\\x\ = [L/2]} .

To each site x in SL, we associate a spin variable σx= + 1 . Then the thermal
expectation with plus boundary condition is defined by

< . . . > t = Z i 1 Σ (.. )exp (-//),
σ x = ± 1 (x e SiΛdSjJ

H=-(β/2) Σ σ*σy~h Σ σ* -

<1>L = 1 , σx = l if Λ:eδSL . (A.I)

We consider the expectation in the infinite volume limit defined by

<.. .> = lim < . . . > L . (A.2)
L/x

We define various physical quantities and critical exponents by simply replacing
p by β, τp(x, y) by <σλσy>, τ'p(x, y) by (σx σy> = <σxσy> - <σx> <σy>, Λf (/?) by <σo>,
and M(p L) by <σo>L in the definitions in Sects. 2 and 7. Thanks to the reflection
positivity (which is not known for percolation), the correlation length defined as

(limit exists) coincides with that defined by (2.4).
Then by a straightforward extension of the methods described in the text, we can

prove

Proposition A.I. The critical exponents of the d-dimensional Ising model satisfy

(A.3)

(A.4)
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dv'^γ' + 2β , dvmax^y + 2β , (A.5)

(A.6)

(A.7)

whenever ς(j8,0)/oo α? jβ\j8c [(A.4), (A.5)] or ξ(jβc,Λ) /oo as λ\0[(A.6), (A.7)].

As we have mentioned in Sect. 1, most of these inequalities have already been
proved by other methods. Our rigorous finite size scaling argument provides a new
unified derivation. In particular our proof of the inequality dV ̂  y' + 2β seems to be
simpler than SokaΓs highly technical proof [9].

Let us describe how two key arguments in our proof can be stated in the Ising
model. Then the rest of the proofs will be just repetitions of those in the main text.

First we discuss the extension of Proposition 4.1 which was the main ingredient
of most of our results. LetL>0and \x\ =L. Define < . . . >h by the formula (A.I) with
Hamiltonian H replaced by H — h ]Γ σx, where B={y\\y\ = [L/2] or \x— y\

xeB

= [L/2]}. Note that when h — oo, the whole system decouples into two finite systems
in L x . . . x L cubes and one infinite system. Therefore by the Griffiths II inequality
[16], we have

which is nothing other than the desired Ising model version of the inequlaity (4.1).
Next we describe the Ising model counterpart of Lemma 4.1. Let ΘL(β,h) be

Then we have the following.

Lemma A.I. For arbitrary β and h, we have

{ d (A.8)

Now a rigorous finite size scaling argument corresponding to Lemma 4.1 can be
proved very easily from the above inequalities. If we set L = const ξ{β,h)\\n ξ(β,h)\,
the upper bound in (A.8) reduces to

<σ0yL^(σ0>+comtξ(βyhya (A.9)

for sufficiently large ξ(β, h). Since the constant a can be made arbitrarily large by
choosing suitable constants, (A.9) is sufficient for carrying out our proofs of the
critical exponent inequalities.

Remark. Inequality (A. 8) also has a consequence on the problem of continuity of the
magnetization [17]. By using the fact that <σo>L is a continuous function, we can
show that <σo> is continuous in β at β = β0, h = 0 if lim lim Ld~1ΘL(β,h) = 0.

L/x βfβo
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Proof of Lemma. The first inequality is a simple consequence of Griffiths II

inequality. To prove the second inequality, note that

00 00

<c ro>L-<σo>=ί dhd(σoyκldh= j dh £ <σ0 σx}κ
0 0 xeδSL

= \dh Σ <<τo ,σxyg+] S Σ Oo;σx>jr,
0 xeδSL ho xeδSL

where <...>£-is defined by the formula (A.I) with Hamiltonian H replaced by

H — h ^ σ I t /ί0 is a constant which will be determined later. By the GHS
xeδS

inequality [18], the small field part in the above bound can be bounded as

f dh Σ <σo σx >fe j dh Σ (<Ό σxy=hoθ(β,h) .
0 xeδSL 0 xeδSL

In order to bound the large field part, we simply decouple a site x in dSL from the rest

of the lattice by carefully bounding the local Boltzmann factor. Then tedious but

elementary estimates show

Combining these results, we get

0 xeδSL

Setting Λo = |ln Θ(β,h)\/2, we get the desired inequality (A.8). •
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