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Abstract. The moduli space Jt of self-dual connections over a Riemannian
4-manifold has a natural Riemannian metric, inherited from the L2 metric on
the space of connections. We give a formula for the curvature of this metric in
terms of the relevant Green operators. We then examine in great detail the
moduli space Jt± of k = 1 instantons on the 4-sphere, and obtain an explicit
formula for the metric in this case. In particular, we prove that Jf± is
rotationally symmetric and has "finite geometry:" it is an incomplete
5-manifold with finite diameter and finite volume.

Introduction

The moduli spaces of self-dual connections on vector bundles over a Riemannian
4-manifold have been studied from two different viewpoints. Mathematicians have
sought to understand the topology of these moduli spaces. Most notable here is the
work of S. Donaldson showing that even a rudimentary knowledge of this
topology can lead to important results about smooth 4-manifolds. Physicists, on
the other hand, study these spaces because the semiclassical - or "instanton" -
approximation to the Green functions of (Euclidean) quantum Yang-Mills theory
is expressed in terms of integrals over the moduli spaces. The evaluation of such
integrals requires a detailed description of the metric and the volume form of the
moduli spaces. In this paper we investigate moduli spaces with the goal of
describing them as concrete Riemannian manifolds.

The relevant Riemannian metric on the moduli space M is the "L2 metric",
defined as follows. First, the space of connections on a principal bundle P is an
affine space <$/ whose tangent space is the space of 1-forms with values in an
associated vector bundle Ad P. The L2 inner product of such forms defines a
Riemannian metric on j/. This metric is invariant under the action of the gauge
group ^, and splits the tangent bundle 7W into ^-invariant "vertical" and
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"horizontal" subbundles. The metric on the horizontal subbundle passes to ,
We then obtain a metric on the moduli space Jί - a submanifold of s$l^ - by
restriction.

We have tried to make this paper as self-contained as possible. Thus the first
section is a review of the construction of the moduli space; it contains many of the
definitions, notations, and analytic facts which are used later. In Sect. 2 we derive a
formula for the curvature of the moduli space in terms of Green operators. (This
has been done independently by M. Itoh [I].) This formula is simple and general, but
would seem to be of limited utility unless one can obtain specific information about
the Green operators.

The remainder of the paper is devoted to a detailed analysis of the most
fundamental example: the moduli space Jίγ of self-dual connections on the S(7(2)-
bundle with instanton number 1 over the standard four-sphere S4. The topology of
this space is well-known; Atiyah et al. [AHS, Sect. 9] proved that Jl± is
diffeomorphic to R5. More specifically, they showed that the group S0(5,1) of
conformal diffeomorphisms of S4 acts transitively on M^ with isotropy subgroup
SO (5), so Jt± is diffeomorphic to hyperbolic 5-space SO (5,1)/SO(5).

The problem of describing the metric on Jt± is more difficult. The first problem
is that the approach taken in [AHS, Theorem 9.1] - using the Weitzenbδck
formula and a vanishing theorem to characterize Jt± - is not constructive. Sections
3 and 4 are devoted to obtaining a concrete construction of Jί±. We begin in Sect. 3
by giving a very careful description of the action of the conformal group on Jίv

Again, our purpose is to introduce the notation and derive the explicit formulas
which are required (frequently) in subsequent sections. Using these formulas we
define, at the beginning of Sect. 4, a map, Q: R5 -»j/, into the space of connections.
We then show that the image of Q projects onto the moduli space Jtv and gives a
diffeomorphism

Q = π o β R5-^-^ C

This provides the coordinate system that later helps us describe the metric on Jt±<
The remaining two sections are independent of one another. In Sect. 5, we use

the machinery developed in the first four sections to compute the geometry of M±
at its "origin," the S0(5)-invariant connection A0. We find that Jiγ has positive
sectional curvature at A0ι in fact the sectional curvatures at A0 are the same as

those of the 5-sphere of radius R0 = 4π/|/5. (This can also be derived from the
results of Sect. 6.) In particular, this shows that Jt± is not isometric to hyperbolic
space.

While the methods of Sect. 5 work nicely for the invariant connection A0, it is
difficult to similarly analyze the geometry of Jt± at a non-symmetric connection.
Therefore in Sect. 6 we take the more direct approach of explicitly computing the
pullback Q*^ of the metric ̂  on Jt± to R5. The computations are complicated, but
the result is strikingly simple.

Theorem A. There exists a coordinate diffeomorphism φ R5-*^ for which the
pullback of the natural metric ^ on Jίv is given by

for some smooth function ψ of ρ = \x\.
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The precise formula for this function ψ is messy; it is given in Sect. 6. Theorem
A, together with the equation of φ, allows us to compute the basic geometric
properties of Jί^.

Corollary B. The Riemannian manifold (M<^#) has the following properties:
(a) It is conformally flat.
(b) It is radially symmetric. More precisely, the action of 50(5) on S4 induces an

ίsometry of Jt± whose pullback, via φ, is the usual S0(5)-action on R5.
(c) It has finite radius, and hence is incomplete.
(d) It has finite volume.

Properties (b) and (c) suggest that Jiγ can be given a boundary consisting of a
(round) sphere at infinity of finite radius. The precise statement is:

Corollary C. Mγ can be isometήcally included as the interior of a compact
Riemannian manΐfold-with-boundary Jt^ whose boundary d^ί is isometric to the
4-sphere of radius 2π. Furthermore, the embedding dJtf± c> Jt± is totally geodesic.

Note that this sphere at infinity dJ^i is conformally equivalent to the original
manifold (S4, g) with constant conformal factor 4π2. Intuitively, points of ΰJt±
correspond to instantons which are concentrated at a single point xeS4. Of
course, these idealized instantons cannot be represented as smooth, or even
continuous, self-dual connections. Thus while Jt^ lies in j//^, the boundary dJί^
does not.

Corollary C is related to the "collar theorem" [D, FU] which states that for
any 1 -connected 4-manifold M with positive-definite intersection form, the moduli
space of k = 1 instantons has an end diffeomorphic to M x (1, oo), so can be given a
boundary diffeomorphic to M. Corollary C shows that, at least for M = S4, this
topological construction is naturally implemented by the L2 metric.

Further geometric properties of (Jί^ #) are more difficult to obtain because the
function ιp(ρ) is so complicated. However, computer calculations show that the
radius of Jt^ (Lin the diagram below) is approximately 3.37π. Also, a calculation of
the scalar curvature s = - 4ψ ~ 3 [ιp" 4- 8ρ ~ 1 ψf + ψ ~ 1(y')2] shows that Jίί does not
have constant curvature.

These data yield a good picture of the moduli space with its L2 -induced
geometry, sketched below. It is closely approximated by half the ellipsoid of
revolution in R6 whose semiminor axis is RaQ = 2π, and whose semimajor axis
(obtained by matching the radius of curvature of Jί± at A0 with the corresponding
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radius of curvature of an ellipsoid) is R^/R^ = j/5π, or about 1.12 times the
semiminor axis. However, this is only an approximation: computer calculations
show that the ratios L'.R^ : R0 for M± cannot be realized by an ellipsoid. (The
numerical values of L, R^, and R0 depend on a choice of scale discussed later in this
paper, but the ratios of these radii are invariant).

An important feature of the geometry of Jt± is that the diameter and volume
are finite. This suggests that the integrals over Jί which appear in the semiclassical
approximation to quantum Yang-Mills theory may be finite. It also indicates that
one can expect other self-dual-moduli spaces to have finite diameter and volume.
We will consider these subjects in subsequent papers.

1. The Moduli Space

We begin by briefly reviewing the construction of the Yang-Mills moduli spaces.
Most of this material is standard, and detailed expositions can be found in [AHS,
FU, L].

Let (M,g) be a compact, oriented, Riemannian 4-manifold and P->M a
principal bundle whose structure group is a compact semi-simple Lie group G with
Lie algebra g. We can then form the adjoint bundle AdP = P x Adg and consider the
spaces

of AdP-valued g-forms. The bundles AqT*M® AdP have natural metrics ( , )
(induced by the Riemannian metric and a constant negative multiple of the Killing
form on g), and hence Ωq(AάP) has an L2 inner product

M

(Integration is with respect to the Riemannian measure determined by g.)
A connection A on P determines a covariant derivative

with the property that for any vector field X on M and any φ,ψeΩ°(AdP\

This operator extends to

VA : Γ(ΛqT*M® AdP)-+Γ(T*M®ΛqT*M® AdP)

by VA = V9® 1 + 1 (x) VΛ, where V9 is the Levi-Civita connection of the metric on M.
By composing VA with exterior multiplication we obtain the covariant exterior
derivative

and by composing with contraction (the adjoint of exterior multiplication) we
obtain the L2 adjoint d%. In a local orthonormal frame {ef} of TM with dual
coframe

dAφ = ΣΘIΛ v^φ , d*Aφ = -
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for φeί2*(AdP). The curvature of the connection A is

This is a zeroth-order operator given by bracketing with an element FA e Ω2(AdP).
Locally,

M>=[^0] = V2 Σ Θ^Θ^KF^Φ-]
i*j

= 1/2 Σ 0' A 0(rAvA- vA

ey
A

e- r^ej])φ .

There are several other important algebraic operators on the spaces £2*(AdP).
First, the Hodge star operator * acts on all such forms, and decomposes Ώ2(AdP)
into its ±l-eigenspaces Ω+(AdP). The orthogonal projections onto these
eigenspaces are

p± = 1/2(1+*).

Also, each X= ^ω^^eΩ^AdP) defines an operator

Px:Ω
q(AdP)-+Ωq+ί(MP)

by

Px(ωf (x) B') = Σ ωi Λ ω'

The adjoint of Px is

If X, Y are in Ώ^AdP) and we use a local orthonormal coframe to write X = Xiθ\
7=150', then

P}7=-P?*=-Σ[**iα. (LI)

The curvature form decomposes as the sum FA = F^ +F^, where Fj =P±FA.
The connection A is called self-dual if FA~Q. For a self-dual connection, or
"instanton", A, the sequence

0->ί2°(AdP)-^->ί21(AdP)-^->β2_(AdP)-^0, (1.2)

where ά~A =p_dA, is an elliptic complex. We can make it into a complex of Hubert
spaces as follows. Fix a smooth connection A0 and an integer /^O. For
φeΩq(λdP) write

The Sobolev space Ω^AdP) is defined as the completion of ί^(AdP) with respect to
the norm

/ € \ l /2

\\Φ\\<=( Σ ί \(rA°y
\j=0 M

This completion is a Hubert space under the associated bilinear form.
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We can similarly complete the space of connections. Let si denote the set of
smooth connections on P. The co variant derivatives of two connections A0, Ae<$/
are related by

(1.3)

for some XeΩ1(A.dP). Hence si is an affine space, and at each Ae si there is a
natural identification of the tangent space TA^ with Ω^AdP). The space si€ of
Sobolev connections is defined by fixing A0 e si, identifying si with Ω1(AdP) via
(1.3), and completing in the Sobolev /-norm. The space sif obtained this way is
independent of the choice of A0. The curvature map A\-*FA extends to a smooth
map from χ,+ 1 to Ω*(AdP) provided /^l [U].

Each Aesif determines Laplacians ΔA = d^dA, Δ\ = dAd^ + (dA}*dA, and
ΔA = dA(dA)*, on Ώ|(AdP) for # = 0, 1,2 respectively. By the spectral theorem for
self-adjoint elliptic operators each space Ω|(AdP) decomposes as the direct sum of
the finite-dimensional eigenspaces of Δq

A, where the eigenvalues {ΛJ are real, non-
negative, and discrete. Thus there are L2-orthogonal decompositions

where Kg = ker(zJ^)cC°°(AdP) is the finite-dimensional space of zl ̂ -harmonic
forms. Furthermore Δq

A : B%+2-*B% is a bounded map with a bounded inverse, or
Green operator,

Gϋ:B?->B? + 2.

The connection A is called irreducible if K° = {0}, or, equivalently, if
ker(ίi^:Ω0->Ω1) = {0}; ΔQ

A is then invertible on Ω^(AdP). It is not hard to show
that the set of irreducible connections is an open dense set ̂  C sif.

The set of all smooth automorphisms of P is called the gauge group &. This
group can be naturally identified with the space of sections of the associated bundle
AutP = Px A d G. For /^3 the Sobolev completion ̂  is defined by choosing a
faithful representation ρ : G-»End(F). This gives an inclusion ^CΓ(P x ρEnd(F)),
and ̂  is the closure of ̂  in the Sobolev /-completion of Γ(P x βEnd(7)). Thus
defined, ̂  is a smooth Hubert Lie group whose Lie algebra is Ώ°(AdP) (cf. [MV]).
If we replace ρ by Ad : G-»End(g) we obtain a similar group <&€. Since the kernel of
Ad is the center Z of G, we have ̂  - <$€l%, where ̂  = Γ(Px AdZ), is the center of
.̂ (β£ is isomorphic to the finite group Z.)

A gauge transformation ge$ acts on connections by dA^g°dA°g~l, and
hence sends FA to (Adg) FA. This action extends to a smooth action of ̂ +1 on
j/(/^2) whose differential at Aes$ is

Consequently, the tangent space at an irreducible connection A e s$f is the direct
sum of "vertical" and "horizontal" subspaces

TΛάf=VA®HA, (1.4)

where VA = imdA is the tangent space to the gauge-orbit through A and HA = ker dA

is the ZΛorthogonal complement. (VAc\HA = {ϋ] since A is irreducible, and the
spectral theorem implies that the splitting is an isomorphism.) For A e s$£, the
stabilizer of the action of ̂  + 1 is precisely the center «2Γ. Moreover, a standard slice
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theorem asserts that the orbit through A has a tubular neighborhood which is
equivariantly diffeomorphic to ̂ +1 x C7, where U is an open neighborhood of A
in HA. It follows that the orbit space Φ€ is a Hausdorff Hubert manifold, and that

^—^=Xf/^Wι
is a principal ^+1-bundle. We will denote the gauge-equivalence class of a
connection A by [A] e Θ^ and will frequently identify T{Af)^ with the horizontal
subspace HACTA^ of (1.4).

The L2-orthogonal splitting (1.4) determines vertical and horizontal projection
operators vA9 hA at each Ae^. To identify these, write any XeΩί(AdP) as

Since the first term is in the image of dA and the second is in the kernel of dA, we

vA = dAG°Ad*A, hA = ld-dAG°Ad*A. (1.5)

The Yang-Mills action of a connection A,

M

is a smooth gauge-invariant function on ĵ , /^ 1. Of course, the value of ®/
depends on which multiple of the Killing form of g is used to define the metric on
AdP. When G = SU(N) it is common to use minus the trace form of the standard
representation of G on CN; this is equal to — 1/2 AT times the Killing form. We will
adhere to this convention when we consider St/(2)-bundles in Sects. 3-6. In
general, if we take the metric on AdP induced by — λ times the Killing form, then
we have «

®Jί(A}=- J ~tr(adFAAadFA)+ f \FA\
2volg.

2 M M

The first integral is a (positive) multiple of the characteristic number /^(AdP) [M],
where /^(AdP) is the first pon try agin class of the real orthogonal bundle AdP \
This integral depends only on P, not on A. Thus self-dual connections can exist
only if p1(AdP)[M]^0, and, when they exist, they absolutely minimize the
Yang-Mills functional.

Remark. When G — SU(N) there is a vector bundle E associated to the standard
representation, and we have 2JV c2(E) = c2(AdP(x)(C)= — p^AdP). It is then
traditional to express the characteristic number of P in terms of the "instanton
number" k = — c2(E) [M].

The existence theorems of Taubes [T] show that self-dual connections exist on
all bundles with p1(AdP)[M]^0 over many 4-manifolds, including those with
positive-definite intersection form.

Let JyCX? be the (gauge-invariant) set of all self-dual SU(2) connections.
The image of $€ in the orbit space is called the self-dual moduli space

Jί = {\A\IA is self-dual} C 0, .

1 In [AHS], 2p1(AdP) = p1(AdP(g)C) is denoted by p^
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It contains, as an open dense subset, the moduli space

JK = {[A]/A is self-dual and

of irreducible self-dual connections.
A theorem of Atiyah et al. [AHS] shows that, when nonempty, the subset

is a manifold of dimension 2p1(AdP)[M]-(dimG)(l — ί̂  + ftj), where
bί=dim(H1(Mm,~R)) and b^ is the dimension of the space of anti-self-dual
harmonic 2-forms on M. The difficulties caused by the presence of connections A
with kQΐAA =t= {0} can be avoided in at least two ways. First, a vanishing theorem
based on the Weitzenbόck formula (5.2) shows that, under a certain curvature
condition on M, the kernel of Λ2

A is zero for all A e Jί. The specific condition is that
g

— 2^_ + - Id 6 End(ΛlT*M) be positive-definite, where s is the scalar curvature

and *W- is the Weyl curvature endomorphism defined by 2'>F_(0 ίΛ0 /')_
= WW0*Λ00- Second, Freed and Uhlenbeck [FU] have shown that when
G = ££7(2) it is always possible to perturb the metric on M to ensure that Jί1 = Jί.
We will henceforth assume that we are in one of these situations, so Jί is a
manifold.

There is a simple description of the tangent space oϊJί. lϊAt = A0 + tB -f 0(t2) is
a one-parameter family of connections, then FAt = FAo + tdAoB + 0(ί2), and if At is
self-dual (so F At = 0) for all ί, then dAQB = 0. Thus when we identify T[A}β^ with the
horizontal subspace HA in (1.4) we have

T[A]Jί = {Be Ωj(MP)/d%B = 0, dJ5 = 0} . (1.6)

Elliptic regularity arguments show that any A e Ef is ̂  + ^ -equivalent to a smooth
connection A, and that for such A the right-hand side of (1.6) consists of smooth
forms B.

The simplest examples of moduli spaces occur when M is 1 -connected with
positive-definite intersection form, and P is the principal Sί/(2)-bundle with
instanton number fe=l. The moduli space Jί is then a 5-dimensional manifold
whose topological structure has been described by Donaldson [D]. The space Jί is
orientable, Jt — Ji consists of finitely many reducible connections {A^ 2 around
each of which Jί is locally diffeomorphic to an open cone on (DP2, and there is a
compact set in Jί whose complement is a "collar" diffeomorphic to M x (1, oo).

In the next section we begin to study the Riemannian geometry of a general
moduli space M.

2. Curvature of the Moduli Space

In this and subsequent sections we fix a Sobolev index /^ 2 and denote X^, ̂  + 15

and Θj by J3/, ,̂ and G respectively.
The affine space s$ inherits a weak Riemannian metric, via the identification

7>/ = Ω2(AdP), from the L2 inner product on ί2*(AdP). This metric is

For simplicity we sometimes refer to a connection A as lying in Ji when we mean \A\ e Jί
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translation-invariant and flat. The group ^ acts isometrically on si and, at each
A GJ/, preserves the splitting (1.4) of TA<$/ into horizontal and vertical subspaces.
We can therefore give the orbit space & = <2&/($ a weak Riemannian metric by
identifying T[A](9 with the horizontal subspace HACTA^. (This definition is
independent of the representative A of [_A].) Finally, the moduli space M is a
smoothly embedded submanifold of (9, so there is an induced smooth Riemannian
metric on Jί.

Equivalently, we can observe that T{A}Jί is naturally isomorphic to the
cohomology kQΐdA/imdA of the elliptic complex (1.2), and that this cohomology
embeds in Ω)(λdP} as the A ̂ -harmonic forms [as in (1.6)]. The metric on T[A]Jΐ is
then simply the restriction of the L2 metric on Ω^(AdP).

In this section we will compute the curvature of this L2-induced metric on M.
This is done in two steps, using the diagram

Jί - >0 =

We first observe that π is a Riemannian submersion (cf. [CE]). After describing the
Levi-Civita connection of the metrics on <$ and 0, we apply O'Neill's formula to
compute the curvature of & (this has previously been computed by other methods
[BV, S]). We then calculate the second fundamental form of the embedding of Jk
into &. The curvature Jt is then obtained from the Gauss equation.

Before beginning the curvature calculations we must describe the Levi-Civita
connections on the infinite-dimensional manifolds j/ and &. On a finite-
dimensional Riemannian manifold M, the Levi-Civita connection V is the unique
connection on TM that is torsion-free and compatible with the metric. These
conditions are equivalent to the formula

(2.1)

for all smooth vector fields X, Y, Z. The right-hand side of (2.1) is C°°(M)-linear in
Z, so the metric isomorphism TM ~ T*M yields the existence and uniqueness of
the connection. This argument is valid in infinite dimensions provided each
tangent space is a Hubert space with respect to the Riemannian metric. However,
in our case TAs# and TAΘ are not complete under the L2 metric. For such weak
Riemannian metrics (2.1) still guarantees the uniqueness of the Levi-Civita
connection, but not its existence. One generally handles the existence problem by
exhibiting an explicit formula for P, as we do below.

The connection on si is easily described because the tangent bundle 7W is
canonically trivial. Using the natural identification TA^ = Ω^(AdP), we regard a
vector field on an open set U C^ as a map Y: [7->Ω)(AdP) and set

(r$Y)A = jt yμ + ί*μ))|f=0eΩ^AdP). (2.2)

This defines a connection that is clearly torsion-free and compatible with the
(translation-invariant) L2 metric.
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We now apply the standard formula giving the covariant derivative in the
image of a Riemannian submersion. Given X ε T[A]@ and a vector field Y defined in
a neighborhood of [̂ 4], we choose XεHA and a horizontal vector field F with
π^X = X and π^F^ Y, and set

(^χY\A, = n^Ϋ)A. (2.3)

It is not hard to verify (2.1) for this connection V®.

The Curvature of (9. For any Riemannian submersion, the curvatures upstairs and
downstairs are related by O'Neill's formula (cf. [CE]),

CRdown(*p, YP)YP, Xpy=(Rup(Xq, Ϋq)Ϋ9,Xt> + 3/4\}vertίX, Ύ\\\\ (2.4)

where Xp, Yp are tangent to the base at p, Xqί Ϋq are their horizontal lifts to an
arbitrary point q over p, [X, Ϋ\ is the Lie bracket of arbitrary horizontal
extensions X, Ϋ of Xq, Ϋq at q, and "vert" denotes projection onto the vertical
subspace. In our situation Rup = 0, so we need only compute the final term.

Fix A0 ε sϋ and vectors X0, Y0 ε HAo. To apply (2.4) we must choose horizontal
extensions X, Γof X0 and Y0. This is conveniently done by regarding X0, Y0 as
constant vector fields on jtf and taking their horizontal projections:

XA = hAX0, ΫA = hAY0. (2.5)

By (2.2) and the formula (1.5) for hA we have

XQ j - A 0 + tX0A0 + tXoAo + t

But ί/χY0 = 0 and, using (1.3), d*Ao+tXo = d*o + P*x, so

(VlJ)A=-dAoG*AoP*xJ0. (2.6)

Applying (1.1) we find

1% ΫlA0 = (^J- r?Ά0 = -2dAoG°AoP*xJ0 .

Observe that this is already vertical. Hence

Putting this into (2.4) yields

, 7) Y, Xy = 3 <P$^ G^P|F> , (2.7)

where X, Yε T[A]& and X, Ϋε HA project to X, Y The full curvature tensor is then
obtained by polarization.

Proposition 2.1. The curvature of the L2 metric on (9 = £//(£ at [̂ 4] is given by

, Y)Z, Wy = <P$1^ G^Pf Z> - <P*ίf; G^P|Z> + 2<P^Z, G^P$F> (2.8)

where X,Ϋ,Z,W are the horizontal lifts to Aε^ of X, Y, Z, Wε T[A}&. Π

As pointed out by Singer [S], (2.7) shows that & has non-negative sectional
curvature (for each A, the Laplacian d*AάA and its inverse GA are non-negative
operators).
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The Curvature of Jί. The second fundamental form of the embedding i : Jί-^G is a
section b of Sym2( T*Jί)® v, where v is the normal bundle. The form b is defined, as
in the finite-dimensional setting, by

) = (Vlxi+Y)L

 9 (2.9)

where X, Ye ΎJΊ and _L denotes the L2-orthogonal projection from i*TΦ onto v;
this projection is well-defined since each TWJI is finite-dimensional. [In (2.9), an
extension of i^ Y must be chosen along Jt, but b(X, Y) is independent of this
choice.]

Fix [Ao\eJί and consider the "slice" S0 = ̂ 40 + kerd50C^. The manifold
N — τι~^Jtr\$Q passes through A, and u'.'N^Jί is a local diffeomorphism.
Furthermore, TAoN is the subspace T0-Ker^0nKerd^0 of Ωj(λάP) [cf. (1.6)],
and the normal bundle v pulls back to a bundle over N whose fiber at A0 is

Now given X0, Y0 e T0, we can construct their horizontal extensions as in (2.5). If we
project further, setting

we obtain horizontal vector fields Ztan, Ytan whose projections π% Jf tan, π^ Ytan are
tangent to Λ along ̂ . Computing as we did to arrive at (2.6), now noting that
dAoY0 = Q and that dA+tX = dA + PX (where Px = p_ °PX), we find

(U^ ytan\ _ _(A~ \*(Z2 P" V _ A Γ Ϊ ° P * Y c T ot/\v Xo1 )AΌ— \aAQ) vAorXoiQ uAoLfAorXoΪQE ιA^ .

The last term is vertical, so it drops out upon projection to Θ. The remaining pieces
are already in the normal space v^0Dim(d^0)*, so by (2.9) and (2.3) we have

b(X,Y)A=-(dA)*G2

APxΫ, (2.10)

where Jf , Ϋ are horizontal lifts of the vector fields X, Y on M.
The curvature of Jί is now given by the Gauss equation:

<^(jf, γ)z, wy=<R&(x, γ)z, PΓ> + <6(i; z), b(x9 w)y - (b(x, z), b(Y9

where Z, ^ Z, ̂  are vector fields on Jt. By (2.10),

(2.12)
From (2,8), (111), and (2.12), we obtain

Theorem 2.2. The curvature of the self-dual-moduli space Λ at [̂ 4] is given by

<**(*, 7)Z, P^> = <P|̂  G^P*Z> - <P*P^ G^P|Z> + 2<P^Z, G^P|F>

+ <pf z, G^Pί ίy> - <pj z, G2

APϊ wy ,
w/z^r^ X, Y, Z, W are the horizontal lifts to Ae^ of X, Y, Z, WeT[A}Jί. In
particular, the sectional curvatures are given by

(2.13)
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In contrast to the formula of Proposition 2.1, this formula does not immedi-
ately yield information on the sign of the sectional curvatures of Jt. In fact, any
application of (2.13) would seem to require some concrete information about the
Green operators beyond crude spectral estimates. Rather than try to analyze the
general moduli space from this perspective we will, in subsequent sections, focus
our attention on the model case of the k — 1 instantons on S4.

3. The Conformal Group Action on k = 1 Instantons over S*

The best-known Yang-Mills moduli space is the space M± of 't Hooft instantons.
This is the moduli space of self-dual connections on the principal St/(2)-bundle P
with k=— c2(P) = l over the 4-sphere with the standard metric. Since
H2(S4;Z)==0, Jiv contains no reducible connections [D], and the vanishing
theorem mentioned in Sect. 1 shows that ker(zl^) = {0} for any A^Jt^. Thus
MI = Jiv = Jί\ is a 5-dimensional manifold with a natural Riemannian metric.

The conformal diffeomorphisms of the 4-sphere form a Lie group isomorphic
to £0(5,1). Atiyah et al. [AHS, Sect. 9] have shown that there is a natural,
transitive action of the group on the moduli space M^. The isotropy subgroup of
this action at each instanton is isomorphic to SO (5), so M± is diffeomorphic to
hyperbolic 5-space:

R5 . (3.1)

In the next several sections we will use this description to help compute the
geometry of Jf±. We will need a much more explicit description of the conformal
group action than that given by Atiyah, Hitchin, and Singer. This section provides
these details.

We begin with some linear algebra. Let V be a vector space with inner product
( , ). There is an induced inner product on Λ2V defined by

(υ Λ w, ι/ Λ w') = (ι>, t/)(w, w')-te w')(ι/, w); (3.2)

in particular, |,Λ w| 2^N 2 |w|2-(,,w)2. (3.3)

There is also an isomorphism of A2V with the Lie algebra so(F) of skew-adjoint
endomorphisms of V given by letting I ; Λ W = D(X)W — w(χ)f act according to the rule

(v Λ w) u = (w, u)v — (v, u)w . (3.4)

This makes Λ2V a Lie algebra with brackets given by

[V Λ W, t/ Λ w'] = — (V, 1/)WΛ W'+(V9 w')w Λ v' + (w, I/) V Λ w' — (w, w')v Λ v'

= ((v Λ w) υ' ) Λ w' + υ' Λ ((v Λ w) w') . (3.5)

When F=IR4, the star operator determines projection operators p± = 1/2(1 ±*)
from A2V onto its self-dual subspace A\ V and anti-self-dual subspace Λ2_ V. We
will usually write p+(v/\w) as ( U Λ W ) ± . With the above bracket operation, the
decomposition A2V r~ A\V τ® Λ2_V corresponds to the Lie algebra isomorphism
5θ(4) = 0o(3)0$o(3) and the metric (3.2) corresponds to -1/4 times the Killing
form on each factor Λ2

±V=5θ(3). Since p± are Lie algebra projections, we have

[(ϋΛw) + ,(t; / Λw / )-]=0, (3.6)

[i; Λ w, (υ' Λ wx)±] = [(i; Λ w) + , (v' Λ w')+] = [v Λ w, v' Λ w'] + . (3.7)
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On a Riemannian 4-manifold M, the metric provides isomorphisms
TM= Γ*M and Λ2TM = Λ2T*M, and induces a metric and Lie algebra structure
on Λ2T*M by (3.2) and (3.5). When M is oriented, the star operator determines
subbundles Λ2

±(TM). Let P' denote the S0(3)-bundle of orthonormal frames of
A\ TM, and let P be the unique lift of P' to a (connected) principal Sl/(2)-bundle.
Since su(2)=0o(3) = yl+]R4, there is a natural identification A2

+TM = AdP of
bundles of Lie algebras with metric.

When M is the 4-sphere S = S4, this bundle P is the k = \ Sί7 (2)-bundle on S (see
[FU]). We can then explicitly describe the action of the conformal group on j/ as
follows. Any diffeomorphism Φ of S induces bundle maps Φ^:TS-*TS and
Λ2Φ^:Λ2TS-+Λ2TS. When Φ is conformal and orientation-preserving Λ2Φ^
commutes with the star operator, and hence preserves the subbundle Λ2

+TS. If

^
=ry2g? then Λ2Φ% is not norm-preserving (unless y = l). However, y~2Λ2Φ

does preserve norms and therefore induces a bundle automorphism of P' [taking
the frame {(^Λ^ )+(X)} to {y"2(x)(Φ^Λ Φ^) + }].

In this way, S0(5, 1) acts on P', and hence on the space of connections on P.
But connections on P' are in 1 — 1 correspondence with those on the covering
bundle P, so this determines an SO (5, 1) action on j/.

Remark. Alternatively, one can lift the SO (5, 1) action to an action of Spin (5, 1) on
P, and hence on j/. But then the center Z ~222 of Spin (5, 1) acts trivially on ^/, so
we recover the action of Spin (5, 1)/Z = SO(5, 1) on sέ described above. We will
henceforth avoid taking this lift by considering j/ as the space of connections on
P.

We next assemble some facts about conformal vector fields on S. We will use
the following notation in our computations. Throughout, x will represent a point
of S (sometimes viewed as a unit vector in R5), {et} a local orthonormal frame of
TS, and {θ1} the dual coframe. A frame is special at x if the co variant derivatives of
the {et} vanish at x (such frames always exist). Repeated indices are summed over.
The Levi-Civita connection V on TS induces connections on all associated vector
bundles (e.g. A2

+TS); we will also denote these connections by V or will more
explicitly indicate the associating representation (e.g. Λ\ V}. The L2 adjoint of V is
denoted by V*.

Each vector i eR5 determines a linear function fv = (v9 •) on S. The negative
gradient V(x) = — gradfv(x) = (v,x)x — v has covariant derivative

(rγV)(x) = (BγV)τ(x) = fv(x)Y, (3.8)

where d is the usual directional derivative in R5 and T:R5^TXS denotes
orthogonal projection. Hence for tangent vectors Y9 Z,

i.e. &vg = 2fvg. Therefore each V is a conformal vector field on S.

Lemma 3.1. The following equations are true pointwise:

(a)

(b)

(c) r*rf.=4fv,
(d) V*VV=V.
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Furthermore, under the flow Φv

t of V, the metric pulls back to

(Φv

t)*g = yv(t)2g, (3.9)

where r / t \ ~ι - 1
yr(ί)=[cosh(|t;|ί)-^gjsίnh(|«;|ί))j . (3.10)

Proof, (a) Immediate from the definition of V.
(b) For y,ZeΓS, we have

(c) V*Vfv= -(
(d) Computing in a special frame at an arbitrary x,

)= - v.yβlv\x= - vei(Le$x

Finally, set y(f) = exp J (Φv

s)*fvds and h(i) = γ ~ 2(t) (Φf

B)*g Then

o

dh/dt = γ~2( -

Hence /z is constant, and since h(0) = g we obtain (3.9). Since V commutes with its
own flow Φ", the function p(t) = (Φ")*fv satisfies

But <d/w Vy= -\V\2=fv

2-\v\z by part (a), so p'=P

2~\v\2. Consequently γ-^t)
satisfies

(y-1)"(t)=[-py'1]'=r-1[>2-P']=Γ1N2,
with initial conditions y" 1 (0)^1 and( ιy"1)/(0)= — p(0)= —fv. The unique solution
of this ODE gives (3.9). Π

Notation. Henceforth we write

r = \υ\

a=cosh(r)
1

 y ) (3.11)
br = r 1 sinh(r) (and b0 = 1)

IV - (ar - bjr) ~ 1 [this is (3.9) with t = 1] .

Next we observe that for any oriented Riemannian 4-manifold there is a
natural conformally invariant injection

α:ΓM-»Γ*M(x)Λ2

+ΓM

Because the projection p+ is covariant constant, Py(α(Z)) = α(PyZ), where V is the
Levi-Civita connection.
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The Levi-Civita connection P=P° on S4 is the unique SO (5)-in variant
connection on TS. The corresponding homogeneous connection AQ = A2VQ on
A \ TS is self-dual; we refer to it as the "standard instanton" and view it as the base
point or origin of Jt±. We can obtain additional self-dual connections using
conformal diffeomorphisms. For each υ elR5 let Vv be the connection on TS given
by

PίΎ=7t;(Φ?F)y;1F, YeΓ(TS),

where
(Φ*V)xY=Φ^(VΦυtXΦvίeY).

Vv is the pullback of F° under the norm-preserving automorphism γ ~ * Φvif of TS,
and hence defines a connection on P'. The corresponding connection on Λ%TS is

Lemma 3.2. For each υ e R5, the connection A2VV on Λ2+(TS) is compatible with the
standard metric on Λ2

+(TS), is self-dual, and satisfies

(a) Λ2Γ = Λ2?Q-bvyvad

(b) Fv = Φ*F0 = y2

}F
Q, where Fv is the curvature Λ2VV.

Proof. These connections are associated to P', so are compatible with the standard
metric. Conjugating a co variant derivative by a function does not affect curvature,
so Fv = Φ*F°. But jp° = Λ 2

+R is obtained from the Riemann curvature tensor R of
S4, which is given by

R(X9 Y)Z = g(Y,Z)X-g(X,Z)Y. (3.12)

It follows that Φ*F° = y2 F°. This implies self-duality, and establishes (b).
To prove (a), observe that Φ*F is compatible with Φ*g = ylg, while Λ2Φ*V is

compatible with the standard metric on TS. An easy calculation shows that

where ψ = \ogyv. Hence

; (3.13)

equivalently, Vv= 7 + θi®(ei Λgradtp). Part (a) follows by applying the represen-
tation Λ2+, using (3.7), and noting that

= -yvgrad(av-bvfv}= -yvbvV.

It will be useful later to have an explicit formula for F°.

Lemma 3.3. The curvature F° satisfies

(a) F°(X,Y) = ad(X^Y)+,

(b) F° = 1/2(0' Λ 00®(β, A ej)+ = 1/2(0' Λ θj)+ ®(et Λ βj)+ .

Proof. From (3.12) and (3.5) we have

(Λ2R)(X, Y)(Z Λ W) = ((X Λ Y ) Z)
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so (A2R}(X, y) = ad(AT.Λ Y). Restricting to A2

+TS then gives part (a) [in view of
(3.7)]. Writing (a) in terms of a local frame gives the first part of (b). Finally, observe
that

(θiΛθJ)-<S>(eiΛej)+=Q; (3.14)

this is true because the left-hand side is a scalar in the irreducible representation
A2. ®A2+ of SO(4). The last part of (b) follows. Π

4. A Coordinate System on jtt±

Each υ e R5 determines a conformal vector field V on S and an Ad P-valued 1 -form
Xv defined by

[α was defined after (3.11).] It also determines a self-dual connection on P' by the
formula of Lemma 3.2a. To simplify notation we will henceforth omit the A2 and
the ad from that formula, and will write P° as V. Thus the lemma defines an affine
map

Vυ=V-bvyvXυ, (4.1)

into the subspace of self-dual connections which arise by applying conformal
transformations of the form Φυ = exp(F) to the standard instanton. Since every
conformal diffeomorphism of S can be written as g - exp(F) for some V and some
g e SO (5), the Atiyah-Hitchin-Singer result [AHS, Sect. 9] shows that the image of
Q projects onto the moduli space Jίl in stf/y. Furthermore, since \FV\2 = y2\F°\ (see
Lemma 3.2b) is gauge-invariant and the functions y2, y^ are distinct for i Φ w, the
composition 0 π

is injective, and hence a homeomorphism. This section will be devoted primarily to
the proof of the following sharper statement.

Proposition 4.1. Q induces a diffeomorphism Q = π° (2:R5-»^1? and therefore
provides coordinates on Jί±.

Remark. We will later derive a formula [Eq. (4.1 1) evaluated at AQ] that shows that

Thus the image of Q lies in the horizontal slice of the gauge group action at the
standard instanton A0.

The first step in the proof of Proposition 4.1 is to calculate the derivative of Q.
As a preliminary, we derive an alternative expression for Xv. Lemmas 3.2b and 3.3b
show that the contraction iγF

v of Ye TS with Fv [defined by (iγF
v) (Z) = F(Y9 Z)] is

iγF
v=l/2y2(Ylθj- Yjel)®(ei Λ e$+ (where Yl= <



Riemannian Geometry of Yang-Mills Moduli Space 679

Taking v = 0 and specializing to a conformal vector field V,

Xv = a(V)=-ivF°. (4.3)

Lemma 4.2. The derivative of Q at v e R5

by αί

γW= ) tv~v I ~v , "v- v ,44x
*V } L2..2 /* ΛΛ L „. ΛΛ /L2..2 /• T7 i L Λ . TT^\ -•/• vy I U

Pro0/ Set vt = v + ίw, α, = avt, etc. (see the definitions in Sect. 3) and let prime denote
^-differentiation at ί = 0. Simple computations show that a' = (v, vήbv,
V = (αυ - bυ) \v\ ~ 2(v, w), /' - /w, and hence

WΊ (4.5)

Using the identity a^ — b^\υ\2 = ί9 we obtain

(*W)' ̂  7? [(1 - * A) M - 2(v, w) + fe*/J . (4.6)

When y_Lw this simplifies to (by)f = y2b2f. When y = w the identity bf = a — y~1

shows that (by)' + bγ = y2. The lemma follows by combining these formulas and
using (4.3). Π

We now give an explicit description of ΎvvJt^ and show that Q is a local
diffeomorphism. Since we have already observed that Q is a homeomorphism, this
will complete the proof of Proposition 4.1.

Proposition 4.3. At A = Vv

TAJtγ = {iwF
v/W= - P/w for some weR5} .

Moreover, Q = πQ is a local diffeomorphism.

Proof. Each such conformal vector field W determines a flow Φt = Φf

w on M. As
described in Sect. 3, Φt lifts to a flow Φt on the principal bundle P;. Let ί̂  be the
infinitesimal generator of Φί? let G = SU(2) denote the structure group of P and let cj
denote its Lie algebra. Since Φt is a bundle map covering Φί? W is a G-in variant
vector field covering W.

Now let ωAεΩl(P; g) be the connection form of ^4. Then

(ΦfωA\t = o

- iw(dωA + 1/2 [ω ,̂ ω J) + [

— (ΦfωA)\t =

x,ίΓl, (4.7)

where u = i^ω^, and F^ is the curvature, regarded as a g- valued 2-form on P. Note
that u satisfies Rfύ = (Ad ft" 1) (u) for ft e G, and hence represents a section w of Ad P.
Therefore, as a statement about AdP-valued 1 -forms on S4, (4.7) reads

iwFA + dAu. (4.8)
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Note also that
Now S0(5) is the maximal compact subgroup of S0(5, 1), and there is a

(smooth) decomposition 5Ό(5, 1) = SO(5) IR5, where R5 is the submanifold
{Φv

t\veΈi5} of SO(5,1). Therefore there exists elements gteSO(5) and z,eIR5,
depending smoothly on ί, such that ΦΌ

1Φ
tjv = gtΦ

z

1

t. Since g*F°=Γ° and

(Φϊ)*P0 = β(4 ^ follows that Φ*4 = βfo). Thus if we set z'= — z f | f = 0, Eq. (4.8)

gίVeS ίΛ = α,(z')-^. (4.9)

But dA °dA = Q and, as remarked earlier, d^ °6# = 0, so we have

dA(iwFA) = V. (4.10)

Next fix x e S4 and a frame {ej special at x. At x,

dS(ιVn = d*A( - y2α( WO) = Pyy2^ Λ WO +)

= (grad(y2)Λ PF+y2F»e f Λ W + y^Λ VVW}+ . (4.11)

But grad(y2) = -2by3K and by (3.13) and (3.4) we have

V»W=V?W-by(ei/\V}'W=f^ei-by(y,W}ei + by(ebW}V, (4.12)

and similarly ^et = 3byVat x. Substituting into (4.11) shows that

= Q (4.13)
at x and hence everywhere.

We have now established that ίwFAEK.Qr(d:

A)nker(dA) for each W. Since
{^FA} = {y2u(W}} is a 5-dimensional subspace of Ω1(AdP), it follows that the
iwFA span ΎAMγ. But (4.9) implies that hA(Q*(z')) = iwFA9 so h\{Y™}-*TAJίγ is
surjective. Moreover, it is clear from (4.4) that dim { Y™} = 5. Therefore h\lmQ is an
isomorphism, and hence so is (πoβ). We conclude that π o β is a local
diffeomorphism, as claimed. Π

5. Curvature of Jiv at the Standard Instanton

Proposition 4.3 and Eq. (4.3) show that the tangent space to M± at the base
connection AΌ is spanned by {u(V)\V= - Vfr} = {Xr}. We will next compute the
sectional curvature

-v~t»"w/ l i y | | 2 | i y | | 2 /y y \ 2 v~ ~ /
l l A ι ; l l l l A w l l ~\ A t;? A w/

of the 2-plane spanned by Xv,Xwe TAoJί1.

Theorem 5.1. The sectional curvatures of M± at AQ are all equal to 5/(16π2).

Thus MI has constant positive sectional curvature at A0. In particular, this
means that the Atiyah-Hitchin-Singer diffeomorphism (3.1) between M± and
hyperbolic 5-space is not an isometry.

Remark. The number 5/16π2 in Theorem 5.1 depends on a choice of scale for the
metric on Ad P. We could have chosen the metric to be induced by any G-invariant
inner product on g. Any such inner product is a multiple of the Killing form; in
Sect. 3, we fixed the multiple to be —1/4. Had we used — μ2/4 instead, we would
have obtained 5/16μ2π2 in the theorem.
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We will prove this theorem by applying the curvature formula (2.1 3). (In Sect. 6
we will obtain an explicit formula for the metric on Ji^ which can also be used to
compute the sectional curvature.) For this we need explicit information about
P*vX» and P;XW.

Lemma 5.2. Writing D for dAo we have, for all v, we]R5,

(a) PSXW = 2(V*W)+,

(b) P^Xw = 2(θίΛV*)^(etΛW)+,

(c) D*D(P*XXW) = F* V(P*XXW) = 2P*XXW ,

(d) D-(D~)*(P;XW) = 3PXXW.

Proof, (a) P*XXW = - [(β( Λ F)+, (et Λ W)+] = - [βj Λ V, et Λ W ] + = 2[F Λ W\ + by
(3.7) and (3.5).

(b) PίBXw = p_ [β'Θfo Λ F)+, θj®(ej. Λ W)+]

=(0' Λ F*)_ ®(e; Λ W)+ +(ΘJ Λ W*)_ <8>(ej Λ F)+ ,

where in the last step we have used (3.5) and (3.14) and have written V* for the
metric dual of V. It remains to show that these last two terms are equal, and it
suffices to verify this when V—et and W—e2. But then

2 Λ e3+ + Λ _ ®e 2 Λ e

l Λ e4)+ + (θ2 Λ 03)_ ®(

as desired.

(c) By (a), it suffices to show that P*P[(FΛ PF)+] = 2(FΛ J^)+ for conformal
vector fields V, W (D*D = V*V on 0-forms). But

F*F[(FΛ W)+]=(F*F(FΛ VF))+=((F*FF)Λ PF-2Pe,FΛ F β ι VF+FΛ(F*FW / )) +

The middle term vanishes by (3.8) and the other two terms simplify by
Lemma 3.1d. We are left with F*F(FΛ W)+ =2(FΛ W)+.

(d) On Ω2. (Ad P) we have D " (D " )* = l/2p _ ° (D*D + DD*). The Weitzenbόck
formula on Ωl(£), where £->M is any vector bundle with connection A, states that

+ dAd*A = V*AVA + (s/3) - 2^_ - ̂ _ . (5.2)

Here s is the scalar curvature of M, 1<F_ is the Weyl endomorphism defined in
Sect. 1 , and ̂ _ is proportional to (FA) _ . In our case, d^ = D,VA= F, (F^) _ = 0, and,
since M = S4, 5 = 12 and ιΓ_ =0. Hence D~(i)-)* = l/2F*F + 2. Using part (b),

= (^Λ F*FF*)_®(e ;Λ W)+
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Again, Ϋ*FW=W&nd 7*7(V*) = (7*7V)* = V*. The cross-term is proportional
to (θl Λ θί)^®(ei Λ βj)+ = 0 [see (3.14)], so by (b) the right-hand side above is simply
PχvXw. Combining these formulas yields (d). Π

Proof of Theorem 5.1. From parts (c) and (d) of Lemma 5.2 we conclude that

G°Ao(P$XJ = $PίX» > G°Ao(PχvXw) = ±P^vXw , (5.3)

so the basic curvature formula (2.13) becomes

<£(^,*J*w,JO = 3.i||P^

Hence we need only compute the L2 inner products of objects of the form XΌ,
P*vXw, and PχvXw. First we make some pointwise calculations.

Observe that

((et Λ V)±,(ej Λ W)±) = ί/2(ei Λ V, ej Λ W± * (es Λ

= l/2((V,W)δίj-VjWί±(ejΛV,*(ejΛW)))

= 1/2((K W)δij - VjWl + (V Λ W9 * (et Λ ej))) . (5.5)

(The last step is verified by checking it for V=ek, W=ef.) From this and the
definition of α, it follows that (u(V)9oι(V)) = 3/2(V9 V\ and, polarizing,

(Xv> XJ = 3/2(K WO - (5-6)

Next, Lemma 5.2a implies that

in^J2 = 41(FΛ W)+\2 = 2\VΛ W\2. (5.7)

Finally, using Lemma 5.2b and (5.5), we have

Polarizing (in this case computing the si term in \PXv+t^Xv+sw\
2, one finds that

(P^X^ PχvXw) = 4(V,W)2-\V\2\W\2.

Combining the last two equations we obtain

(PίwXw,P;W (5.8)

The L2 inner products corresponding to these pointwise expressions are given by
the following lemma, which is proved in the appendix.

Lemma 5.3. (a) <K^>L2-ffπ2(ί;,w),

(b) I I F

By (5.7), (5.8) and Lemma 5.3b, the right-hand side of the curvature formula
(5.4) reduces to 16π2/5|FΛ W\2. On the other hand, (5.6) and Lemma 5.2a imply
that

The sectional curvature (5.1) is therefore σ(Xv,Xw) = γ^π2, as claimed. Π
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6. The Shape of Jt±

In this section we exhibit an explicit formula for the metric ̂  on Jίv and show how
it leads to the results stated in the introduction.

Our method is to directly calculate the expression β*^ for the metric in the
coordinate system β^πβ R5-*^ which was introduced in Sect. 4. At i eR5,
this metric is given by

where the Y™ — (DQ)v(w) are given by (4.4). Thus we must determine the horizontal
projections hY™ at Q(v). Our first step is to check whether the Y™ are already
horizontal.

Lemma 6.1. dfvYv

w = 2b2y2(V /\ W)+ .

Proof. From the proof of Lemma 4. 1 we have Y™ = — α(Z), where Z = (by)' V+byW.
Fix x e S and a frame {ek} special at x. Then at x,

= (Vv

iei Λ Z + grad(by)' Λ V+ grad(fey) Λ W

ΛVv

iW)+ . (6.1)

But grad(£ry) = — b2y2V and, from (4.6), grad(fey)' = — b2y2W. Furthermore, in
(4.12) we calculated V^W, and also saw that V^e^^byV at x. The lemma then
follows from (6.1). Π

Lemma 6.1 shows that Y° is horizontal, so we need only compute hY™ for wit;.
This is accomplished by projecting Y™ onto the subspace spanned by izF

v, where Z
is conformal (cf. Proposition 4.2). For this, we must calculate the lengths of the izF

v

and the inner products of Y™ with the izF
v; this is done in the next three lemmas.

Notation. We introduce two functions which will arise naturally in the calculations
below. For t elR5, let r=φ| and define [using the notation (3.11)]

= sinh ~ 2(r) + 3 sinh ~ 4(r) — 3r cosh(r) sinh " 5 (r)
and

We will compute the L2 norms of the Y™ and ίzF by expressing them as
integrals of the functions yv, fv on S4. The specific integrals we will need are given in
the following lemma, which is proved in the appendix.

Lemma 6.2. Let 7, α, b, A denote γv, av, bv, A(\υ\) respectively. Then

(a) J y4 = f π2 (independently of v) ,

(b) Sf(\v\2-f2) = ^π2\v\2A,

(c) J73^4π2fo-2 |ι;r2(α-ft-1) (if
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and

(d)

where all integrals are over S4.

Lemma 6.3. (a) \\Y:\\2 = \\ivF"\\2 = &π2\v\2A(\v\).

(b) //wit,, then ||ιVFΊ|2 = 2π2M2(2-Λ(|»|)).

Proof. Computing the norm of iwF"= —j2a.(W) by (5.6) and Lemma 3. la, we have

H%fT = !ίy4(M2-/w

2).
Part (a) now follows by taking w = v and applying Lemma 6.2b, and (b) follows by
taking wli; and applying Lemma 6.2a, d. Π

Lemma 6.4. Suppose wJ_iλ Then

(a) (Y?,iwF
vy = 2π2\w\2(3b-2\υ\-2(

(b) For each zL w, < Y/, izF
u> = 0 .

Proo/. Using Lemma 4.2 and Eq. (5.6),

(6.2)
s

Taking z = w and using the identity byf = ay — \, the integrand simplifies to
|w|2y3 — ay4f2. We then obtain part (a) by integrating this using Lemma 6.2c, d. On
the other hand, when z_Lw, (6.2) becomes

Choose coordinates {V} on R5 with w along the x5-axis. Then the part of the
integrand in brackets is independent of x5 (since fv and fz are). Since fw - and
therefore the entire integrand - is an odd function of x5 the integral must
vanish. Π

Proposition 6.5. (a) \\hYv

v\\2= ||Y;||2-8π2|ί;|2^(H).

(b) For wlι>, | |AY7| | 2 = 2π2|w|2β(|u|) and

Proof, (a) Lemma 6.1 shows that Y" is horizontal, so this follows from
Lemma 6.3a.

(b) The horizontal projection of Yy

w is obtained by projecting onto the space
spanned by {izF}. In light of Lemma 6.4b this is simply

7/1 VW M i * Ί?v\\—2/\7''w i ϊ?f \ T" T?v ( £. 1̂nYv =11^ II (IΌ ,ιwr )iwt . (6.3)

We then obtain ||/z7ι;

vv||2 = 2π2|w|25(|ί;|) using Lemma 6.3b, Lemma 6.4a, and the
definition of B. Finally, (6.3) also shows that (hY™,hY"y is a multiple of

= - 1 J 7u

4/,/w

[using (5.6) and Lemma 3. la]. This integral vanishes as in the proof of
Lemma 6.4b, so (hY™, hYv

vy = Q. Π
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Remark. The formulas in Proposition 6.5 show that A(r) and B(r) are non-negative.
In fact they are positive, since h\lmQ^ is an isomorphism and the metric on M±
cannot be degenerate.

Proposition 6.5 enables us to write the pullback metric <2V in terms of the
standard coordinates {x1} on IR5. Let ut = d/dxi be the unit basis vectors and write
r = |x|. The vector fields

wi(x) = ui — (xl/r2)x

satisfy W;_Lx Vi. Hence

Q*«i = Wr2) β*x + Q*wt = (xl/r2)X*x

so by Proposition 6.5

This leads immediately to the following formula for the metric.

Proposition 6.6. Let # be the metric on M±. Under the diffeomorphίsm Q : R5 —
^ pulls back to the metric Q*^ = hijdxί®dxj, where

fty - 2π2 B(r) [<5y + (4A(r)B~ \r) - 1 ) (x^/r2)] .

This formula can be simplified by changing coordinates. First we have

Q*? = 2π2 B(r) {Σ (dx^)2 + C(r) (dr)2} ,

where C(r) = 44(r)B~1(r) — 1. Define new coordinates by

where
E(r) = exp

[the integral converges since C(s) = 0(s2) as s->0]. The function ρ = rE(r) then
satisfies ρ2= Σ(/)2 an(*

so ρ is a monotonically increasing function of r. It follows that x\-+y = E(r)x is a
diffeomorphism and that the equation ρ = rE(r) defines r implicitly as a smooth
function of ρ. In particular, we can define a smooth positive function ψ(ρ) by

Now, rewriting the metric (6.4) in these new coordinates {/}, we find that

. (6.5)
This is the formula stated as Theorem A in the introduction. Using it, it is now easy
to verify the four basic geometric properties of Jί± listed in Corollary B.

(a) MI is conformally flat.
This is immediate from (6.5).

(b) MI is radially symmetric.
The metric (6.5) is clearly invariant under the usual action of SO (5) on R5.

By the construction of Q, this corresponds to the SO (5) action on M± induced by
the rotations of S4.

(c) MI is incomplete.
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Given a metric of the form (6.5), it is easy to check that the radial lines
through the origin are geodesies (not necessarily parametrized by arclength); we
will show that these geodesies have finite length. Fix t eR5 with |t;| = l and
consider the ray {tv}, 0^£<oo. The tangent vector T to this ray at tv satisfies
Q*T=ΓlYυ

υ, so by Lemma 6.3a

The length of this ray is therefore

CO

L=2π]/2 J A(r)1/2dr. (6.6)
o

But as r-*oo, A1/2(r)~2e~r, so the integral is finite (since ,4(0) = f, there are no
problems at r = 0). Hence Jίγ is incomplete.

(d) Jίv has finite volume.
The volume of Jίγ is

VolΛJT^ J J(υ)dx1Λ...Λdx5, (6.7)

where J(v) is the Jacobian determinant J(v) of <2 : R5 -» 1̂? which can be calculated
at any non-zero v eR5 as follows. Choose an orthonormal basis (w^ = v/\v\, w2, w3,
w4, vv5}. By Proposition 6.5, {β*wj is an orthogonal basis of Ύ^^Jί^ and hence

j(v)= n iie^n.
ϊ = l

Using Proposition 6.5 and the fact that Qj.Wι = \v\~1Y"9 we obtain

where r = \v\. This is continuous at r = 0, and for large r we have A1/2(r)~2e~r,

B(r)~2r~2, and so J(v)^64]/2π5r~4e~r. It follows that the integral (6.7)
converges. Thus Jίγ has finite volume.

Next, we examine the hypersurfaces in Jiv of constant distance from A0. These
are the spheres {r = const}, or, equivalently, {ρ = const}. Formula (6.5) shows that
the metric on the sphere Sρ of fixed ρ is ψ(ρ)2 times the metric on the standard
sphere of radius ρ. Hence SQ is isometric to the standard sphere of radius

(6.8)

Now the geodesic rays from A0 have finite length L, given by (6.6). As the arclength
parameter ranges from 0 to L, r ranges from 0 to oo, and ρ, one checks, ranges from
0 to some limiting value ρ^. Then as r-»oo, B(r)~2r~2, and hence by (6.8)
R(ρ)-^R(ρao) = 2π. Thus the closure of Jt± in the metric topology is compact, and
its boundary is isometric to the sphere of radius 2π.

Finally, we compute the second fundamental form of these spheres Sr as r-> oo.
Using formula (6.5) for the metric, one sees that the unit normal to S is
N = ψ~i(ρ(r))d/dρ. A straightforward calculation shows that, for any two vectors
X, Y tangent to Sρ, the second fundamental form b(X9 Y) = (VXN, 7> is



Riemannian Geometry of Yang-Mills Moduli Space 687

We can then use the definitions of ρ and ψ(ρ) to express this in terms of r:

b(X, Y) = (%π2r2ABΓ112 4~ (rβl/2) <x> γ> -
ar

Computing the asymptotics of this using the definitions of A(r) and B(r\ we find
that ~

CO CO

where d = 2π |/2 J A1/2~2π}/2 j 2e~r~4πy2e~r is the distance to the boundary
_ _ _

ίγ. Thus b = 0 on dJέγ, and hence the embedding δJ^ c> Jξ^ is totally geodesic.
This proves Corollary C of the introduction.

Remark. These results depend on two scale choices, as follows. For general M, if we
replace the metric g by a constant multiple c2g and the fiber metric on AdP by the
one induced by a constant — μ2/4 times the Killing form (instead of just —1/4),
then the differentiable manifold Jl does not change, but its metric ̂  changes to
c2μ2^. (The metric on j/ scales by c2μ2 and the horizontal distribution on jtf does
not change.) This has the effect of multiplying distances in Jί by cμ and sectional
curvatures by (cμ)~ 2. In particular, when M = S4 the numbers R0, R^, and L scale
according to these rules. However, the ratio RQ'.R^'.L and the ratio 4π2 of the
metric on dJt± to that on S4 remain unchanged.

Appendix

In this appendix we prove several of the computational lemmas used in the paper.
We will repeatedly use the facts that Vol(S3) - 2π2 and Vol(S4) - 8π2/3. Through-
out, S denotes S4.

Lemma A.I. $ fvfw = τsπ2(v, w).
s

Proof. We have fv = (v,x)= \v\ cos$, where θ is the angle between v and x. Hence

s o

The desired formula follows by polarization. Π

Proof of Lemma 5.3. (a) We have (V, W) = (v,w)—fvfw pointwise, so

using Lemma A.I.
(b) Pointwise, \V A W\2 = \V\2\W\2-(V, W)2 is

The expression in parentheses integrates to rfπ2 |i? Λ w|2 by Lemma A.I, so
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Lemma A.2. Suppose α,β>0 and oc2-β2 = l. Then

(a) ](a-βcosθΓ4si

(b) (a-
o

Proof. In each case let w = cos$ and integrate by parts. We omit the details. Q

Proof of Lemma 6.2. (a) The flow {Φv

t} of the conformal vector V satisfies Eq. (3.9),
so the volume element of (Φ")*g is y* times the volume element dυg* of g. Since
integrals are invariant under oriented diffeomorphisms,

J y4dvg= J (Φ?)* A>,= J Λ>,= Vol(S)
s s s

(b) For each non-zero vector t eR5, set α = coslφ|, /? = sinh|ι;|, and write

v = \v\cosθ as in the proof of Lemma A.I. Then γv = (a~βcosθ)~ί and

By Lemma A.2a this is equal to \v\2 - 2π2 f ^4(|ι;|).
(c) Similarly, Lemma A.2b shows that

J y;J = Vol(S3) J (α-j3cosθ)~3 si
S 0

is 4π2fe~2(α — j8~1|ι;|), where a = a and )8 = fe|t;|.
(d) Again, let θ be the angle between υ and x e S, and let 0 be the angle between

w and the orthogonal projection of x onto the subspace HcR5 of vectors
perpendicular to v. Then weH and /w = <χ, w> = |w|cos(/)sinθ. Hence

s o

where Zθ is the 3-sphere of radius sin θ in H. The inner integral is sin5 θ /, where / is
the integral

f cos2(/>= f x 2-l/4 f x2 + x 2+x 2+x| = l/4Vol(S3)-π2/2.
s3 s3 s3

The result follows from the last two equations, Lemma A.2a, and the definition of
A(r). D
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