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Abstract. Explicit expressions are found for a multi-soliton solution of the
system of equations describing the interaction of waves on the x, y plane. The
proof of all necessary statements follows from the theory of matrices and is not
based on the inverse scattering method. The obtained results are closely related
to some problems of mathematical physics.

In the present paper we obtained explicit expressions for a multi-soliton solution of
the system of equations

d2u d [du 3 Λ 9 S2u _ , ,ΛΊ dφ d2φ
3T~2~~ ^H ~5~ + ~5~\3u + -r-T +8κ:|φr = 0, ί~- =uφ+ —-£-, (1)

oy ox\_ot ΰx\ ox /J dy ox

describing (in a certain approximation) the interaction of a long wave with a short-
wave packet propagating on the x, y plane at an angle to each other [1,2]. Here u is
the long wave amplitude, φ is the complex short-wave envelope and the parameter
K satisfies the condition κ2 = 1. Though this solution was derived first by using the
ideas underlying the inverse scattering method, our proofs here are based only on
some very simple facts related to matrices of a very special form and have no
relation to the afore-mentioned method. This is achieved in the following way.

1. Solution of an Auxiliary System of Equations

Let B be the square matrix of order r0 = rl+2r2ί rί>0, r2 >0, with the elements
Br s, r,s = l, ...,r0. Assume that nonzero elements of the matrix B have the form

fr exp [(ω, - σs)x - 4(ω3 - σ3)j]

Brs —r,s

-σβ

if r = l, ...,r1,r1H-r2 + l, ...,r0 and 5 = 1, ...,r 1-f-r 2, (1.1)

/„ exp [ — 4(ω3 — σ3) y]
- .3 S > if r,<r^r, + r2<s^rQ.

ω - σ
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The rest elements of the matrix B are assumed to be zero, i.e.

Γ 1) I^r^r1,rί + r2<s^rθ9

Br,5 = 0, if 2) r1<r^r1+r29 \^s^rl+r29 (1.2)

I 3) rί+r2<r, s^r0.

It is also assumed that the quantities /l5...,/ro, ω l J...,ω ro, σ1? ...,σro are
independent of the x,j; coordinates. Moreover, assume that the quantities
/15 ...,/,.0 depend on the time ί so as to fulfill the equalities

U, (ω?-σ?)/, = 0 at r=l,...,r 1,

= 0 at r =

-+ίωϊfr = 0 at r = r1

(1.3)

However, the quantities ω l5 . . ., ωro, σ l 5 . . ., σro are thought to be independent of t.
Now we take the column vectors λ and t with the components λr and /r

respectively, of the form

ω,x-4(ω,3-σ,3)j;], if r = l, ...,r1,r1-hr2

-4(ωr

3-σ3)y], if r^r^

-σrx), if I^r^r 1+r 2,

Then, we use the diagonal matrices /, I0, /15 and /2 of order r0 of the form

where the first groups of zeros and unities are of the length r1; and the second and
third, of the length r2.

Assume
£> = det(l + β), (1.7)

0 Π2= det
I0λ t + B

0
(1.8)

where 1 is the unit matrix of order r0 and the tilde denotes transposition, i.e., in
particular, a passage from a column vector to a row vector. Assume now that in
some vicinity of the point x = x0, y = y0, t = t0, the inequality D φ 0 holds. Define the
functions u, φ, and ψ by the equalities

φ=
Φ
-,

Ψ
ψ=-. (1.9)
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Then, the following theorem is valid.

Theorem 1. The functions u, φ, and ψ defined by (1.!)-(!.9) satisfy in the vicinity of
the above-mentioned point x = xQ, y = yQ, t = tQ the system of equations

d [du
^r brex \_cy

dt

d_

32φ

fa5"'

dx2

dip
j

dt

d2w

dx2

(1.10)

=o.

The proof of this theorem is based on the following elementary lemma.

Lemma. Let A be the square matrix of order m + n +1 with m > 0 and n > 0. Let then
Aμt v be the square matrix of order m + n resulting from the matrix A after cancelling
the elements of the μth row and vth column, and αμ v = detAμ^v, μ,v = l,...,w + w + l.
Let finally A0 be the minor of the nth order in the right bottom angle of the matrix A,
and the matrix j/0 has the form

α, , ... α l , m + 1

+ 1, 1 'm + 1, m + 1
(1.11)

(1.12)

Proof. First, consider the case when det .4 ΦO. We take the matrix A of the form

Then, the following equality is valid:

A =
0

(1.13)

where im +1 is the unit matrix of order m +1 and A1 is the minor of the matrix A
formed by the elements at the intersection of rows with numbers μ = 1,..., m +1
and columns with numbers v = m + 2, ...,m + n+l. Then, the following equality
holds:

0

I,
(1.14)

where ln is the unit matrix of order n, A0 is the minor of the (m + l)th order that is in
the left upper angle of the matrix A'1 and Av is the minor of the matrix A~l

formed by the elements at the intersection of the rows with numbers
μ = m + 2, ...,m + n+l and columns with numbers v = 1, . . ., m + 1 . Owing to (1.1 1)
and (1.13) it follows from (1.14) that relation (1.12) is valid.

In the case when det A = Q, we substitute the matrix A by the matrix A = A
+ βlm+π + 1, where lm + n + 1 is the unit matrix of order m-h n + 1. For the matrix A'
the lemma is valid for all sufficiently small εφO. Passing to the limit ε-»0, we get
that in this case the equality detj/0 — 0 is valid, i.e. relation (1.12) is valid also for

The lemma is proved.

Proof of the Theorem. By substituting directly expressions (1.9) into (1.10), one
may be convinced that system (1.10) will be satisfied provided that the quantities D,
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Φ, and Ψ satisfy the relations

. d2D d2D

dt2
dt

' d x 3 J dx

3Φ d2Φ\ ( dD/ ___ I n _ f / __ I

dt dx2

dΨ d2Ψ

dt dx2
_ 9

SO dΦ
__

dx dx'

D-|,?_?eW^.

(1.15)

(1.16)

(1.17)

Let us prove them. According to (1.1), (1.2), and (L4)-(1.6) the following equalities
are valid:

— = ω/0£ - Blσ = !Qdx

dλ n a/
— =ω/0/, -̂
dx dx

(1.18)

where the product Λ/of the column vector λ times the row vector /is assumed as a
matrix product, and consequently, is the square matrix of order r0 with the
elements λ/s9 r,s = 1, ...,r0, and the diagonal matrices ω and σ have the form

= diag(ω1,...,ωro), σ = diag(σ l5...,σro). (1.19)

For arbitrary integers m^O and n^O we define the square matrices Fm>π, Gw, and
Hn of order r0 +1 of the form

" m,n
0 7/σ"

ωm/0/l i + £

o 7/2
5 **n

(1-20)

0 (lσ"
(1.21)

Let further K be the square matrix of order r0 +1 of the form

1 + B
(1.22)

Finally, we choose the square matrices 17,170, K and py of order r0 + 2 of the form

U =

0

0

ωI0λ

0

0

ω/nλ

0

0

V
0

0

ιnλ

eiσ
a

l + B

»a

?/

1 + β

t70 =

P7=

0

0

I,λ

0

0
/ 5

0

0
/0A

0

0

/0A

7/2

//

l + B

lie

?I
l + B

(1.23)

(1.24)
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From (1.7), (1.8), and (1.18HL24) we have

— = -detF0 o, —.Γ = -detFί 0 + detF0 1 5 (1.25)
ox ' dx

P3 rr

> 0-t-2detF l s l-detF 0 > 2, (1.26)

-^---vivn 3 i 0 -r^v*vt Λ 2,ι~ et I ϊ 2 + et 0,3- > ( )

<3Φ 32Φ
— =detG!, ^y -detG2-detF, (1.28)

dΨ d2Ψ
—- = -detfίi, ^̂  -detH2 + det^. (1.29)
dx dx2

Now we take the matrix T of the form

Γ=exp(ίσ2/ί), (1.30)

and let
B=T~1BT. (1.31)

Using (l.lHl-3), (1̂ 6), (1.19), (1.30), and (1.31) we find that the nonzero elements
Br s of the matrix B have the form

gr exp [(ωr - σs)x - i(ω2 - σ2)t - 4(ωr

3 - σ3)};]

if r = l,...,r1, Γ 1+r 2 + l,...,r0, and s=l,...,r1 + r2, (1.32)

e^ exp [ — 4(co 3 — σ3) vl

where the quantities g l5 ...,gro are related with /1? ...,/ro by

ί/Γexp[ί(Q)r

2-σr

2)ί], if l^r^r^

gr-|/rexp(-iσ2ί), if Γ 1 <r^r 1 +r 2 , (1.33)

[/rexp(/ω20, if r1+

and consequently, are independent of ί. The rest elements of the matrix B are
obviously equal to zero. By virtue of (1.4)-(1 6) and (1.30)-(1 33) we get that

0 ίBIσ2 =-iT

(1.34)
_
ot
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Then, according to (1.7), (1.8), (1.30), and (1.31) the following equalities hold:

0 Π2T
T~Ί0λ 1 + 5

which result, on the basis of (1.34), in the relations

0 ΠT

1 + 5

.dD
ι-^-

dt

dΦ Λ
ί-=det

dψ
ι ̂ -

dt

0

-lω2I0λ 1 + 5

0 Πσ2T

T~Ί,λ 1 + 5

ΠT
1 + 5

+ det

+ det

-det

0

0

0

0

0 ΠσT

T-lI0λ

ΠT
0

0

0 ΠσT

0 ΠT

dt2 = det
0 ΠT

+ det

+ 2 det

V n+β
0 ΠσT

-det

Ίiλ T~lIGλ 1 + 5

0

/o/l 1 + 5
-det

0

Πσ2T

1 + 5

1 + 5

0

0

0

0

ΠσT
ΠT
1 + 5

i.e. in conformity with (1.20)-{1.24) we have

i^- = -dQtF
dt

dΦ
i~r- = detG7+detF,

dt 2

d2D

dt2 ~ 3'° ' G 2 > 1

Hence, on the basis of (1.25), (1.28), and

idD + 82D 2detFI ~ T~ _ 2 — ^ ̂ ^ ̂  -* 1 , 0 J

.dΦ d2Φ ^ j T7

ι,o-detF0 > 1,

.dΨ
lΊtt~~ 2 e '

h.F,,-*.̂ ,̂ *.̂

(1.29) we have

idD + d2D 2ά*F

(1.35)

(1.36)

(1.37)

(1.38)

(\ λO^
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Now let us use the lemma proved before. Assume that A= V. Putting m= 1,
n = r0, with (1.20), (1.21), and (1.24) in mind, we get that A0 = t + B, Aίtl=F0t0,
Aι,2 = Fι,o, A2tl = G09 and A2t2 = Gί. By virtue of (1.7), (1.8), (1.21), (1.25), (1.28),
(1.38), and (1.39), equality (1.12) in this case has the form (1.16). Analogously,
setting A — W, at m=l, n = r0 we find that A0 = 'fL + B, A1 ι=F0 0, A1 2 = H0,
A2,ι=Fo,ι> A2,2 = H1. According to (1.7), (1.8), (1.21), (1.25), (1.29), (1.38), and
(1.39), equality (1.12) acquires the form (1.17).

Now we use the matrix Y of the form

and put

B=Y~1BY.

(1.40)

(1.41)

According to (1.1), (1.19), (1.40), and (1.41) the nonzero elements Br s of the matrix B
have the form

/Γ exp [(ωr - σs)x - 4(ω3 - σ3)}/]

ωr-σs

if r = l5...,r1,r1+r2 + l,...5r0 and s = l,...,r1+r2, (1.42)

/rexp[-4K3-σ3)y]
= ^ , if r t <r<Γ! +r 2<5<rπ.

The rest elements of the matrix B are obviously equal to zero. With the help of
(1.4H1.6) and (1.40)-(1.42) we get that

σ3 - 4ω3I1BI2 + 4/1J5/2σ
3

(1.43)

Then, by virtue of (1.7) and (1.41) we have D =
(1.43) we have

dD
— =4det

^

0

0
+ 4det . ,

7lY

λ 1 + J5

//σ 2Y

H + 5

+ 4det

-4det

. Hence, on the basis of

0 ?/σ7

y-^vi

0

i.e. according to (1.20) and (1.22) we get

dD
(1.44)

Then, using (1.26) and (1.44) we derive
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Hence, it follows that

(1.45)

Thus, according to (1.37) and (1.45) we obtain

,,.46,

Moreover, with the help of (1.25) and (1.35) we are convinced that

.>.
and by virtue of (1.26) and (1.44) we obtain the equality

—+4-^-3-=12detF l ί l-4detK. (1.48)

We use the lemma proved before again. Put A = U. Taking m = 1, n = rQ, with
(1.20) and (1.23) in mind, we derive AQ = 1ί + B,> Aι,ι=F0>0, Aί>2 = Fίi0.>

A2, i = ̂ o, i? ^2,2 = ̂ 1,1- Thus, on the basis of equality (1.12) the following relation
holds:

ri,ofo.i). (1-49)

Analogously, putting A = U0 at m = l, n = r0 we derive ^40 =
Aί)2 = Ho> A2ίl = G0, and A2t2 = K\ in accordance with equality (1.12) we derive

the relation DdetU0 = det(F0>0K)-det(Go#0). (1.50)

Now we multiply equality (1.49) by 12 and from the result obtained subtract
equality (1.50) multiplied by 4. As a result, we get

With the help of (1.8), (1.21), (1.25), and (1.46H1-48) we prove that this equality
results in relation (1.15).

The theorem is proved.
It is to be noted that if the quantities ω1? . . ., ωro, σ1? . . ., σro are chosen to obey

the condition

the solution of system (1.10) derived is independent, according to (1.1) and (1.4), of y
and consequently, satisfies the system of equations

2u d2 / d2u Λ=0,

dφ d2φ dw d2w
' „ . ,*. I ' -.' ' I Λ . Λ I . I ' f\— - - ^ - ΐ , -̂

dt dx2 dt dx
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2. Invariant Manifold of System (1.10)

It follows from Theorem 1 that if the functions D, Φ, and Ψ defined by (1.1)-(1 8)
satisfy the relations1

D = D, Ψ = κΦ, κ2 = \, (2.1)

then the functions u, φ, and ψ defined by (1.9) belong to an invariant manifold u = ΰ,
ψ = κφ of system (1.10), and consequently, the functions

9=1 (2-2)

are the solutions of the system of equations

2
u d [du d /

 2
 d

2
u

2- - Γ hr + 7Γ 3w
2
+ -t

2
 dx \_dy dx V δx

(2.3)

The following theorem contains sufficient conditions for fulfilling relation (2.1).

Theorem 2. // the quantities /l5 ...,/ro, ω l5 ...,ωro, σ1? ...,σro entering into the
definition of the matrix B and vectors λ and f satisfy the conditions

1) /ΓΦO αί r = l,...,r0,

2) /,=/,, σ r=-ώ r αί r = ί,...9rl9 (2.4)

3) frι+r2 + r — KJrι+r'> °rι +r ~ ~ ^π +r2 + r '

σrι+r2+r--ώ,1+r at r = l,...,r2,

then the functions D, Φ, and Ψ obtained with the help of (1.1)-(1.8) satisfy relations
(2.1).

Proof. Represent the matrix B in the following block form:

α β 0

B= 0 0 -y , (2.5)

α 6 0

where α is the minor at the intersection of the first rί rows and first rx columns; β is
the minor at the intersection of the rows with numbers r — 1, . . ., r± and the columns
with numbers s = r1 + l,...,r1 + r2; — y is the minor at the intersection of the rows
with numbers r = r1 + l, ...,r1 + r2 and the columns with numbers s = rί + r2

+ 1, ...,r0; α is the minor at the intersection of the rows with numbers r = r1 +r2

-f 1, . . ., r0 and the columns with numbers 5 = 1,...,^; and finally fe is the minor at
the intersection of the rows with numbers r = r1 +r2 + 1, ...,r0 and the columns

1 Hereafter a bar above any quantity denotes complex conjugation and an asterisk denotes a
Hermitian conjugation of matrices (and vectors)
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with numbers s = r± + 1, ...ίr1 -f r2. Let

/= diag {/! exp [ - 4(ω3 + ώ?)j;], . . ., /Γι exp [ - 4(0* + <)

g = diag(g1,...,gr2), Λ = diag(ft1,...,ΛΓ 2),

where, according to the definition, at r = l, ...,r2 we have

gr =/Γl + r exp [ - 4(0^ + r + ώ* + ,2 + ,)y] ,

By virtue of (2.4) we derive that

/*=/, h = κg*.

Then, according to (1.1) and (2.4H2.8) we obtain

<xf=fa*, af=hβ*, bh* = hb*,

Now we put
/ 0 0

S= 0 0 Kg

0 h 0

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

According to (2.5)-(2.10) the following equalities hold:

Hence, it follows that

i.e. using inequalities / r=t=0 at r=l, ...5r0 we derive the equality

(2.11)

Therefore, the first relation in (2.1) is proved.
Let us prove the second one in (2.1). By virtue of (1.8) and (1.10) we have

0 0
(2.12)

According to (1.4)-(1 6), (2.4), (2.6), (2.7), and (2.10) the following equalities are
valid:

According to (2.11) and (2.13) the second relation in (2.1) follows from equalities
(2.12).

The theorem is proved.
It follows from this theorem that if the quantities ω1?..., ωro are chosen under

the conditions

1)

2)

,2=0 at r=l,...,rί,

r

3

1+r + ώr

3

1+).2+r = 0 at r=ί,...,r2,
(2.14)
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the solution of system (2.3) thus obtained is independent of y, and consequently,
satisfies the system of equations

dzu 0 , ίΊ\ n δφ2 =0,~ ^ " \ 7 Λ 7 I ' Λ 7 I *-" v f v , K

δί2 δx 2 \ dx2 ) dt

playing an important role in some branches of mathematical physics.
Now let us find out what requirements are to be imposed additionally on the

quantities /15..., fro, ω1?..., ωro in order that the determinant D would not vanish at
any real values of x, y, and ί. The answer is in the following theorem.

Theorem 3. // the quantities /1?..., /.0, ω l 5..., ωro entering into the matrix B satisfy
the conditions

1) sign/! = ... =sign/rι = sign (Reωi)=... = sign(Recuri), (2.15)

2) sign(Reωrι +r2+ J-... - sign(Reωro), (2.16)

the determinant D = det(i + jB) differs from zero at any real x, y, and t.

f. Consider a homogeneous system of linear algebraic equations

0, (2.18)

where the matrices α, jβ, 7, α, and ft have earlier been defined with the help of
representation (2.5) of the matrix B, and X and Y, Z are the column vectors with the
r1 and r2 components, respectively. We show that if the conditions (2.15)-(2.17) are
fulfilled, system (2.18) has only a trivial solution. With this purpose we make in
(2.18) a substitution

X=f$, Y=h*Ϋ, Z = Z,

where the matrices / and h are defined by (2.6) and (2.7). As a result, we get the
system

o, (2.19)
where

ά = α/, β=βh*9 y = (h*Γ 17 ? ώ = α/, ί=6ft*. (2.20)

According to (2.8), (2.9), and (2.20) we have

&* = &, β* = ά, y*-7, ί* = ί, (2.21)

i.e. the matrices /+ ά, δ, and y are Hermitian. Then, from system (2.19) there follows
the equality

- !*(/+ ά)l + Ϋ*6Ϋ + Z*yZ = 0 . (2.22)

A simple analysis shows that if condition (2.17) is fulfilled and the equality

sign/! = ... =sign/Γl = sign(Reω1)= ... = sign(Reωrι)

- - sign(Reωrι +Γ2 + J =... = - sign(Reωro) (2.23)
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is valid, the matrices — (/+ α), 6, and y will simultaneously be either non-negative
or non-positive. Moreover, by virtue of the first row of formula (2.23) we have
det(/+ ά) φ 0. Hence it follows that equality (2.22) holds only at X = 0. This means
that for any solution of system (2.19) the following relations are valid:

0. (2.24)

From the afore-said we get that all eigenvalues of the matrices Sy and yS are non-
negative. Consequently, the determinant of system (2.24) differs from zero, i.e.
γ=Z = 0. Thus, provided that conditions (2.17) and (2.23) are fulfilled, system
(2.18) has only a trivial solution.

Consider now the matrices A0 and Aγ of the form

f+ά *| A -y
a £)' l~y'

According to (2.21) the matrices A0 and A^ are Hermitian. A simple analysis shows
that if condition (2.17) is fulfilled and the equality

sign/! = ... = sign/rι = sign (Re α^) = ... = sign(Reωrι)

= sign(Reωrι +f2 + 1)=...= sign(Reωro)

holds, the matrices AQ and Al will simultaneously be either non-negative or non-
positive. Now we choose the matrix Q of the form

Q =
-y ^2

where Hr2 is the unit matrix of order r2 and q = ά(f+ ά)~1. On the basis of (2.21) we
have q* = (f+ά)~1β. One can easily see that the Hermitian matrix Ά0 = QA0Q*
has the form

f+A 0
0

The matrices AQ and AQ will simultaneously be either non-negative or non-
positive. It follows from the afore-said that the Hermitian matrices

/+α, A,=y, A2 = G-ά(f+&Γlβ (2.26)

will simultaneously be either non-negative or non-positive. Using the first
equation of system (2.19) we express vector X through vector Y, i.e. we put

X=-(f+όi)-ιβΫ. (2.27)

This is possible, since by virtue of the first row of formula (2.25) the equality
det(/+ά)φO holds. After substituting expression (2.27) into the third equation of
system (2.19), we get

Ϋ-A1Z = 0, A2Ϋ+Z = 0, (2.28)

where the matrices Aλ and A2 are defined by (2.26). In view of the afore-said all
eigenvalues of the matrices A^A2 and A2A1 are non-negative. Hence, the
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determinant of system (2.28) differs from zero, i.e. Ϋ=Z = 0. Then, by (2.27) we get
X = 0. Thus, provided that conditions (2.17) and (2.25) are fulfilled, system (2.18)
has only a trivial solution.

Since conditions (2.15) and (2.16) result in the validity of either (2.23) or (2.25)
conditions, it follows that conditions (2. 1 5)-(2. 1 7) guarantee the absence in (2. 1 8) of
a nontrivial solution, which is equivalent as is known, to the difference of the
determinant D from zero.

The theorem is proved.
It is to be noted that conditions (2.14) do not contradict conditions

(2.15H2.17).
System (2.3) is derived from system (1) by changing t by y and y by t. This means

that performing the same change in solution (2.2) we should obviously derive a
solution of system (1).

Let us make some remarks concerning this solution. In a typical case the
solution obtained describes the interaction of r1 + r2 solitary waves of two types.
Waves of the first type have the form

2μ2

' φ~ '

where the real parameters μ l 5 v l 5 and τ x satisfy the condition τί — 4(μ2 — 3v2), and
are the well-known solutions [3] of the Kadomtsev-Petviashvili equation [4].
Waves of the second type have the form

cosh2 [μ2(x + 2v2y - τ2ί)] '

2exp [ - ι(μ2

where the real parameters μ2, v2, τ2, ω and the complex quantity c0 satisfy the only
condition

and consequently, a wave of this type can exist under the condition

[τ2-4(μ2-3v2)]/c>0.

In a typical case the interaction of all the waves is elastic, i.e. the result of
interaction manifests itself in the relevant phase shifts of all interacting waves.

The situation changes radically if some additional conditions are imposed on
the quantities ω l5 . . ., ωro. In this case in the solution obtained there appear waves
having essentially different asymptotics as t-> — oo and £->oo. The simplest
example of this phenomenon has been found in our paper [5]. However, that
example does not exhaust all the possibilities of this phenomenon. A detailed
analysis of all possible variants will be published elsewhere.
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