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Abstract. We prove the equivalence between certain fermionic and bosonic
theories in two spacetime dimensions. The theories have fields of arbitrary spin
on compact surfaces with any number of handles. Global considerations require
that we add new topological terms to the bosonic action. The proof that our
prescription is correct relies on methods of complex algebraic geometry.

1. Introduction

Two-dimensional quantum field theory is very special. Many surprising and
beautiful results turn out to be true only in two dimensions, including for example
the exact solvability of certain models, the equivalence of fermionic and bosonic
field theories, and so on. One way of describing the root cause for all these miracles
is to note that in two dimensions the light cone is disconnected; it consists of a left
moving and a right moving branch, and massless particles stay on one branch or the
other1.

This cleavage in turn comes from the fact that in two dimensions the scalar wave
operator factorizes into the product of left and right moving derivatives. In
euclidean space the analogous statement is

V2 = d*d , (1.1)

where d is the Cauchy-Riemann operator. Thus in a sense we can say that 2<ifields
are special because for them complex analysis plays a key role.

In this paper we will see how complex analytic methods can extend our
understanding of 2 d fields from surfaces with the topology of the plane (or sphere)
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1 See, e.g. the physical discussion in § V.B of [1]
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to arbitrary compact euclidean spacetimes. Specifically we will study Fermi-Bose
equivalence, or "bosonization". We give a prescription for bosonizing the
correlation functions of a first order fermionic system with fields of any spin and any
twisted spin structure. Our prescription generalizes that of [2, 3,4]; in particular
certain global terms must be added to the scalar action for nontrivial spacetimes.
Most of these results were announced in [5] and build on [6] and [7].

Field theory on complicated surfaces, and in particular bosonization, has
become an important tool in the study of string theory. For example, bosonization
has been used in light-cone gauge to prove the equivalence of the Green-Schwarz
and NSR superstring [8,9]. Bosonization also plays a key role in understanding the
gauge- and super-symmetry of the heterotic string [10] and in formulating the
covariant fermion emission vertex [11,12]. The methods we use however are quite
general and we expect them to be of use in 2 d field theory for problems other than
bosonization. For instance we obtain some expressions for functional determinants
in terms of the natural functions associated to a Riemann surface.

The key step in understanding 2 d fields on compact surfaces is the observation
that while the amplitudes are functionals on the large space of metric background
fields, nevertheless most of this dependence is understood using the various known
anomalies. The only interesting dependence is on the "moduli space" Jίg of
conformally-inequivalent surfaces with g handles. Similarly the dependence on flat
background gauge fields boils down to one on the "jacobian variety" J(Σ) of
inequivalent bundles on a given surface Σ. The spaces Jίg and J(Σ) are both finite-
dimensional. (Indeed both are trivial on the plane, corresponding to the well-known
fact that fermion dynamics on the plane is completely given by the anomaly).
Furthermore each is naturally a complex space, a consequence of the complex form
of the wave operator (1.1). Thus as mentioned earlier, powerful complex analytic
methods are available to study quantum amplitudes. This is why two dimensions is
so special.

The link between field-theoretic and algebraic-geometric methods is provided
by the theorems in [13,14,15] (see also [16,17,18]), which describe the determinant
of a family of Cauchy-Riemann operators in terms of the complex structure of Jίg.
The case originally studied by Quillen involves families of operators at one point of
Jtg> parametrized by background gauge potentials on the given surface. These
results were later generalized by Belavin and Knizhnik and by Bost and Jolicceur
(using results of Bismut and Freed) to include families of Cauchy-Riemann
operators parametrized by JίQ, which are of interest in string theory. The main
conclusion is that the combinations of determinants appearing in the integrand over
Jίg in the bosonic and fermionic strings factorize into sections of fiat holomorphic
line bundles on MQ, This factorization is useful for example when we study the
infinities of string theory by allowing Riemann surfaces with nodes.

It has also been known for some time that Quillen's work is closely related to
Falting's work on Arakelov geometry [19,20]. It was suggested in [15] that a
combination of Quillen's and Faltings' ideas would be of use in string theory. We
will use just such a combination to prove our results on bosonization.

As mentioned, we will generalize the bosonization prescription given in [2, 3,4]
for anticommuting fields of any spin on the sphere. When we try to generalize to
arbitrary compact surfaces, however, we face the problem that there is in general no
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euclidean "time" to use in a canonical formalism. Fortunately there is one case, the
torus, where operator methods still work and yet the topology is interesting enough
to show what happens in higher loops. We will use the canonical formalism to get
the correct prescription in a simple case, then use modular invariance and
factorization to guess the correct general prescription, in any number of loops. The
prescription so obtained is unique.

To prove that our bosonization rules really do work, we will compute
corresponding quantities in the bosonic and fermionic languages. Setting these
equal gives a set of identities which express the content of Fermi-Bose equivalence.
Finally we prove the identities using methods of algebraic geometry, thus
establishing bosonization.

While the last steps get rather involved, we emphasize that the prescription itself
is not too complicated. The reader may wish to turn immediately to Sect. 4 to see the
statement of the bosonization rules.

Throughout this paper we will discuss only nonchiral theories. We restrict to this
case because, as is well known, chiral determinants are problematic in 2dgravity due
to anomalies. In the bosonic language this appears as a difficulty in defining chiral
scalar fields in a path integral. There has been some progress in chiral bosonization
in [21-24] and elsewhere, but a discussion is beyond the scope of this paper.

Also, in this paper we discuss bosonization physically in terms of path integrals
and mathematically in terms of isometries of determinant bundles. Historically,
another approach to bosonization in spin 1/2 has proceeded via the isomorphism
between spinor and vertex operator representations of affme Lie algebras [25,26]. It
would be extremely interesting to unify and generalize these two approaches using a
general operator formalism. Recent progress on this problem has been made along
these lines in [27,24,28] (see also [29,30]).

In Sect. 2 we describe various aspects of the theory of Riemann surfaces which
we will need. In particular we discuss various ways to describe bundles, choices of
homology basis, holonomy, and Arakelov metrics. References [6,16,31,17] may be
useful background for this section and for the whole paper. In Sect. 3 we arrive at
the bosonization rules and in particular show that the scalar action is independent of
various choices made in defining it. In Sect. 4 we give the complete set of rules, and
work out the identities mentioned above. Section 5 contains the proofs of these
identities.

We draw the reader's attention to several preprints on related topics which we
received after this work was completed. These include [32,22,23,33-36].

2. Foundations

This is a long introductory section in which we introduce some machinery2. In
particular we describe bundles over Riemann surfaces in three different ways: via
transition functions, via divisors, and via points in the jacobian mentioned ealier.
We also briefly review theta functions and Arakelov metrics. The reader may wish
to skip this section and refer to it as needed.

2 We thank V. Dellapietra for many discussions on the material in this section, and also Sect. 3C
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A. Surfaces. Let Σ be a smooth compact connected surface. We will always assume Σ
is oriented, as for example in the heterotic string. We will soon need to give Σ more
structure, but first we will briefly note some facts about its topology.

The homology of I1 is simple. H0(Σ;Z) has one generator since Σ is connected,
while H2(Σ; Z) has one generator since Σ is compact, connected, and oriented [37].
The first homology group has 2g generators, where the genus g is an integer which
completely specifies Σ topologically. See Fig. 1. By triangulating Σ one can see that
the Euler number of Σ is χ = 2 — 2g χ is also the Chern number of the tangent to Σ.
The oriented intersection number of two 1-cycles is a signed integer, and

a a' = —a' -a .

This pairing defines a quadratic form on H^Σ).
We will want our amplitudes to depend only on intrinsic information. For

example, the partition function for spin-1/2 fermions depends on a surface and a
choice of spin bundle. In practice, however, we need coordinates to describe the
intrinsic data, and this requires that we make some noninvariant choices. We then
have to verify later that our answers are independent of the choices made. The most
important such choice, which we will use throughout this paper, is that of a basis of
Hγ{Σ\Έ). While there is no preferred basis, we can restrict the choice somewhat
by choosing only bases of the form s/ = {al9. . . ,ag,bί9. . . 9bg}9 satisfying the
invariant condition:

ai'aj = bί bj = Q , 0f 6/= <5i<7 ,
or

ά,B) = J where / =

Any basis s4 with property (2.1) will be called "canonical". Any other canonical
basis si will then be related to s4 by an integer matrix preserving / :

J>=^-Λ~1 , AιJA = J . (2.2)

The group of such A is the "symplectic modular group" Sp(2g, Z). Letting

A -i

-c )
we get

X1 <

α, α 2

Fig. 1. A Riemann surface of genus two, with a canonical homology basis
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Fig. 2. a Representatives of a basis intersecting at Po. b The cut surface Σc

We can also define a dual basis <$/* of Hί(Σ; Z) by

Thus if we expand a cohomology class φ as φ = (n, m) φ, then with respect to a new
basis φ is described by

(ή,m) = (n,m)Λ-1 . (2.4)

We will usually append a subscript J / to any object we construct which depends on a
choice of basis.

Again, the introduction of a basis stf is a necessary evil needed to parametrize
various spaces. It explicitly breaks invariance under diffeomorphisms, since/*(fli) is
not in general homologous to at if/is not connected to the identity. However, since
f*(a)'f*(a') — a'a'> w e d° know t h a t / ^ j / always differs from s& by a transfor-
mation in Sp(2g, Z). Thus if we are careful not to make any further noninvariant
choices beyond that of stf, we see that invariance under Sp(2g,Z) suffices to
establish invariance under the full group of disconnected coordinate transfor-
mations of Σ. The former condition is also called "modular invariance".

Given a homology basis, or "marking"3, for Σ, we can choose specific curves
representing each homology class and all intersecting at one point P. See Fig. 2a. It
is then useful to introduce the "cut" surface Σc with the topology of a disk (Fig. 2b).
Since Σc involves more choices than just s/, we will have to verify that constructions
made with its help are unchanged as we vary the curves in their homology classes.

One useful calculation with Σc is the following: let θ, η be closed 1-forms on Σ.

Then j θ Aη= J θ Aη= J d(φη), where θ = dφonΣc. By Stokes' theorem this is the
Σ Σc Σc

integral of φη around the boundary of Σc. Grouping the boundary segments in pairs
we get [39]

Ά

= Σ

3 This is different from the sense of the word used in [38]
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or

f θΛij = χ U θ§η-§ θ § η\ = (n,m)j(nλ , (2.5)
Σ \_ai bι bx α, J \/W /

where we expanded θ, η in terms of (n,m) and (n',mf). This identity is clearly
independent of all choices made.

B. Riemann Surfaces, Sheaves, and Bundles. In order to define a Laplacian, say, we
must have a metric. For many purposes, however, the conformal class of a metric is
all we need. For example, given a metric class the Hodge theorem gives
representative differential forms for the cohomology classes α, /f dual to J / , namely
the harmonic forms. Also as is well known a conformal class amounts to a complex
structure on 27 [16, 31]. From now on Σ will denote a surface endowed with such a
structure, which is called a Riemann surface.

The complex coordinate patching functions of Σ are analytic on the overlaps
% n ^ of coordinate charts. One can also consider holomorphic line bundles over
Σ, complex bundles whose transition functions are always analytic. Such bundles
are important because they have a well-defined notion of a holomorphic section. In
fact there is a Cauchy-Riemann d operator on the sections of any holomorphic line
bundle ξ, which we call dξ a holomorphic section σ satisfies dξσ = 0 (see Sect. 5.C).
Clearly, the derivative of the patching functions define such a bundle, the
holomorphic tangent K~1 of Σ. Its dual Kis called the canonical bundle over Σ. We
will always consider holomorphic bundles unless otherwise noted.

Thus the bundles Kn correspond to tensors with n lower z indices, where z is a
local complex coordinate of Σ. Sections of Kn®Km are called (n, m)-tensors. In
order to deal with spin we also define a holomorphic spin bundle4 L as any bundle
such that L®L = K,, the corresponding tensors then have "half a z index". Before
describing these in greater detail, however, we first recall the notion of a sheaf [41].

The language of sheaves is useful for many constructions in geometry. We will
only make essential use of it in the last section, however, and the reader may wish to
skip the following paragraphs. While we will work on a surface Σ in this section,
most of the constructions have analogs in higher dimensions as well.

A sheaf $F of abelian groups on Σ is an assignment of an abelian group ^(U) to
every open set U^Σ. This is the only kind of sheaf we will consider in this paper.
tF(U) is called the group of "sections of $F over E/". #" also assigns to pairs of
nested sets F̂ Ξ JJ a "restriction" map r u v : #"(£/)->#XF) in a way which makes
sense on overlaps. That is,

a) If W<^ V^ U, then rUtV = rUtVorvtU.
b) If σί, σ2,. . . are sections over Ux, U2,. . ., respectively and each pair σt, σ,-

have the same restriction to Ui n Uj9 then each σt is the restriction of some section ρ
over Uι u U2 u . . . .

c) If ρ is a section of 3F over Uu V which gives the identity when restricted to
both U and V, then ρ is the identity.
Here are some examples of sheaves which we will use.

" See [40, 31] for why this definition coincides with the usual definition of spin structure
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a) Θ. Over £/c Σ, (9{U) = {analytic functions on U] the group law is addition.
b) Jί. Here Jί{U) = {meromorphic functions on U}. In between Θ and Jt we

have
c) Θ (P). If P e U, then Θ (P)(U) = {functions analytic on Uexcept for a possible

pole of first order at P}\ otherwise Θ(P)(U) = Θ(U). Note that the constant 1 is a
canonical section of Θ(U) over any U.

d) Θ(-P). lΐPeU, then G{—P)(U) = {functions analytic and vanishing to at
least first order at P}. Note that Θ(—P)(Σ) has only the zero section, since Σ is
compact.

e) Given any holomorphic bundle ξ on Σ, we can define analogously to (a)
ξ(U) = analytic sections of ξ on U. We will not distinguish notationally between a
bundle and its sheaf of holomorphic sections.

ί) Given a vector space i r and a point PEΣWQ can let #"(£/) = YA, if Pe £/, and
otherwise the zero vector space. The restriction map is either the identity or else the
zero map. $F is called the "skyscraper sheaf and is denoted by iΛ\P. In particular,
given a bundle ξ and a point, we will write ξ \P to denote both the fiber at P and the
corresponding sheaf with support at P.

g) Given any group such as Z, R, or C, we can define Z(ί/) = Z etc. for every
connected U. Every restriction is the identity. Sections of Z etc. can be thought of as
locally constant functions on U.

h) Finally, we can define sheaves where the group law is multiplication, not
addition, of functions. These include the constant sheaf C* = C — {0} and the sheaf
Θ * whose sections are the local analytic functions which never vanish.

Thus roughly speaking the notion of sheaf generalizes that of bundle to include
cases where the fiber dimension jumps (example f), as well as cases where only
constant local sections are allowed (example g).

In fact Θ(P) is the sheaf of analytic sections of a certain bundle ξ, which we
construct as follows. Let U0 = Σ — {P} and ί/χ a small disk neighborhood of P.
Trivialize ξ so that a section s is given by functions st on Ui with s1 — z s0 on Uo n Όγ,
where z is a complex coordinate centered at P. Given a function/in Θ(P)(U) we get
a section of ξ on Un Uo, which we then analytically continue to UnUi using the
transition function. Then clearly the functions in Θ(P) (U) all correspond to smooth
analytic sections of ξ. In particular, the canonical section 1 vanishes once at P. We
will write Θ(P) to refer either to the sheaf or the bundle, and \Θ{P) for the canonical
section. Similarly Θ(—P) gives a bundle via sΐ=z~1 s0. It too has a canonical
section l&^-p) which now blows up at P.

A map between sheaves is a collection of homomorphisms fυ : ^(U)-^^(U)
commuting with restriction. Roughly speaking, a sequence of maps is called exact at
PeΣ if

is exact for all sufficiently small neighborhood U of P. (See [41] for the precise
definition.) An exact sequence of the form

0 ^ A # - Λ ^ - + 0 (2.6)

is called "short". Recall that this implies that α has no kernel and β is onto, as well as
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that image α = ker /?, again on small enough neighborhoods of each point of Σ. We
will use three simple exact sequences:

a) O->2π/Z<^0 ^ 0 * - » O . (2.7)

Here i is inclusion: every constant function is in particular an analytic function.
Since e

2πίx = l iff x is an integer, this sequence is exact.

b) O - > ξ < g > 0 ( - P ) < ^ A £ | P - O , (2.8)

where ξ is any holomorphic bundle. Again / includes the sections of ξ vanishing at P
into all sections, r restricts a section to its value at P, so the sequence is exact.

c) 0^K^K®Θ(Py-^C\P^0 , (2.9)

where K is the cotangent bundle. / includes the holomorphic sections into the ones
holomorphic except for a possible first-order pole at P. res is the residue map: if/is

analytic at P, resP( — dz )=f(P) is coordinate-invariant.

We can build a cohomology theory for any sheaf 3F as follows [41, 37,42].
We first define the groups of cochains with values in <F. Given a cover of Σ by

open sets { Ua}, a 0-cochain σ e C°(JΓ) is given by associating a section σα e #"(£/α) to
every Ua. The full cochain group is freely generated by such σ. A 1-cochain
σ G CX{Σ\ #") is given by associating a section σaβ e #"(£/« n Uβ) for every nonempty
intersection, and so on. Introduce the coboundary operator

p 1

δσ(Uθ9Ul9...9Up + 1 ) = Σ (-l)kσ(U0, - ,Uk,... ,Up+1)\Uon...nUp+1

(Ok means that the & + l-entry is deleted.) It is easy to check that δ2 = 0. If σ is a
/7-cochain satisfying δσ = 0, we say that σ is a cocyle. If σp = δσ'p-1 for some
(p— l)-cochain σ'p-γ, then we say that σp is a coboundary. The/>-th Cech coho-
mology group associated to the covering {Ua} is defined on the group of/?-cocyles
Zp modulo />-coboundaries δCp~ί,

It is possible to define the cohomology groups HP(Σ;<F) as the "limit" of these
groups as the covering {Ua} gets finer and finer [43]. For the constant sheaves of
type (g) above these groups arejust the usual cohomology groups [43]. For the sheaf
associated to a bundle ξ we have that H°(Σ;ξ) is just the space of global
holomorphic sections, or in other words that

) = kerdξ . (2.10)

The other groups Hp(Σ;ξ) are more complicated.
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Given a short exact sequence of sheaves (2.6), there is associated a long exact
sequence of cohomology groups [43]:

(2.11)

Using that α and β in (2.6) commute with the coboundary operator <S, it is easy to
understand how one moves horizontally in the sequence (2.11). The step from
HP(Σ ;%)toHp + 1(Σ; δ) is more elaborate. Let σ be a^-cocyle in HP(Σ <$\ We can
represent σ by a cocycle in Cp({ Ua} &) for some covering of Σ. By exactness of (2.6)
at ^ , we can find somep-cocycle τ in Cp({Uά] ^) such that β(τ) = σ, where {U'a} is
some covering on Σ finer than {(/«}. Since (5(σ) = 0, and β commutes with <5, by
exactness of (2.6) at δ and J^ there exists a unique (/? + 1 )-cocycle μeCp + 1({U^};E)
such that α(μ) = (5(τ). The coboundary operator δ associates the class of μ to the
class of σ. It is well-defined and independent of the choices made [43].

As a first application of sheaves we note that the transition functions of a
holomorphic line bundle ξ are analytic functions on patch overlaps, i. e., a chain5 taβ

in CX{Σ\ Θ*). Moreover, the cocyle condition says that (δt)aβy = O. Also redefining
the local trivializations of ξ gives an equivalent set of transition functions
taβ = taβ '(δv)aβ, s o that isomorphism classes of bundles are given by the group

Pic ( Σ ) Ξ E / / 1 ( £ ; $ * ) . (2.12)

Pic Σ is called the Picard group. Multiplication of transition functions taβ Ίaβ gives
a new line bundle, the tensor product ξ (x) f, while inversion t~β

ι gives the dual
bundle ξ~\

We can learn more about Pic Σ by using the long exact sequence associated to
(2.7):

Since the first exp: C->C* is onto, the next map must be zero. Also H2(Σ; Θ) is
always zero, since by the Dolbeault theorem [41] it is isomorphic to H®'2(Σ) and
there are no (0,2)-forms: dz Adz = 0. Hence we get (dropping the normalization 2 πί)

Since H2(Σ;Z) = Z, we thus find that Pic(Z) is disconnected, with identity com-
ponent a Lie group we will call

J(Σ) = H\Σ;Θ)/H1(Σ;Z) .

Since Hγ(Σ\Θ) is a complex vector space, J(Σ) is a complex space called the
jacobian of Σ.

5 Here and in the sequel we are somewhat imprecise in our notation: We mean that we have
chosen a covering {C/J for Σ and used the transition functions to define a cochain in C1 ({C/J Θ*).
It turns out that different choices of covering lead to cohomologous taβ's in the limit of fine
coverings mentioned above
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The image deg ξ of a bundle in Z is called the degree of ξ. Clearly deg (ξx (x) ξ2)
= deg ξί +deg ξ2, and indeed the degree is just the first Chern class of the U(\)
bundle associated to ξ. For example Θ(P) has degree 1, as can easily be seen by
working through the steps below (2.11). But the corresponding U(l) bundle is the
monopole, which has Chern number 1 as well. As another example the degree of the
tangent bundle is the Euler number χ, or

degK=2(l-g) ,
an even integer.

We can now return to the study of spin bundles. Suppose that K is described by
gaβeH1{Σ\Θ:¥). We can construct a square root L of K by letting

haβ=±]/g7β on UΛnUp . (2.13)

Unfortunately, the cochain h so defined will not in general be closed since

(wi)*βy = (δh)aβy = hβyh~y

ι haβ = haβhβγhγa

can be + 1 on Ua n Uβ n Uy. Hence an arbitrary choice of square roots in (2.13) will
not generally define any bundle L.

Given a bad choice oΐhaβ eC1(Σ;Θ *), however, we can try to turn it into a good
one by letting

Kβ = hβ-faβ , where feCί(Σ;Z2) . (2.14)

This changes w2 to w2 = w2 (δf). Hence if w2 defines a trivial class in H2(Σ; Z2),
then we can find an appropriate/to shift it away and spin bundles will exist for K.
But if we regard deg K as a class in H2(Σ;Z), then working through the definitions
shows that

w2 = exp (iπ deg K) .

Since the degree of K is always even, w2 is always trivial. Hence we can always
arrange for h to be closed: spin bundles always exist on any Riemann surface.

Now suppose that h e H1 (Σ Θ *) describes a spin bundle L. Once again we can
try modifying it by/as in (2.14), where now/must be closed. This will give a distinct
new spin bundle whenever/is not exact in Hι{Σ\ Z2). Thus the differences of spin
bundles are given by H1 (Σ, Z2) = (Z2)

29 [37]. Unfortunately there is no canonical, or
preferred, spin structure on Σ, so we cannot directly parametrize all L by H1 (Σ, Z2).
Instead we will see that only after the introduction of a homology basis stf will there
emerge a special L^ we will then be able to describe other L relative to this one.

Since degK=2g —2, we find degL = g— 1 for any L. We will use the term
"twisted spin bundle" to refer to any ξ of degree g — 1, not necessarily satisfying

Before leaving sheaf theory we will describe without proof one more important
theorem. This is Serre duality, which says that for any bundle ξ we have

H1(Σ'fξ)^[H°(Σ;K®ξ-1)Γ1 . (2.15)

As usual the inverse refers to the dual vector space. Also a simple argument shows
that

(2.16)
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(Compare (2.10).) Again one uses the Dolbeault theorem to see that
= HOQΛ(Σ; ξ). Since all (0,l)-fbrms are enclosed, we have all ^-valued (0,l)-fbrms
modulo the <3-exact ones, which is just cokerδξ.

Taking ξ to be trivial, (2.15) says H1 (Σ Θ) ̂  [H°(Σ K)] ~1. The space H° (Σ K)
of holomorphic 1-forms is always ^-dimensional. One can see this by noting that if
ηeH°(Σ;K) then the real and imaginary parts oΐη are harmonic 1-forms, and so
can be expanded in the basis of 2g real harmonic 1-forms cc\ βj mentioned at the
beginning of this section. The space of complex linear combinations of α, β with no z
piece then has g dimensions. Holomorphic 1-forms are also called "abelian
differentials".

Thus the identity component of Pic(£) is J(Σ)^[H°(Σ;K)Γ1/H1(Σ;Z), a
torus oϊg complex dimensions. Hence it is compact, as promised. We have seen how
it parametrizes degree-zero bundles, or differences of degree-^ bundles for any d.

C. Divisors. In our discussion of sheaves we came across bundles we called Θ(P) and
Θ(—P). It will be useful to generalize these by introducing the notion of a divisor;
divisors give a second description of holomorphic line bundles.

A divisor is a formal linear combination of points of Σ with signed multi-

plicities: D = YjniPi. To such a D we associate the line bundle Θ(D)=®ίΘ(Pi)
n\

i

Θ(D) is perfectly regular at the points Ph but it comes equipped with a section
lφ(D)= ®i(lφ(pι))rtι which has zeros (respectively poles) at those Pt with «j>ϋ
(respectively Πi<0). We can add divisors in the obvious way, whereupon the map
I:D\-^Θ(D) becomes a homomorphism. Under /the degree of (9{D) equals £ nu as
we have noted.

Conversely, given any bundle ξ we can find a divisor as follows. Every ξ has
many meromorphic sections [44]. Choose any one section s and let div (s) = YjnίPi

~ΣmjQj > w r i e r e {Pΐ} are the zeros of s of order nt and { β j are poles of order nij.
This map inverts /, but it is ambiguous: letting s' =/• s changes div (s) by the divisor
of any meromorphic function fe Jί{Σ). Thus we define the group of divisor classes
as all divisors modulo the divisors of meromorphic functions, to get

/: {divisor classes}-• Pic (Σ) . (2.17)

To show that /is an isomorphism we further remark that a nontrivial bundle is never
represented by the zero divisor. If it were then the meromorphic section s with no
zeros or poles would trivialize ξ.

Note that while two divisors DφD' may give rise to isomorphic bundles, still the
canonical sections 1&{D), l&φ') are totally different: they vanish and blow up at
different places and so cannot correspond to each other under the isomorphism
Θ{D) = Θ(/)')• Conversely, a given bundle has no canonical meromorphic section;
only after a specific divisor has been chosen in its class is such a section available.

From now on we will not distinguish notationally between divisor classes and
bundles. That is, we will sometimes drop / (and 7) from formulas.

Since (2.17) is an isomorphism we can represent any bundle as any other one
times some Θ(D). We can use this fact to extend a simple result about the cotan-
gent i^to arbitrary bundles. Note that H°(Σ; Θ) = C, since the only analytic func-
tions are the constants, while dim H° (Σ K) = g as mentioned earlier. Hence
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dim H°(Σ;Θ) -dim H°(Σ; K) = degΘ + 1 -g, since deg0 = O. Now consider the
corresponding statement for arbitrary ξ:

dim H°(Σ; ξ) — dim H°(Σ;K®ξ ~1) = deg ξ + 1 — g . (2.18)

To derive (2.18) from the preceding version express ξ as ξ = K®Θ(D) for some D.
The difference between the two equations can be shown to hold by repeated
application of the long exact sequence associated to (2.8). Equation (2.18) together
with (2.15) gives the classical Riemann-Roch theorem.

In the remainder of this section we will make the isomorphism (2.17) explicit
with the help of a homology basis J / . That is, we will define a map 1^ from divisor
classes to a complex torus J^. While the constructions are not intrinsic, they are
helpful for making the connection to theta functions.

We can choose a basis of H°(Σ;K), or abelian differentials, by requiring that

i ω ΰ = δtj. (2.19)

It is then useful to define the "period matrix"

τ^ is useful because it characterizes the surface Σ. Indeed Torelli's theorem implies
that if two marked Riemann surfaces Σ and Σ' of the same genus have the same
period matrix then they are isomorphic as Riemann surfaces, although the converse
is certainly false ( τ ^ φ τ ^ in general for the same surface Σ with two markings).
Using (2.5), τ^ is easily seen to be symmetric with positive definite imaginary part
[39,6, 31]. Thus we can define

Y =(τ — τV)"1 (2.21)

Note that (Y^1 =\ ώι Λωj by (2.5), (2.19), and (2.20).
Σ

It is useful to know how things change when we change the marking sd. If
1 is a new basis as in (2.2), then the definitions give

(2.22)

and (2.23)

(2.24)

We will sometimes drop the subscript stf when it is clear which homology basis is
meant.

Given a marked surface Σ^ we can now build a complex g-torus:

Changing homology bases as in (2.2), then we get a map from J^-tJj which sends
zeZg to

. (2.25)
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We can now define a map 1^ from divisor classes of degree zero to J^, commuting
with the canonical identifications (2.25). Note that a divisor D of degree zero is the
boundary dc of some 1-cochain obtained by "connecting the dots". Let

& [ £ ] = f ωj, modΓ^ . (2.26)
c

Using (2.22), it is clear that (2.26) commutes with (2.25). Also, if we change σ to σ\
then σ — σ' is a cycle and so Ί^ [D] is unchanged modulo Γ^, by (2.19) and (2.20).

Finally 1^ defines a map 1^ on divisor classes. That is I^[D] = 0 if and only if
Z) = div/for some meromorphic function/. This is called Abel's theorem. Thus 1^
sets up an isomorphism between the abstract jacobian J(Σ) and its concrete version

D. Curvature and Holonomy. There is one final characterization of holomorphic line
bundles which we will use, involving holonomy. It is also time to begin introducing
metrics and hence geometry on our bundles.

Let ξ be a holomorphic line bundle with a smooth hermitian norm || ||. We can
describe sections of ζ relative to one local trivializing sections s as σ =/• s, where/is
some function. "Trivializing" means that in some open set s is analytic and
nonvanishing. With respect to the frame s we can now write down a covariant
derivative [45]:

Dσ = (df)s , Dσ = (δf+Θf)s ,
where

is the connection 1-form. The corresponding curvature is

R = dΘ = dδ\og\\s\\2 , (2.27)

and it is independent of the trivializing section s chosen. If s instead vanishes or has a
pole somewhere, then (2.27) must be modified to remove the resulting delta-
function singularities.

The Chern-Weil construction represents the Chern number in terms of the
integral of R. In fact we can again see that this number equals the degree since

$ R=-2πidegξ . (2.28)
Σ

To prove (2.28), let ξ = Θ(P), s = l&{P), and integrate over Σ minus a small
neighborhood U of P. Since R = d(dlog \\l&{P)\\2) away from P we get
— j> (<3zlog | | l^ ( F ) | |

2 ) dz. But 1Θ(P) is vanishing linearly near/?, so in any smooth
dU ,

metric this equals — § — = — 2πi. The reader may want to work out (2.28) explicitly

on the sphere with ξ = K to recover d e g ^ = —2.
We now consider a closed curve y S 1 - ^ . Given a vector veξ\y{0) we can

transport υ around γ while maintaining the relation:

<Dv,y} = 0 .
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Fig. 3. Deforming a cut on Σ

Then v(l) will again live in ξ\y{0), and we can let

v(l) = v(0)e2πiH{γiξ) (2.29)

define the holonomy of ξ, with its given metric, around y. Supposing that y lies
entirely in one trivializing patch, it is easy to show that

H{y,ξ)=-^ J y*Θ modZ . (2.30)
zπi Sι

Further manipulation shows that Q2πιlί is well-defined under change of trivialization
and H is real.

The holonomy changes in a simple way when we deform y into a nearby y'
(Fig. 3). Suppose δ is the region of Z1 lying between y and / , with orientation given
by (y, n), where n is the outward normal at y. Then R = άΘ and Stoke's theorem say
that

ff(f}{)-%{)=~fi (2.31)

In particular if R = 0, so that deg ξ = 0, then H depends only on the homology class
of y. It therefore defines a real cohomology class, modulo an integral class, which we
will call H(ξ)eHί(Σ;R)/H1(Σ;Z).

Actually every degree-zero bundle admits a flat metric, which is unique up to a
constant. To see this we choose an arbitrary norm with curvature R, § R = 0, and
modify the norm by a nonvanishing function exp (h). Then h should satisfy
ddh= —R, which can be solved since the right side is orthogonal to the constant
function. Thus H(ξ) depends only on ξ.

The flat holonomy H(ξ) vanishes if and only if ξ is trivial. For, if ξ is flat we can
let s be a holomorphic, covariantly constant section throughout the cut Riemann
surface Σc. lΐH(ξ) = 0 then s does not jump across the cuts and ξ is trivial, whereas if
ξ is trivial we can consider the flat metric as a real function satisfying ddh = 0, or
h = constant; then 0 = 0 and H=0. Furthermore every HeHι{Σ\Vi)IH1{Σ\Z)
actually arises as H(ξ) for some ξ: ξ is just the bundle with constant transition
functions exp (—2πi<//,0 f», exp (— 2πί(H,of» across the cuts.

We thus have three intrinsic ways of describing degree-zero holomorphic line
bundles: as patching data (i.e. J(Σ)), as divisor classes, and as real 1-forms defined
modulo integers. In addition we have a description in terms of a homology basis
(namely J^) and maps /, 7^, and H making all the viewpoints isomorphic. See
Fig. 4, where we have for convenience defined three more maps by requiring that
everything commute.
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{divisor classes}

/ z

J(Σ) —*

H'(Σ;(R)/H'(Σ;Z)
Fig. 4. Three ways to describe flat line bundles on a Riemann surface

Of the new maps in Fig. 4 it will be useful to know F^ explicitly. This takes
holonomy data and translates it into a point in C9 defined modulo Γ^:

where

To show that (2.32) is right one must find the holonomy of a flat bundle with a given
divisor Z), then show that I^[D] agrees with (2.32). This is done in Appendix A.

Note that after a change of marking φ is represented by ( „ I = (A ~ 1 ) ί ( I. Using the

symplectic property A*JA = J, one can show that (2.32) indeed commutes with the
identification J^ = Jj.

Before closing this section we note that the complex torus J(Σ) has a natural
hermitian norm. In terms of J^ this is

Bs,(z,z') = 2ίz-Y^ z' , (2.33)

where Y^ = (τ^ — τ ^ ) " 1 . One can verify using (2.25), (2.24) that the B^ define an
intrinsic norm B on J(Σ). Note that one has

(n) (2.34)

E. Theta Functions and Spinors. We will be brief in this subsection; see [39,6, 31].
The Riemann theta function is defined by

θ(z|τ)= X exp(iπn'τ n + 2πίn-z) (2.35)
ήeΊβ

and satisfies
. (2.36)

Thus if we insert a period matrix τ^ of some marked Riemann surface Σ^, θ(z|τ^)
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defines a section of a holomorphic bundle over the torus J^. This bundle is not
trivial since 9 sometimes vanishes but never blows up. The set Θ^^J^ where it
vanishes has complex codimension one and so is the natural generalization of the
notion of divisor to g dimensions.

The component Picg-1 of the Picard group consisting of bundles of degree g — 1
also has a divisor of special points, called simply Θ, the "theta divisor". These are
the twisted spin bundles ξ for which dξ has a zero mode, that is, the ones which admit
a global holomorphic section. For example, if Σ is the torus, then J(Σ) is itself a
complex torus of dimension one. Thus we expect Θ to consist of discrete points, and
indeed it is exactly one point: the trivial bundle is the only one of degree 0—1=0
admitting a single-valued holomorphic section.

The Riemann vanishing theorem can be used to characterize the zeros of θ. It
implies [39, 6, 31] that for any homology basis stf there is a preferred spin bundle L^
with the property that

Θ^ = {/fi/[Lirf(8)L"1], as L runs through Θ} . (2.37)

(As mentioned, sometimes we will write a bundle for the corresponding divisor
class.) That is, for fixed τ^ #(z|τ^) vanishes precisely on a set which is Θ shifted by
the preferred spin bundle L^.6

We can use (2.37) to parametrize all twisted spin bundles given a marking, as

L = L^(g)F^(ιjj), where ψ = ((x,β)\ I is a real cohomology class and F^ is as in
W

Fig. 4. When we change the marking, however, we must be careful to account for the
fact that L^^L^. Instead, if

(2.38)

(2.39)

then (see (2.3))

(2.40)

The inhomogeneous term δ added to (2.4) represents the change from L^ to L^. The
subscript d means the vector built from the diagonal elements of a matrix. The extra

/in the description of ψ is a traditional notation for bundles. From now on ( n ) will

refer to φ as in (2.39), while (n,m) still refers to (n,m)(

Equation (2.40) can be derived from (2.37) and the fact that 9(φ + τ^θ\τ^) is a
nonzero factor times &(φ + τ^θ\τ^) [46]. More specifically, one shows that [46]

l(0|τ j /) , (2.41)

6 If we choose a point Po on Σ then I^[L^ (x) G{{\ -g)P0)] is a point in J^ called the "vector of
Riemann constants"
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where ε is a phase and the "theta function with characteristics" is a convenient
modification of (2.35), defined as

ήeZ9

= Qxp[ίπθ-(τ θ + 2(z + φ))]9(z + φ + τθ\τ) . (2.42)

It transforms as

τ | τ ) = e x p [— inn τ •«— (z|τ) .
J

If 0, θ have half-integer entries, so that L in (2.38) is a spin bundle, then the phase ε in
(2.41) is always an eighth root of unity.

Equation (2.42) is also a useful modification of (2.35) in that its transformation
analogous to (2.36) is by a pure phase. Thus its absolute square is an ordinary
continuous real function on the torus J^. We will denote this function by

. ^ ( z ) = e-4"">-y ) ' |θ(z|τ)|2 , (2.43)

where y = Im z. Jί can be regarded as a metric on the bundle over J^ defined by 5, or
more precisely,

a fact we use in Appendix A.

F. Arakelov Metrics. If we are given a metric on the cotangent bundle K9 then we get
at once metrics on all powers of K, with the property that

For fractional λ this is independent of the spin structure chosen, since all spin
structures differ by flat bundles. In this section we will describe a particularly useful
metric first described by Arakelov [20] and used extensively by Faltings [19]. While
we will explicitly show that our results remain true for every metric, the use of the
Arakelov metric in the intermediate stages will simplify our formulas somewhat in
Sect. 5.

Given an arbitrary metric || ||2 on ^ w e can define metrics on the bundles Θ(P)
as follows. Define the (l,l)-form

Rκ , (2.44)μ =
μ 4π/(l -g)

so that J μ = 1. Define next an electrostatic Green function log G on Σ by

δ (2.45)

where δQ is the delta function: jf'δQ=f(Q). δQ(P) is a (l,l)-form at P. The μ is
needed in (2.45) so that the right side integrates to zero. Then G equals \zP —zQ\ times
a smooth function as P^Q, and also G(P,Q) = G(Q,P) [20]. We will fix the
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normalization of G by requiring

μOgG(P,Q)-μ(P)=0 . (2.46)

We will need to know how G changes when we rescale the original metric on K.
Suppose

gzz'=e2σgzz~ . (2.47)

Then μ = μ+[2πi(l —g)]~1ddσ and we still have J μ = l . Working through the

definitions one finds that (2.45) implies G(P,Q) is exp — z<r(P) times a
I V " / I

function of Q only. Requiring symmetry and the normalization condition (2.46), we
get

(2.48)

where the "Liouville action" is

SL = $ (dσΛδσ + σR) , (2.49)

and 7? is the original curvature.
Next, using G we can put a norm on any Θ(P) bundle. We declare that for the

unit section,

| |W) | | (β) = G ( Λ β ) (2.50)

While the right-hand side vanishes at P, so does the section 1&{P), so the norm
defined by (2.50) is nonsingular. We can generalize (2.50) to an arbitrary bundle
Θ(D) by taking Θ(p + q)^Θ{p)®Θ(q) to be an isometry.

We can now define another norm on the cotangent K. Near any point Q, declare
that the distance d'(P,Q) between Q and a nearby point P should approach G(P,Q)
as P^>Q, or in other words that

It is easy to show that (2.51) defines a norm at P which is independent of the choice
of coordinate z. Indeed (2.51) just states that the residue map

[K®(9(P)]\P^C (2.52)

(see (2.9)) should be an isometry in the new norm on K. The new norm || ||' is
perfectly smooth on Σ. However, it will not in general be simply related to the metric
|| H we started with.

Arakelov's norm is defined to be the one for which the above procedure
reproduces the original metric on K. That is, if we take μ to be related to the
Arakelov curvature by (2.44), then we get metrics on the Θ(D) bundles such that
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(2.51) gives || || = || ||'. The Arakelov metric is unique, and its curvature is [20]

g

The corresponding curvature on the tensors of spin λ is

Rκι = 4πί(ί -g)λμAiak .

More generally, any bundle with metric curvature proportional to μArak is said to
have an "admissible metric". Since we will be using (2.51) repeatedly, the choice of
admissible metrics will simplify many formulas. Specifically, (2.51) expresses the
metric on K in terms of the regulated coincident Green function of the bosonic
theory.

We emphasize again that the choice of admissible metrics is for convenience
only, and that bosonization works in any metric.

3. The Bosonic Action

In this section we will arrive at an action functional for a scalar theory which is to
reproduce a general first-order fermionic system. We will begin by reviewing the
situation on the sphere. Next we proceed to higher genus, first in spin-1/2 and then
for general spin. Throughout, we will consider only free fermions, that is, fermions
interacting with background gauge and gravitational fields but without self-
interactions such as mass or quartic terms. This is the case of interest for the NSR
superstring in flat spacetime.

We begin by reviewing existing results to fix notation. The prototypical
fermionic system one might wish to bosonize has action

In euclidean path integrals ψ and ψ are independent, and it has become traditional
to rename the fields, with φ1\-^c ψ2*-*b ψi*-+b and \J/2^c. Using complex
notation and rescaling fields we then have

^ (3.1)

where b and c are sections of a spin bundle L, and Z^and c are sections of L. More
generally we can let c be a section of any holomorphic bundle ξ, and b a section of
K®ξ - 1 . In any case the integrand is a (l,l)-form and so can be integrated over Σ
without the use of any metric. That is, (3.1) is classically conformally invariant. It is
also invariant under the global chiral transformation b\-^Qiab, cι—>e~ίαc.

Similarly the prototypical scalar action for a single real field φ has the form

Sχ=$ 2πVφ-Vφd(voϊ) = $ ΛπidφΛδφ . (3.2)
Σ Σ

The unusual normalization is for later convenience. The second form makes it clear
that Sx is also classifically conformally invariant. It also has an invariance under
shifts φh-xp + constant.
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The operator analysis of bosonization on Id Minkowski spaces teaches us two
important physical lessons. (See for example [1,47,48,49,25,26].) First of all, the
correspondence should be between the fermionic bilinears and exponentials of φ,
properly normal-ordered. Secondly, the bosonic field φ is properly to be regarded as
a periodic, or circle-valued, field. This fact is compatible with the first if the
normalization of φ is chosen such that its ambiguity does not affect its exponential.
We can see the periodicity of φ either in the periodic sine-Gordon potential of [1 ] or
in the case where spacetίme is the Minkowski cylinder [48]. In either case the crucial
physical basis of bosonization is that fermions in (3.1) correspond to solitons, or
states where φ is multiple-valued, in (3.2). In particular, when spacetime has
noncontractible loops the partition function of the bosonic system gets important
contributions from soliton sectors.

Since we will use a covariant path integral and analyze surfaces with many
noncontractible loops, we will sometimes use the term "instanton" to describe any
field configuration φ with nontrivial winding numbers in some direction. Clearly we
have one independent winding number for every element of a homology basis
(Fig. 1). Since these winding numbers are unaffected by a shift of φ by a constant,
they amount to specifying the cohomology class of the real 1-form άφ.

A. The Sphere. On the sphere, the second observation above is immaterial, since
there are no noncontractible loops on Σ and hence no solitons. To make the first
observation concrete in our present notation we will assume that we have

bbozeqφ , ccace~qφ , (3.3)

and find q, starting with the case of spin-1/2. First note that (3.2) gives a two-point
function with singularity

(φ(z)φ(w)) —-^\og\z-w\2 .

loπ

In proving this we have used the fact that

dPdP\og\zP-zQ\2 = 2πiδQ(P) , (3.4)
where again δQ(P), the delta function, is a (l,l)-form at P. Equation (3.4) is easily
shown by integrating on a small disk and using Stokes' theorem.

The classical stress tensor of (3.2) is

T= -%π2dφdφ , (3.5)

a (2,0)-tensor. Its quantum version looks the same but with normal ordering to
remove self-contractions. Γis defined so that in operator products [3]

T(z)\j/(w)~— ry i/̂  + less singular terms ,

where h is the spin oϊψ. One can check the normalization of (3.5) by showing that dφ
has spin one. Then

q2

l - J 16π2
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Thus choosing q = 4πi gives b, c of spin one half.
It is now simple to show the equivalence of (3.1) and (3.2), still in spin 1/2. First,

the zero-point functions agree up to an overall multiplicative constant:

Zb [g] = const. Zf[g] . (3.6)

Each side of (3.6) is a functional of a metric chosen on Σ to regularize the theories.
Equation (3.6) holds because both bosons and nonchiral fermions are free of
gravitational anomalies, and both sides have the same anomalous variation under
Weyl transformations (see Sect. 5. A). Since on the sphere every metric g is related to
any reference g0 by coordinate and Weyl transformations [16], we see that (3.6)
really does hold up to a constant. As for the higher correlation functions, they
follow from the fact that

(e4πiφ{z)e-4πiφ(w))=Qxp [16π2<φ(z)φ(w))] *
Iz-tvl2

~<bb(z)cc(w)) . (3.7)

Next we relax the condition of spin λ = j , to fields b of spin λ and c of spin 1 —λ.
Clearly (3.6) cannot hold as it stands, since we have not told Zb about λ. Some
modification of (3.2) is needed in order to specify what spin we wish to bosonize.
The correct choice is S = Sι+S2, where

S2 = (l-2λ)lRκφ . (3.8)

The easiest way to check the normalization of (3.8) is to note that for λ > 1, say, Zf is
actually zero due to the presence of zero modes of b and c. Using (2.18) with ^ = 0we
see that b has 1 —2/1 more zero modes than c. Hence we get nonzero answers only if
we consider correlation functions with \—2λ more insertions of b than of c. To
reproduce this behavior in the bosonic system note that the functional integral using
(3.8) also vanishes for the zero point function: integrating over the constant mode

2π

φ0 of φ gives j exp [(1 —2λ)φ0JRκ], which vanishes by (2.28). To get a nonzero
o _

answer we must insert b and b fields, to get

j [άφ]e-(Sί+S2) Π e 4 π ι > ( Λ ) , (3.9)
ϊ = l

which with (3.8) is indeed zero unless k = \—2λ.
Equation (3.8) modifies the stress tensor by adding — 2πi(2λ — l)d2φ to it [3].

Computing the operator product one again finds q = 4πi in (3.3). With the modified
action (3.6) continues to hold on the sphere for any spin, since (as we will check
later) with S2 both sides again have the same Weyl transformation and this again
suffices on the sphere.

B. The Torus. When we move up in complexity from the sphere to the torus we at
once encounter two novel features. First, it is no longer true that every metric is
related to every other by coordinate and Weyl symmetries: a residual "moduli
space" of inequivalent metrics remains [16]. Secondly, in any given degree there is
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now a wide variety of inequivalent bundles over Σ in which b and c could take
values. Thus we not only need to tell the bosons what spin they are to mimic; we
must also tell them about a point in the jacobian J(Σ) describing the twists of b, c.
Fortunately on the torus we still have a canonical formalism, which we can use to
address the problem.

On the torus every spin bundle has degree 2λ(g —1) = 0, so we can take a flat
metric, Rκ = 0. Then S2 = 0. A spin bundle L i s a flat bundle whose square is trivial
we can parametrize the four possible choices by measuring the difference between L
and one particular spin bundle, the trivial one. If we take the torus defined by the
unit square in C, we then have

b(l) = e2πiθb(0) , b(i) = e~2πiφb(0) . (3.10)

Here 0, φ give the holonomy of the flat bundle L as in (2.29) and (2.39). In this
introductory section we will restrict to untwisted spin bundles, i. e. θ, φ = 0 or j . The
field c then lives in the bundle K®L~ι^L. Also we will not consider θ = φ = O since
with this choice Zf = 0 due to the zero mode; that is, we consider only the three
"even" spin structures.

Certainly (3.6) cannot hold as it stands on the torus, since again one side depends
on θ, φ while the other does not. Instead one expects that the bosonic theory with
action 5Ί should give the sum over all spin structures of the corresponding fermionic
theories. Detailed calculation affirms this expectation [6] (see also Sect. 4C). To
bosonize just one spin structure one must add to SΊ a new term S3 depending on θ, φ.
We will find S3 by canonically quantizing and applying the physical lesson that
fermions correspond to solitons of the field φ.

Since moduli will not play an important role in this subsection we will again take
the torus to be the unit square in C, with identifications and (3.10). We will quantize
with euclidean time running up the imaginary axis. Then the partition functions
Zf(θ, φ) are traces over the Ramond and Neveu-Schwarz Hubert spaces, for θ = 0, j
respectively, φ on the other hand denotes the boundary conditions in time. We then
have

Here Fis the fermion number operator. Hence Zf(j, j) ± Zf(j, 0) is a trace over the
even (respectively odd) fermion-number space. It must therefore in the bosonic
language receive contributions only from states of even (respectively odd) soliton
number.

Recall that the soliton number of a field configuration φ is 2n, where the
cohomology class of άφ is rκx + mβ, so that a functional integral over φ includes a
sum over all soliton sectors. Thus our modification to the action S3 must have the
effect of weighting the various winding sectors in such a way as to cancel the odd-
soliton contributions to Zb(j,0) + Zb(j,j), and so on. A possible set of weighting
factors is shown in Fig. 5. In the left column we have shown the spin structures for
the fermionic system. On the right the boxes represent the contributions to the
bosonic path integral from the winding sectors with (n, m) = (j even, j even),
(j even, j odd), and so on. Each box on the right thus represents a sum t
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Fig. 5. Weighting the soliton sectors

i = 1,.. .4 over an infinite subclass of field configurations. The effects of S3 are in the
4

phases σ o : we have Zb(j,0)= ]Γ σ3 ι Z £ a r i a , etc.

The conditions that Zb(j, 0) + Zb(jΛ) have no odd (respectively even) soliton
contribution now imply that in these combinations Z^ a r i a and Z^lia must cancel
/ *• 1 rz partial 1 r-^partiak

(respectively Zv

hx and Z £ 2 ), i.e.

We can get further conditions by letting the torus degenerate with very long
time. Then only the ground state contributes to the fermionic partition function.
With zeta function regularization the split ground state of the Ramond sector has
nonzero energy, so that Zf(0, </>)-»0. Take φ = j . On the bosonic side, only the zero-
soliton sectors contribute, but they do so independently of the time winding 2m, in
the limit. Thus the two contributing partial sums Z£ a r t i a and Z£a

2

Γtia must cancel
from Zb(0,j), so that σ2γ — — o22.

We must also impose the condition of modular invariance on the σ^ . Requiring
for example that our prescription be unchanged when we exchange the roles of space
and time gives relations like σ2i = σ3 1, σ22 = σ3 3, etc. Requiring that the torus with
corners 0, 1, i + 2, i + 1 give the same answers as the unit square gives σ3 1 = σ4 1, σ3 3

= σ44, etc. These conditions fix σ o , / + 1 up to an overall constant, which we take to
be unity:7

~!' ι.ZJ. (3 ] 1 )
+ 1, i=K/

7 We can use the same reasoning to fix the σ1}. However, to fix the relative sign of σι} relative to the
others we must interpolate between the spin structures, as we do in the sequel
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We can restate (3.11) in a way which makes its modular invariance obvious.
Note again that the four spin structures split into one Odd" one (the trivial bundle)
and three "even" ones. The names indicate that the number of zero modes of dL is
odd ( = 1) or even ( = 0) in the respective cases [40]. Here dL is the Cauchy-Riemann
operator coupled to the holomorphic bundle L [16]. Note also that the 1-form
\j/ = dφ corresponds to a flat bundle F(φ) as in Fig. 4. The prescription (3.11) simply
says that we must add to S1 the topological term

S3 = ίπσ(L®F(φ)) , (3.12)

where σ(L') is 0 or 1, depending on whether V is even or odd. Note that L ®F(φ)
really is a spin bundle, since φ is a half-integral class. Also note that the preferred
spin bundle L^ for a marking si is always even [39].

The proof that Sγ + S3 is the correct bosonic action, as well as the generalization
to arbitrary twists θ, φ, will come after we generalize everything to genus g ^ 1. We
emphasize, however that (3.2) and (3.12) are by now a very plausible prescription on
the torus, and that in higher genus essentially no new physics will be needed.

C. Higher Genus. When Σ has more than one handle we can no longer take a flat
metric, so we can no longer ignore S2 (3.8). Also, the trivial bundle no longer serves
as a reference spin bundle, since now g — 1 +0. These two issues will give rise to
interlocking subtleties which conspire to make the full action modular-invariant.

The full action should be invariant under constant shifts of φ once we include in
it terms for field insertions, as on the sphere (Eq. (3.9)). We will write these terms as

μ=-4π/Γf
U = i

ψ(Pi)-t ψ{Qi)\ • (3.13)

Extending the argument of Sect. 3A to any genus, counting fermionic zero modes
shows that the numbers of insertions must satisfy

l) . (3.14)

When (3.14) is satisfied, then the full action should depend only in the closed 1-form

φ = dφ
and not on φ itself.

The only action term besides 5 4 which is not shift-invariant is S2. Thus we are
again tempted to take S2 to be as in (3.8), since again (2.18) gives shift-invariance
when (3.14) holds. On a complicated surface like Fig. 1, however, (3.8) is
problematic. Given φ we can recover φ as a function on the cut surface Σc by
defining p

φ{P) = \φ (3.15)
P

for any point PeΣ. Shift invariance says that it is immaterial which P we choose.
However, if we deform slightly the curves used to cut Σ into Σc, we run into
problems. Since φ in general jumps as we cross the cuts, we get an ambiguity in S2

proportional to the integral of R over the shaded region of Fig. 6. Thus the action
depends not only on the choice of a homology basis, but also on a choice of specific
curves representing that basis.
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Fig. 6. Ambiguity of 5*2 as we change the cut at on Σ

We can repair the dependence in the curves by recalling (2.31). We need only to
find an appropriate bundle ξ and to add its holonomy around each cut, times the
corresponding winding number of φ, to S2. Specifically consider

S 2 - ( l - 2 A ) J ϋ x φ + 2πi[w i /f(α i ;ξ)- i i ^(6 i ;O] • (3.16)

As always Rκ is the curvature of the cotangent K and we have expanded the real
1-form ψ = dφa.sψ = n a + m β. Then S2 will be invariant when we displace the cuts
if ξ has spin 1 —2/1. A natural choice for ξ exists, namely ££c ® SPb~

ι, where <£h is the
line bundle where b takes its values and ^?

c = K®^b~1

Unfortunately (3.16) is not well-defined, even modulo 2πί. The holonomy is
defined mod 1, but n\ mι are half-intergers. Thus we would prefer to replace the
holonomy of ξ by twice the holonomy of some other bundle ξ' of spin 1/2 —A. Since
there is now no natural choice for ξ', we will let

se=seh-
γ®u , (3.17)

where Lo is any even spin structure. Having introduced Lo we will later have to show
that the full action is independent of this choice.

Our candidate for S2 is thus

(^{"^Ά (3.18)

Equation (3.18) is invariant when we move the cuts in their homology classes,
leaving fixed their common point, Po. If we move Po itself, we can get a new system
of cuts by choosing any curve γ from Po to Po and attaching it to each end of the
existing cuts. Since the new Σc differs from the old by a set of measure zero, the first
term of S2 is unchanged since each of the new curves traces and retraces γ, the other
terms of (3.18) are also unchanged (see Eq. (2.30)). Also (3.18) combined with (3.13)
is still shift-invariant, i. e., a functional only ofφ = dφ, since clearly this is separately
true of the new terms of (3.18).

The only possible nonintrinsίc information used in (3.18) is therefore the choice
of Lo. We will return shortly to this dependence. First, however, we want to point
out another important property of (3.18).
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Often in instanton physics it is useful to divide the quantum field into a
topologically nontrivial piece satisfying the equations of motion, plus a fluctuation
piece which is topologically trivial. By requiring that the former piece stationarize
the action we remove cross terms in the total action; for a quadratic system this
splits Si cleanly into two terms:

φ = Ψnm + Φ

SΛφ^SΛψnnΛ+SΛΦ] , ( 3 * 1 9 )

where dδφnm = 0 and φ is single-valued. For our case everything is especially simple,
since (3.19) is the Hodge decomposition, and so the harmonic φnm has no continuous
collective coordinates. Indeed we have simply

Of course the linear term S2 also splits similarly to (3.19).
In the remainder of this section we will focus on S[φnm], leaving S[φ] for later.
We can now evaluate S2[φnm] using any convenient metric. Let D = YuίiTi be

any divisor representing ϊ£ and σ = \Θ{D) the corresponding unit section. Then away
from the poles and zeros of σ the curvature of 5£ is (2.27). Let At be small
neighborhoods of the points Tt and Σ^ = Σc — [j At. Then integrating S2 by parts,
one has for small Ai9

 ι

S2=~2YJ § φ n m a i o g | | σ | | 2 - 2 J dφn m Λ dlog | |σ| |2 .
i dAt Σ

The boundary terms from the cuts of Σc have cancelled the explicit holonomy terms
of (3.18). Integrating the second term again by parts gives zero, since φnm is
harmonic, dφnm is single-valued, and the boundary terms near Tt go to zero. Near a
zero of σ we have d log | |σ | | 2 ^z~ 1 dz, and so adding (3.13) we get

S2+S4= - χ ^
Li

Φnm + Σ ί Ψn,n-Σ J Ψ«m\ (3 20)
i ί J

The common starting point of these integrals does not matter since we have (3.14).
Nor do the paths matter: changing a contour by a homologically trivial circuit gives
zero since φ is closed, while changing it by a generator of H1 (Σ) only changes S2 + S4

by a multiple of 2πί. S2 + S^ is also manifestly independent of any choice of
homology basis. It does however still depend on the chosen even spin bundle Lo via
the divisor class of D. It also potentially depends on the divisor D itself, not just on
its class.

To show that S2 + S4 depends only on the class of D, i.e., on the bundle if, we
will cast it in terms of the Jacobi map IA and use Abel's theorem. Note that any

harmonic φ = (n, m) ( I can be expressed in terms of the abelian differentials ώ^ as

(3.21)
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(see (2.21)). To verify (3.21), integrate both sides around au b[. Inserting into (3.20)
and using (2.26) we get

{ ]+c.c.} , (3.22)

where

is the divisor built from the field insertion points. Thus S2 + S4 depends only on the
divisor class of D + D ms. It is now straightforward to show that

S2 + S4 = 4πi(n-φ + m Θ) , (3.24)

where I^[D + Dim]= —(φ + τ^ 0). One can derive (3.24) directly or using (2.33),
(2.34).

We still have not generalized the term S3 needed on the torus to distinguish the
various spin structures. However, the parity σ{L) of a spin bundle makes invariant
sense in any genus. Thus we can generalize (3.12) to

S3 = iπσ(L0®F(ψ)) . (3.25)

Equation (3.25) is really the only sensible generalization of (3.12). We can't, for
example, use if in place of Lo, since σ(L) is only defined for untwisted spin-1/2
bundles [39]. For the case considered in Sect. 3B, however, ϊ£h is a bundle of this
type. Then we can recover (3.12) from (3.25), (3.22) by taking g = 1, λ = 1/2, D m s = 0,
and choosing L0 = J£b so that (3.22) is zero. (ifb was called L in (3.12).)

We have now completely defined the bosonic action Sb = SΊ + S2 + S3 + S4.. One
can readily show that this prescription is equivalent to the one given in [5].

D. Consistency and Uniqueness. We have arrived at a modular-invariant action in
any genus which reduces to the kinetic term plus (3.8) on the sphere or (3.12) on the
torus. The only potential problem with Sb = Sί+S2 + $3 + S4 as a classical action is
its dependence on an arbitrary even spin bundle Lo. To see that this dependence is
trivial, we express Lo as L0 = L^ ®F(ψ), where L^ is the preferred spin bundle for

some homology basis ,90. In this basis we expand φ = άφ as ψ = (n,m)l I and

ψ = (ή,m)l . Then the parity equals [39]

σ(L0 ®F(ψ)) = σ(L^ ®F(ψ + ψ)) = 4(n + ή) -{rn + rn) (mod 2)

) (mod 2) ,

since Lo is itself even. At the same time, however, (3.24) changes. Using (2.32) the

change in I n ) describing if is —/( A ), so that the change in S2 + S3 equals

n) = 0 (mod 2πϊ) .

Thus the action Sb is completely intrinsic.
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How unique is the bosonic action? Any modification to Sb must have only
topological terms, since Sb is locally correct. It must also be intrinsically defined,
i.e., modular invariant. Also, to preserve clustering any new global terms in S must
factor ize as a complicated Riemann surface pinches off into many tori. One can see
from (3.24), (3.26) that our candidate action already has this property. If we weight
each winding sector by an additional phase E(ή, m), the requirement of factori-
zation says that

E(ή,m)=fί (3.27)

for some universal function ε. The analysis needed to fix ε has been done in [50] we
will now summarize the relevant case.

We can constrain ε (n, m) by requiring E to be invariant under the modular
transformation given by

Λ =

1

0

1

0

1

1

0

0

1

0

0

0

1 - 1 0 1

Using (3.27) in genus 2 this says that

ε(«! +m1 — m2,m1)ε(n2 —mί

Without loss of generality we can let ε(0,0) = 1. Also, one-loop modular invariance
requires

ad—bc =

τ a k i n g C ! ) a n d G i ) w e f i n d

so
(3.28)

(3.29)

Taking n1=m1=n2=0 in (3.28) gives ε ( — m 2 , 0 ) = l. Thus

ε(n,n) = ε(n,0) = ε(0,ri) = ε(090) = l .

Taking n1=n2~0 in (3.28) gives

ε(n,rn) = ε(—m, —n)'1 .

Setting n2 = 0,

ε(n + n',m) = ε(n,m)ε(nf,m) ,

and similarly ε(n,rn + rn'). Thus ε(n,m) = ε(l,l)nm. But by (3.29), ε(l,l)" 2 = l for
every n. Thus ε(l,l) = l, and the action is unique.
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4. Bosonization Formulae

A. Recap. The bosonization of the first-order fermionic system thus proceeds as
follows. If b, c are fields of spin λ,l —λ with action

Sf=T- ί Φdc + bdc) , (3.1)'
ATI £

then we introduce a Bose theory with field φ well-defined up to half-integers and
action8

S1=4πi J dφAdφ , (3.2)'
Σ

(3.18)'

(3.25)'
Here if is the line bundle

ifb is the bundle of degree 2λ(g — ί) where b takes values, and Lo is any even spin
bundle. R& and H( i f ) are the curvature and holonomy of ^έ\ and n^ rrii are the
winding numbers of the field configuration φ about the cycles ai7 bι. F(άφ) is the flat
line bundle with holonomy given by the one-form dφ, and σ(L) is the parity of a spin
bundle L. Sb is well-defined modulo 2πί once we include appropriate insertions of
fields.

The bosonization results we seek to establish say that these two systems have the
same correlation functions up to an overall multiplicative constant under the
correspondence

b(P)b(P)oce4πίφiP) , c(Q)c(Q)oce-*πiφiQ) . (3.3)'

We need p insertions of the first kind and q of the second kind, where

p-q = (2λ-ί)(g-\) . (3.14)'

Sometimes we consider the insertions as a term S 4 in the action (Eq. (3.13)).
Equation (3.3) is not yet completely specified. Here we have some latitude, since

neither have we yet specified the normal-ordering prescription to be used in
evaluating bosonic correlators. The simplest prescription to use is a coordinate-
invariant one, in which all coincident Green functions are replaced by

Gr0P,P)Ξ=lim [G(P9Q)ld(P,Q)] • (4-1)
Q-+P

d(P, Q) is the metric distance between two points of Σ. G(P, Q) is the Green
function defined using the given metric in (2.44)-(2.46).

8 O. Alvarez has told us that the terms S2 and S3 can also be understood in terms of corrections to
the heat kernel on the cut Riemann surface
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One reason why (4.1) is so nice is that for the Arakelov metric we have

\ogGr(P,P) = 0 . (4.2)

Equation (4.2) follows since the Arakelov metric || || Arak is by definition the one for
which the metric || || ' defined by (2.51) again reproduces || || Arak However we will
see that (4.1) is the correct prescription for any metric.

With (4.1) all bosonic correlations will be coordinate scalars. Since bb is not a
scalar but a (λ, Λ,)-form, the precise statement of (3.3) is that e4 π i < p ( P ) should
correspond to 9

\\b(P)\\2 = [gzz(P)]λb(P)b(P) , \\c(Q)\\2^[gzz(Q)]1-λc(Q)c(Q) , (4.3)

or

(4.4)

In the succeeding subsections we write out both sides of (4.4) in some detail to get a
set of identities expressing the mathematical content of bosonization.

Note that (4.4) is a nonchiral amplitude. Once we have proven it we can modify
(4.1) to eliminate the metric factors in (4.4), then take the holomorphic square root
in the variables Pu Qt on both sides of the formula. In a sense this gives a bosonic
formula for the chiral amplitude on the left-hand side. This is not however the same
thing as presenting a bosonic theory which, without any modifications, reproduces
chiral amplitudes. We do not know how to write a bosonic path integral whose
correlation functions have the appropriate geometrical meaning to do this.

B. Fermion Correlations. We begin with the left side of (4.4). If there are no
insertions (this can happen only if the spin λ = j), then the rules of functional
Grassmann integration say that the zero-point function is just the functional
determinant of d%d&. We will always use zeta function regulation for determinants,
as it fits in best with the methods of Sect. 5. If there are only insertions oΐb then the
/7-point function is the antisymmetrized product of the p zero modes of d&. For
example, if the spin λ and the genus g are both greater than 1, then the degree of Z£c is
negative and so d#c has no zero modes. Then we can have q — 0 insertions of c and so,
by (2.18), p = (2λ — \)(g — \) insertions of b:

<6(Λ)MΛ) ..b(Pp)b(Pp)}f = άQtfi

άQi{uuUj)

Here uγ,. . . , up are the/? zero modes ofδ^b and ( , •) is the inner product on sections
of if b. π runs over permutations, and so the factor inside the absolute square lives in
max / p \

Λ ( ® S£b\p I. We will denote this factor by det Ui(Pj). Using the given norm on Z£b

V = i 7
we can now write the left side of (4.4) as

[ We will later comment on alternatives to (4.1)
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If λ = 1 then d^c still has no zero modes unless <£h is untwisted, i. e. £gh = K. In this
case 5£c is trivial and so has the constant zero mode vo = l. Its norm is (1,1) = AΣ, the
area of Σ in the given metric, while the factor | |y o (β) | | 2 = l. We thus get

φ(Λ)||2 • \\b(PΆnc(Q)\\2h = J*γyίAΣ - Hdet^C^P . (4.6)

Here we have used the fact that for spin one the ut are the abelian differentials
ω1' and (ω\ ωj) = i Jώ* Λ ωj = i j ώι j ωj ~(a<-^b) = i(τij-τij) = ί(Y~1)ij. Also

_ _ _ _ au bu

det' dldκ = det' 3 f 3, since the nonzero eigenvalues of these operators are the same.
For λ< j we interchange the roles of b and c.
Finally we can consider the case when more than the minimal number of inserted

fields is present. For this we need the fermionic Green function, which is in general
more complicated than the spin-1/2 version (see (3.7), [51]) due to the presence of
zero modes. Suppose again that d#c has no zero modes, i. e. H° (Σ J2?c) = 0. Let Pι be
the projector to the space orthogonal to the zero modes of d#b. We can
unambiguously invert d^b restricted to this space; call the inverse c§. Thus

» o ^ b = P 1 , 3* b o# = l . (4.7)

Mathematically ^ is a "parametrix" oΐd#>b, an inverse up to a finite-rank term. Its
existence is guaranteed by Hodge theory [41]. We can represent ^ by an integral
kernel ^ ( P , β ) . For fixed β, ^ ( , Q) is a section oΐ<£h®Θ(Q) ® ^C\Q Its residue at
Q = P is therefore a pure number by (2.52), namely 1/2 πi.

<§ is the basic be contraction. With it we get

det'

det (ui,Uj)
det j

\ Ul(pp)... up-q{pp) nPp, Qi) . nPp, QQ)

(4.8)

The large matrix is square, and its determinant is a vector in

ΐ = l

In essence what has happened is that we have manufactured q additional zero modes
of d#b. These extra modes ^ ( , β t ) have poles, but this is permitted since unlike
(4.5), the left side of (4.8) is supposed to have poles.

Similarly one can generalize (4.6) to the analog of (4.8) when λ = 1. For this one
must replace the unit operator in (4.7) by the projector P 2 to the complement of the
zero mode space of 5J. One also divides the right-hand side of (4.8) by the area of the
Riemann surface and replaces the large determinant by the expression in Eq. (5.5)
below.

C. Instanton Sums. We mentioned earlier that the bosonic amplitude splits into the
product of a topological part times a fluctuation part when we split φ as in (3.19). In
this subsection we work out the former piece.
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Recall that in Sect. 3B we argued that an extra topological term in the action was
necessary to bosonize a single spin structure. Since the fermionic amplitudes for the
different spin structures differ by theta-function factors (e.g. [6, 52]), we want the
topological part of the bosonic amplitude to be the absolute square of a theta
function for one single characteristic, not the sum over spin structures obtained
when the topological terms are omitted from the action [6]. The key result of this
subsection is that indeed this is what happens.

It will be convenient for explicit computations to choose a homology basis J / .
We have seen that the action is independent of the choice of stf. Since stf will not
change, we will sometimes drop it from the notation.

First we substitute (3.21) into (3.2):

Next we will make a specific choice for the arbitrary even spin bundle in (3.17),
namely L0 = L^, the preferred spin bundle for the homology basis j / . We have
already worked out S2 + S4 for harmonic φnm (Eq. (3.22)):

where (Eq. (3.17))
D^] . (4.9)

Again Dms is the divisor of insertion points (3.23) and we have written a bundle
instead of its divisor class. Parenthetically we note that the topological part of the
action can be simply expressed in terms of the natural hermitian form B in (2.33): for
harmonic φ we have

S1+S2 + S4 = 2π[B(F(dφ), F(dφ)) + B(F(dφ),z)-B(z,F(dφ))] .

We will not make explicit use of this form of the action.
Taking Lo to be L^ has the advantage of making S3 very simple. By (3.26)

S3 = 4πίn m .

Note that e~Ss depends only on the values of n and m modulo 1.
We wish to compute

^ i n s t — 2-/ '
dφnmeHHΣ iZ)

and in particular to show that it is the absolute square of a theta function.10 We
know however that S is defined by a sum over integer, not half-integer, vectors.
Accordingly we will define the 22g partial sums

= Y e ^ (4.10)
k,leZ9

1 0 The derivation below extends easily from the case of a single fermion (the lattice of integers) to
many fermions (an arbitrary self-dual lattice)
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where every entry of v, μ equals 0 or j . We omitted e~Ss from (4.10) because as
noted it is a function only of v, μ. Thus

Zinst = Σ ^ 4 π ί V '^v,μ (4.H)

Z 2 denotes the group with two elements: (jZ)/Z.
In the remainder of this subsection we will prove the following formula for Z v / I :

Ί ( _ z | τ ) 9 Γ
J L

(z|τ) ,

(4.12)

where z = x + iy defines y. It is not hard to generalize (4.12) to a form useful for
nonabelian bosonization and toroidal compactification.

Before proving (4.12), let us pause to see why it is just what we want. Substituting
in (4.11), we get

Z i n s t = (prefactor) £ e^'» +

v,μ,a,β

We have changed variables from ε, ζ to α = v + ε, β= — μ + ζ. Then

Z i n s t = (prefactor) X S5-e*πi*'β £ β 4 π i α ^ •£ e " 4 π ί ^ v

α,/3 μ v

as desired. In terms of JΓ in (2.43), this is11

Using (2.41) and (2.24) we see that Z-msi is independent of the chosen marking, as we
have already noted on general grounds.

We can also recover from (4.12) the answer one gets by omitting the topological
terms from the action. Setting z = 0 and dropping the weighting factor from (4.11),
one indeed finds that Zmsi is then proportional to the sum of the squares of all the
even theta functions [6].

The general strategy for proving (4.12) is to diagonalize the action into a sum
over two integer vectors a, S of a function of a times a function of B. Roughly
speaking we will accomplish this diagonalization by "rotating £, Γby 45°". Then
Z v μ becomes essentially the product of two factors, each of which turns out to be a
theta function. The tricky part of the procedure lies in the idea of "rotating" a
square lattice this is where ε, ζ will enter.

We start with the observation that

Σe'2πijt=Σ W-s).
jeZ *feZ

Z i n s t is essentially the function called | | # | | 2 in [19]
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Regarding both sides as functions on S1 this is just the Fourier transform of the
delta function at the origin. Thus for a nice function /,

έeZ9 jeZa

the "Poisson summation formula". We will apply this to the sum over / in (4.10).
Let τ = τi+iτ2,z = x + iy, and Sί + S2 + SA = 2π(S'+ S"), where

S'(ra, n) = mτ2

 γm —2nτ1τ2

 1m + 2imτ2

 1y,

Then the Poisson fomula applied to S' gives

y e-S'(m = tf + μ,n) = y e2πijμ Γ ̂ ίe~Q(t)

* j

Q(t) = 2πt -τϊι t + 2π(ij-2nτγτ2~
ι +2iyτ2~

ι) -

Performing the gaussian integral we get

^v,μ~ L e

kj

= 2«E Σ exp [iπ((k + v-±j)τ(k + v -±j) -
k,jeZ9

The "rotation" of the lattice mentioned above is accomplished as follows. We
replace the sum over k e Z9, \j e \ Z9 by a sum over all ε e (Z2)

g and a,beZ9 such that
a±b has only even entries. The two lattices so defined are in 1-1 correspondence via

Also we can enforce the condition that a ± b be even by performing an unrestricted
sum but including the Z 2 delta function:

δ(a-b

Thus we have

ZViμ = E Σ exp [i
a,beZ9

^E'Σ exp [iπ(a + v— ε)τ(a + v— ε) + 2π/((α + v— ε)(— z— μ + ζ)

— iπ(b + v + ε)τ(b + v + ε) -2πi(b + v + ε) (z -λ + ζ) + 4πiε ζ] .

Using the definition (2.42) we obtain (4.12). Note that we are permitted to change ε
to — ε since 2 ε is an integer vector.
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D. Bosonic Correlations. With (4.12) in hand we can now turn to the fluctuation part
φ of φ, and finally compare the bosonic correlation functions to (4.8).

φ has no jumps across the cuts of Σ, and so its action is given by (3.2), (3.8), and
(3.13). Hence the right side of (4.4) is given by Z i n s t times

-2λ)Rκφ)fluct = j [dφ] exp - j (Anidφ A
L

To do the gaussian integral change variables from φ to

and remove the zero mode from the integral over φ. Using (2.44)-(2.46) and
integrating by parts several times we obtain

άet'
Π G(P,,Pj) Π G(Qi,Qj)

nu«

where AΣ is the norm squared of the removed zero mode of <3f<3, i.e. the area of Σ in
the given metric. The simple form of (4.14) comes from the special normalization
(2.46) chosen for the Green function. We have not used the Arakelov condition,
however.

Of course as it stands (4.14) equals zero due to the coincident Green functions.
We will define the path integral using zeta-function regulation on the determinant
and the regulated coincident Green function (4.1). The freedom to make such a
choice is the path-integral version of the freedom to choose a normal-ordering
convention.

At last we can write out (4.4) in full detail, using (4.8), (4.13), and (4.14).
Dropping an overall constant, the statement (4.4) of bosonization says that for
spins λ > 1,

d e t ' d£>bd&

det (ui,Uj)

. 9(Pi,Qq)
det

P

π
q

π

,Λf is defined in (2.43), and z is defined in (4.9).
For <£h = KWQ will give only the formula with no extra insertions, correspond-

ing to (4.6). This case is interesting in that the same determinantal factor appears on
both sides of (4.15), so that instead of relating two determinants we get a formula
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expressing one in terms of special functions on the Riemann surface:

*

ΠG(PhQ)2

(4.16)

This formula can in turn be substituted in (4.15) to get formulae for all the
determinants.

Finally, for spin λ = j generically there are no zero modes at all and we can take
p = q = 0. This gives

) , (4.17)

the "spin- j bosonization formula". This has already been derived (cf. [6, 7]) and it
forms the basis for our proof in the next section of (4.15) and (4.16). At one loop this
formula is essentially the Jacobi triple product formula [25].

5. Mathematical Proof of Bosonization

We now present a mathematical proof of the bosonization formulae obtained in the
previous sections. We will prove (4.4) by proving its explicit restatements (4.15) and
(4.16). Actually, for technical reasons we prove these identities only up to an overall
constant depending on the genus, the spin and the number of field insertions. This is
adequate for proving the equivalence of two given field theories. For string
applications, where one wants to relate different genera, factorization of amplitudes
as a surface degenerates will fix the relative normalizations.

A. WeylInvarίance. As a first consistency check on (4.15) we now show that once it
holds for any metric, it then holds for any conformally-related metric. This is a
simple application of the conformal anomaly formula [53, 54, 55], which says that if
gzz = e2σgzz, then the zeta-regulated determinant behaves as

L 6πi J

det' -
-^—^ I =exp I — r SL I — —

ί ? 3 (5.1)

Here {wj, {i J are zero modes of d& and δ j , λ is the spin of j£f, and SL is defined in
(2.49). We also have the result (2.48) on the rescaling of the Green function.
Equation (2.48) must however be modified for coincident points because of the
regulator (4.1), which is not Weyl-invariant:
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The net number of Green functions in (4.14) isp2 + q2 — 2pq = (2λ — ί)2(g — I)2

by (3.14). Collecting factors of SL and σ ^ ) we therefore see that

Zfiπr.t =

( 2 p Σ σ^+1(i Σ σ(Qt) -2<i Σ σ(pi) ~2P Σ σ(Qd

= exp \~(6λ2-6λ +
\_bnι

•exp [2λ Σ σ(Λ) + ( 2 - 2 λ ) Σ σ ( a ) ] -Zπue, .

The Liouville part matches (5.1), while the remaining factor gives the correct
rescaling properties of (4.3).

Thus we can require our metric to be in any convenient conformal slice. Only
now will we use this freedom to choose the Arakelov metric, so that coincident
Green functions equal one [Eq. (4.2)].

Had we used an alternate normal-ordering prescription to (4.1), we would have
gotten coordinate-dependent factors and a different metric dependence at the
PiiQi- For example, in [5] we used a modification of (4.1) to get expressions for
b(P)b(P), not (4.3). The two prescriptions are completely equivalent.

B. Outline of Proof . The main ingredient in the proof is Quillen's treatment of a
holomorphic family of Cauchy-Riemann operators on compact Riemann surfaces:
the zeta-function regulated determinant det' d\dξ is used to define a metric, the
"Quillen metric" on the determinant line bundle of ξ.12 The bosonization formulae
can be seen as asserting that some natural isomorphisms of determinant line bundles
are isometries when one uses the Quillen metrics. We will establish these isometries
from two basic results:

1. The spin-1 β bosonization formula (4.17). Recall that in this formula S£ b is any
twisted spin bundle, i.e. any line bundle on Σ of degree g — 1. Σ is equipped with an
arbitrary metric. This metric in turn defines a metric on the preferred spin bundle L^
(the one which makes the isomorphism 1}^ ^K an isometry), and hence a metric on
if b. The left hand side of (4.17) is computed using this metric. On the right hand side
(/ Y) ~1 is the period matrix of Σ, AΣ is the metric area of Σ, and Jί is defined in (2.43).

We note that all of the bosonization formulae involve the same function
(. . .)~*JV, which is essentially the spin-1/2 determinant [6, 52, 7]. Thus it seems
that one could prove all the results we need by referring each spin to the known case
of spin 1/2. This is accomplished by

1 This metric is closely tied to the analytic torsion of [56]



540 L. Alvarez-Gaume, J.-B. Bost, G. Moore, P. Nelson, and C. Vafa

2. The insertion theorem, given below in subsection D, which relates det' \^
and det' dl®(ΰ{P)dξ®Θ{P) for any line bundle ξ and any point P on Σ. It is in this
theorem that the Arakelov metric plays a simplifying role.

The insertion theorem is the mathematical counterpart of the insertions oΐb(P)
or c(Q) in the functional determinants of Sect. four. It is also closely related to the
third axiom defining metrics on direct image bundles in Falting's work on
arithmetic geometry [19]. In fact, this theorem allows one to prove that the norm
used by Faltings differs from the Quillen norm only by a multiplicative factor
depending only on the surface Σ [55].

We will prove formulae slightly more general than the bosonization identities of
Sect. four. Indeed, we consider not only the line bundles ϊ£h with degree a multiple
of g — 1, but arbitrary line bundles ξ on Σ of degree d^g — 1. In general ξ does not
have an Arakelov metric. Instead we will demand that the metric on ξ be
"admissible", which means that its curvature is proportional to the Arakelov
curvature form μArak in (2.53). Thus the Arakelov metric itself is admissible.
Admissible metrics always exist; they are unique up to a constant since Σ is
compact.

To state our more general formula le us begin by supposing that

H'iΣ ξ^O . (5.2)

Recall from (2.16) that this condition means that the adjoint d\ has no zero mode.
This statement is independent of the metrics chosen on Σ and ξ. It is satisfied if
d>2g-2 or iΐd=2g -2butξ£K, or if d=g - 1 and ξ does not belong to the theta
divisor. We will sketch later the necessary modification to the proof when (5.2) is not
satisfied - for example in the proof of (4.16).

We also have from (2.10) that dim H°(Σ; £) = dim ker dξ = k. Using the simpli-
fying condition (5.2) and the Riemann-Roch theorem (2.18) we then get that
k = d+\ -g. Let uu. . . , uk be a basis of H°(Σ; ξ).

For any integer q §; 0, let p = q + k. Suppose we are given p + q pairwise distinct
points on Σ, P1,. . ., Pp, Q1,. . ., Qq. From these points we can build a determinant
generalizing the one in (4.8):

«*(Λ) nPuQi) #(Pi,Qq)
: : :

. . . uk{Pp) 9(PP, Qx) ... 9(PP, Qq)

(5.3)

The parametrix ^ is again defined by (4.7), where now <£h is replaced by the
arbitrary line bundle ξ.13 Again the residue of ^ as P-^Q is l/2π/. Det (wi? Pj, Qt) is

an element of (x) ξ\P <g) ® (ξ~ι ®K)\Q .

We also suppose that Σ is equipped with the Arakelov metric, and that ξ is
equipped with an admissible metric.

1 3 Again when (5.2) is not satisfied we replace the unit operator in (4.7) by the projector off the
zero modes of d\
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The generalization of (4.15) which we will prove then says that with the above
choices, when (5.2) is satisfied we have

Λ xN» det' did* , Ί ( det' d*d V *

det fa, Uj)

UG(PhPj)
2UG(Qί,Qj)

2

where A(g,d,q) is a constant which depends only on g,d, and q, and

p q

Ans= Σ Pί~Σ Qi ( 3 2 3 ) '
i = 1 i = 1

Taking ξ = J£b gives (4.15). This follows because with the Arakelov norm
coincident Green functions vanish, while each noncoincident function in the
numerator of (4.15), (4.16) appears twice.

The proof of (5.4) will go roughly as follows. Thanks to the insertion theorem
applied p + q times, we can relate ά^t'd\dξ and det 'd jc^ where ξ' = ξ
®Θ(—Dιns). Next, as the degree of ξ' is d+q+p = d—k = g —1, we can relate
det' dl'dξ' to det'3 fδ by the spin-1/2 bosonization formula. The finite dimensional
determinants occur in (5.4) because the precise definitions of the determinant line
bundle and of the Quillen metric on it involve the finite dimensional spaces of
zero modes of d operators and their adjoints, so that we have to take care of
them when we apply the insertion theorem. The bosonic Green functions occur
because this theorem makes essential use of the admissible metrics on the $(P)'s
defined by (2.50).

We can also derive formulae analogous to (5.4) when the condition (5.2) is not
satisfied. We will only consider the case ξ = K, equipped with the Arakelov metric.
Again let q > 0 be an integer, let p = g—l+q, and let Px,. . ., Pp, Q1,. . ., Qq be
pairwise distinct points of Σ. We can then build the determinant

.. ω , ( Λ ) » ( Λ , β i ) ••• S ( Λ , β , ) \

Det K , PJt ft)-

(5-5)
It belongs to ® K\P..

; = i

Then we have the equality

UG(Pi,Pj)
2ΠG(QhQj)

2

ΠG(Ph

}Qj)2 '
(5.6)
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where B(g,q) is a constant depending only on g, q. When g = l we then recover
(4.16). [See the comments surrounding (4.6).]

Strictly speaking in this paper we will prove (5.4) and (5.6) only for g > 2.14 To
get complete proofs when #5^2, one needs estimates on the growth of regularized
determinants and Green functions when Σ degenerates into a Riemann surface with
one node, which we will not discuss here.

Note that (5.4) and (5.6) are closely related to some classical identities in the
theory of abelian functions on Riemann surface [57], in particular the trisecant
identity [23,22].

C. The Local Riemann-Roch Theorem. In this subsection we review some basic facts
about determinant line bundles, Quillen metrics, holomorphic families of d
operators on compact Riemann surface, and the Riemann-Roch theorem for
families (cf. [13, 58, 17, 63, 18]).

If Q) is an elliptic differential operator on a compact manifold, one defines the
one dimensional vector space

/max \ -1 /max \

= I l\ ker^j ® I f\ coker 2 I . (5.7)

Formally DET 2) is the dual of the "top exterior power" of the family index of <2).
It is important for our purposes to consider not only one particular Q) but a

parametrized family of operators. We therefore need a notion of a family {Σs} of
Riemann surfaces, with a family of line bundles {ξs} on them. We can glue together
all the Riemann surfaces into a large space X, and glue the ξs, into a single bundle E
over the total space X. In this paper we will actually consider holomorphίc families of
Riemann surface and bundles. Thus we let π:X-+S be a proper holomorphic
submersion, the fibers of which are compact and of complex dimension one. We
also take E to be a holomorphic vector bundle on X and F= E (x) KX\S, where KX\S is
the line bundle of vertical (1,0)-forms on X. For each seS we then get an elliptic
operator ds: C °° (Σs ξs) -> C °° (Σs ;ξs®K) on the Riemann surface Σs = π ~1 (s). ds is
called the Cauchy-Riemann operator "coupled to ξs" and the family so defined is
denoted by dE. The determinant line bundle DET dE has a canonical holomorphic
structure [59,17]. This construction was introduced first within the framework of
algebraic geometry [60, 59]; the construction for smooth families appears e.g. in
[61,58].

One can define a norm on the determinant line bundle as follows. Suppose we
are given a smooth family of riemannian metrics on the fibers Σs (i.e. a smooth
metric on the vertical tangent bundle Kχ\l)> a n d a smooth hermitian metric on E.
Then for any seS, dj is defined, and ker ds and coker δs have natural L2 metrics,
which define a metric || | |L 2 on DET ds. Generally, because of the jumps of the
dimension of ker ds, this norm is not smooth on all of S. However, the "Quillen
norm"

Hl^detm IIΊÎ  (5.8)
is always a smooth metric on DET dE [13, 58].

1 4 See Lemma 2 below
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We can now state a local Riemann-Roch theorem for families of curves. Recall
that for any hermitian metric on a holomorphic vector bundle like E there is a
unique unitary connection on E compatible with its holomorphic structure. Using
this connection and the Chern-Weil formulae for characteristic classes, we can
associate to a line bundle E and its metric the Chern forms cx (E, || \\E), the Chern
character form Ch(is, || | | £ ) , and the Todd form Td(£, || | |£) using the polynomials
Ch (x) = ex, Td (x) = 1 + j x + r r * 2 + It is important to note that in the family
setting these forms are constructed from the full curvature of the bundle E over X,
not just its vertical parts. If σ is any differential form, we denote by σ{k) its
component of degree k.

Theorem. Let π:X->S be a holomorphic family of Riemann surfaces and E a
holomorphic vector bundle over X. Let || || be any smooth hermitian metric on the
tangent bundle Kχ^s and || | |£ a smooth hermitian metric on E. Let || | |Q be the Quillen
metric they define on DET dE. Then one has the formula

C l ( D E T δE, || | | Q ) = - J {Ch(E, || • \\E)AΊd(K^s, || | | ) Γ . (5.9)
x\s

Here j denotes integration of a form along the fibers Σs of π. Note that (5.9)
x\s

makes no use of the admissibility condition; it works for any metrics.
The cohomological form of (5.9) is a direct consequence of the Atiyah-Singer

index theorem for families, or of the Riemann-Roch-Grothendieck theorem (which
gives a more precise formula, true in the rational Chow group of S). The formula
(5.9) was proved by Quillen [13] when X=X0 x S and the metrics are fixed, and by
Belavin and Knizhnik [14] when E=Kn. Bismut and Freed have proven an
analogous statement for families of Dirac operators [58], from which one can
deduce the general formula [15, 17, 63, 18].

D. The Insertion Theorem. Let Σ be a compact connected Riemann surface of genus
g > 0, equipped with its Arakelov metric, and let ξ be an arbitrary line bundle on Σ,
equipped with an admissible metric. For any point P of Σ, we get an admissible
metric on ξ (x) Θ{ — P) by multiplying the given metric on ξ by the canonical metric
on Θ(—P), i.e. the metric dual to the metric on Θ{P) given by (2.50). From these
data, we obtain Quillen metrics on the one-dimensional spaces DET dξ and
DET 5£(g)0(-p).

On the other hand, the long exact sequence

0^H°(Σ; ξ®Θ(-P))-+H°(Σ; ξ)^ξ\P-^Hι{Σ ξ ® Θ{-P))-±Hι{Σ ξ)^0

associated to (2.8) gives rise to a canonical isomorphism of one dimensional vector
spaces, by taking the top exterior power:

ξ)(g)ξ\P . (5.10)

We have used (2.16) to replace the cokernel in (5.7) by H1.

Insertion Theorem. The isomorphism (5.10) is an isometry when ξP has the given
metric and the determinant spaces are given the Quillen metrics (up to a multiplicative
constant depending only on the genus of Σ and on the degree of ξ).
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For g > 2, the theorem is a direct consequence of the following lemmas:

Lemma 1. Let π:X-+S be a holomorpic family of compact connected Rίemann
surfaces of genus g>0, E a holomorpic line bundle on X, and σ: S^>Xa holomorpic
section of π. Let Σs = π~1(s) and ξs = E\Σs.

i) The family consisting of the Arakeloυ metrics on the Riemann surfaces Σs defines
a smooth metric on the vertical tangent bundle Kχ^s

ii) The family of canonical metrics (2.50) on the line bundles Θ(—σ(s)) over Σs,
seS, defines a smooth metric on Θ(-σ(S)) (note that Θ(-σ(S))\Σs^(9(-σ(s))).

iii) The family of isomorphisms

Is: D E T 5 ί . β β ( - < F ( s ) ) <g)(DET dξs) ® ξs\σ(S)

(cf (5.10)J defines an isomorphism of holomorphic line bundles on S

£ ® σ * ( £ ) , (5.11)

where E' = E <g) Θ(-σ(S)).
iv) Suppose that E is equipped with a smooth metric || | |£ whose restriction to any

Σs is an admissible metric on ξs, and that KX\S andΘ(—σ(S)) are equipped with the
Arakelov metric and the canonical metric defined in (i) and (ii). Using these metrics,
we obtain Quillen metrics || || Q and || || 'Q on the line bundles DET δE and DET dE> on
S. Then we have the equality of differential forms

C l ( D E T δ £ , , 1 | | ' e) = C l ( D E T δ £ , II | | e ) + σ* C l (£, II ||E) . (5.12)

Hence when S is compact and connected, the isomorphism / i n (5.11) is an
isometry up to an overall constant. The next lemma says that for g > 2 we can always
take S to be compact and connected.

Lemma 2. Let Σo, Σx be two compact connected Riemann surfaces with the same genus
g>2 and let ξ0, ξί be holomorphic line bundles on them with the same degree d.
Suppose each ξt is equipped with an admissible metric || ||f and a point Pt. There exists
a compact and connected complex manifold S, a holomorphic family π:X->S of
compact connected Riemann surfaces, and a holomorphic line bundle Eon X equipped
with a smooth metric || | |£ which, restricted to any Σs = π~1 (s), is admissible, and two
points steS, i = \,2 and two isomorphisms φf :Σ f -*Σ S ι such that

Lemma 2 is an easy consequence of the hard fact that, for g > 2, for any two
points in the moduli space of smooth irreducible curves Jig there exists a complete
curve which contains those two points [62].

The first two assertions of Lemma 1 are consequences of the definitions and of
the theory of families of elliptic operators. The third assertion is a consequence of
the definition of the holomorphic structure on the determinant line bundle. We will
not enter here into the details of the proof of these assertions. The fourth assertion is
a consequence of the local Riemann-Roch theorem of subsection C and the choice
of Arakelov (respectively admissible) metrics on K, ξ. We now give the proof of the
equality (5.12).
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Let D denote the hypersurface σ(S), and let [D] be the current, or form-valued

distribution, associated to D. That is, for any form ω of degree the real dimension of

D one has j [D]ω — ̂ ω.
~ x D

Let GD(x) = | |l^ ( D ) | |(x), where Θ(D) is equipped with the canonical metric. The
function GD is smooth on X—D, and it vanishes on D. If G is the Arakelov Green
function on Σs, we have

GD(x) = G(x,σoπ(χ)) . (5.13)

Furthermore, the following statements are easily proved:
a) The first Chern form of the line bundle Θ(—D) equipped with the canonical

metric satisfies the following equality:

C l ( 0 ( - D ) , || \\)=--dd log GD-[D] . (5.14)
711

[See the remark after (2.27).] The right-hand side is the sum of two non-smooth
currents.

b) For any smooth differential form ω o n l

j [D]ω = σ*ω . (5.15)
x\s

c) For any closed differential form ω of type (1,1) on X, and for any distribution
φ on X,

j (ddφ)ω = dd J φω . (5.16)
x\s x\s

The equality (5.12) now follows from the following computation of first Chern
forms, where we do not write explicitly the metrics on the various line bundles (they
are the metrics specified in the statement of Lemma 1):

£ 0 = - f
x\s

J
x\s

= f
x\s

The first equality follows from the local Riemann-Roch theorem, the second from
the multiplicativity of the Chern character, and the last from the expressions for Ch
and Td. Using (5.14), we can rewrite the integral (5.15) as the sum of

and

j —
x\s πι

= - ί
x\s
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The identity (5.16) shows that ω1=ddF, where

πi x\s

The restriction of the quantity in brackets to any Σs is a multple of μArak, thanks to
the admissibility hypothesis on the metrics on E,KX\S, and Θ(—D). Next the
formula (5.13) and the normalization condition (2.46) show that F=0. Hence
ω1 = 0. On the other hand, the identity (5.15) shows that

(02= -σ* ι

Recall that the Arakelov metric and the canonical metric are such that the
residue map (2.52) is an isometry. This implies that the line bundle with metric
σ*{Kχ\s ®Θ{D)) is canonically isomorphic to the trivial bundle on S, with the
trivial metric. Hence its first Chern form is zero, and ω2= — σ*c1(E).

Finally we get

as was to be proved.
Having established (5.12) we now invoke Lemma 2 to say that metrics with the

same curvature on S must be equal up to a constant. This establishes the insertion
theorem.

E. Proof of (5.4). Using the spin-1/2 bosonization formula (4.17) we see that the
desired formula (5.4) follows from the following equality:

Π G{Ph Pjf Π G(Qt, Qj?

W , (5.17)

when ξ' = ξ (x) Θ{ — Dms) is equipped with the product of the given admissible metric
on ξ and the canonical metric on Θ(—D{ns). Again Z>ins is the divisor of insertion
points (3.23). To prove (5.17) we use the insertion theorem.

Consider the following short exact sequence of sheaves [cf. (2.8)]:

O . (5.18)

Taking ζ = ξ ®&(^Qi) w e g e t

O^ξ ®Θ(-Dias)^ξ ®Θ(ΣQi)^[ξ ®&(ΣQi)]\τPi-*° • ( 5 1 9 )

Setting all the £>,- = Pt we get

o^ξ-+ξ®&(ΣQi)^lξ®&(ΣQi)]\ΣQ^0 • ( 5 2 °)

From the cohomology long exact sequences associated to these short exact
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sequences we deduce canonical isomorphisms of the one-dimensional vector spaces
[cf. (5.10)]:

) ® ® ξ \p \ ,
1 b=i "J

(5.21)

7 2 : DET δξ ^ DET 3
ί β β ( Σ Q j ) .ί = l

(5.22)

In the second lines of (5.21), (5.22) we have used the unit section to trivialize ΘQjQ{)
away from the Qt. In the second line of (5.22) we have used the canonical
isomorphism (2.52).

From /x and I2 one can build an isomorphism

/:DET5^DET3r ®Γ<g> ξ ® ξ~

Then we have the general insertion formula, when the determinant bundles are
equipped with the Quillen metrics, ξ with the given admissible metric, and ^Γwith the
Arakelov metric:

(5.23)

This formula is true for any ξ and any collection [Px,.. ., Pp,.. ., Qq} of pairwise
distinct points on Σ; the conditions (5.2) andp = q + d+l —g do not matter here.

The general insertion formula (5.23) follows from the insertion theorem by
induction on/?, q. Hence it too relies on the Arakelov condition. We now give the
details for the case/? = 2, q = 0 to show how the bosonic Green function enters.

The isomorphism (5.21) in this case reads

^ ® ^ . (5.21)'

It is obtained by composition and tensor product from the "insertion iso-
morphisms"

ΌEΎ δξQΘi-Pι)^ΌEΊ δξ®ξ\Pι , (5.24a)

ΌEΎ δξ

and from the canonical isomorphism

(5.24b)

(5.24c)

By the insertion theorem, (5.24a) and (5.24b) are isometries up to constants. On the
other hand, (5.24c) multiplies the norms by \\l&i-Pί)(P2)\\~ι =G(Pί9 P2) So the
isomorphism / multiplies the norms by (a constant times) G{Pγ,P2).
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Proceeding in this way, and using (5.22) we obtain (5.23).
Now we can complete the proof of (5.17). It is enough to prove this formula

when

° A n * ) ) = O > (5-25)

i.e. when ξ' = ξ ® Θ{— Dιm) does not belong to the theta divisor. Indeed this
condition is satisfied for a generic choice of insertion points since H1^; O = 0.
Moreover, one can see directly that when (5.25) is not satisfied, the two sides of (5.4)
are both zero.

The condition (5.25) implies that DET dξ> is canonically trivial. The Quillen
norm on this space is thus given by

| | | β j (5.26)

The condition (5.2) gives that

ΌEΎdξUf\H°(Σ;ξ)\ ' , (5.27)

so («! Λ . . . ΛWfc)"1 is a basis of DET dξ. Its Quillen norm is

| | 1 | | 5 ι ί s«j))- 1 . (5.28)

Finally we see that the formula (5.17) is a consequence of the generalized insertion
formula (5.23), of (5.26) and (5.28) and of the following lemma:

Lemma 3.
/((«! Λ . . . Λ«fc)-1) = (2π/)-βDet(M i, Pj9 ft)"1 .

This lemma is a consequence of the following observations:

i) Hγ{Σ\ ξΘOiΣQi))^0 because of (5.25). Thus

. , , (5.29)

ii) The map

_ P

I2 : [DET δξ®<p(ΣQi)]~1~>> ® ζ\pι

is the /7-th exterior power of the restriction map

p

r :H°(Σ; ξ ® 0 ( £ βO)-+[£ ® 0(Z2i)]fep./ = © £IΛ

/2 is an isomorphism when the insertion points satisfy (5.25), and in that case it is the
isomorphism (5.21).

iii) The map 12:ΌEΎ dξ ̂ ΌEΎ dξ^&iΣQι) ® ® (ξ^1 ® K)\Qι can be writ-

ten, thanks to the identifications (5.27) and (5.29):

/l((Wi Λ . . . Λ Mfc)~1) = (Mi Λ . . . Λ M f c Λ 2 π i f ( *, Qι)v1 A . . . Λ 2 π / ^ ( ', β ^ ) ^ ) " 1

for any choice of nonzero ViE(ξ ®
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The last assertion is a consequence of the fact that 2π&( , QJ)VJ is an element of

H°(Σ; ξ®Θ(ΣQi))9 which has [δijvi]i = u^,qe ® (ξ®K~ι)\Qι as its image by the
i = l

residue map at the points Qu. . ., Qq. See the remark following (4.7).
This completes the proof of (5.17), hence in particular of (4.15) and so the

bosonization identity (4.4), when the condition (5.2) is satisfied.
When (5.2) is not satisfied, e.g. for ζ = K, the proof of the bosonization formula

(5.6) follows the same lines as the proof of (5.17). The only real difference occurs in
the construction of the isomorphism Ix :

We need the identifications

Note that the norm of the constant function 1 appears in the denominator of the
left-hand side of (5.6), not in the numerator as (5.7), (5.8) might seem to imply. This
is because we have represented a basis of coker dκ by a basis of the dual space ker d
using Serre duality (2.15).

Appendix A. Proof of (2.32)

We are to establish that Fig. 4 commutes when F^,H, and 1^ are defined as in
(2.32), (2.29), and (2.26) respectively. Consider the following complex function on
the cut surface Σc:

By the Riemann vanishing theorem / has exactly g zeros and poles for generic z. The
zeros are at Pt where

and similarly the poles, with z replaced by 0. D^ is a divisor representing the
preferred spin bundle L^. Hence

/ ^ [ d i v / H - z . (5.30)

As P goes around the cycle n-a + rn b, / jumps by e~
2πim'z. Build a bundle ξ

with transition functions such that / defines a meromorphic section σ on all of Σ.
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Next put a norm on ξ: let

_Po Po

where Y^ = (τ^ — τ ^ ) " 1 . Note that | |σ| | 2 is the quotient of two of the Jί functions

defined in (2.43). We then get the connection

Integrating along contours which avoid the poles and zeros of σ, we find the

holonomy

Applying (2.32) to H(ξ) we recover —zeJ^, which indeed agrees with (5.30).
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Notes added in proof
1) Additional terms in the bosonic action similar to ours have also been considered in [64]

and [65]. Also Gawedzki has recently reformulated the extra action terms (to appear).
2) The insertion isomorphism following (2.22) is in a sense the square root of the nonchiral

bosonization formula. In fact it can be seen that the chiral bosonization formula of [23]
[Eq. (6.21)] follows when this isomorphism is written explicitly.

3) J. Frδhlich has produced chiral fermion correlation functions from a bosonic path integral
by the introduction of disorder operators (unpublished). His prescription can be formulated in
terms of additional terms in the bosonic action similar to the ones considered here.




