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Abstract. A scheme allowing systematic construction of integrable two-
dimensional models of the Lorentz-invariant Lagrangian massive field theory
is presented for the case when the associated linear problem is formulated on
s/(2, (C) algebra. A natural dressing procedure is developed then for the generic
system of two (either scalar or spinor) fields inherent in the scheme and an
explicit JV-soliton solution on zero background is calculated. Solutions of
reduced systems which include both familiar and new equations are extracted
from the solution of the generic system, not all of these reductions being
related immediately to 5/(2, (C) real forms. Finally, in the case of scalar
equations we present the Miura-type transformations relating solutions with
different boundary conditions.

Introduction

In the present paper1 we derive exact multisoliton solutions within the framework
of the Unified Integrable Lorentz Fields (UNILOF) description scheme. This
scheme provides an Inverse Scattering formalism appropriate for construction and
solution of all two-dimensional integrable relativistic massive systems (both spinor
and scalar) in a unified way. (The massless systems have been analysed in detail by
Zakharov and Mikhailov [1, 2].) A brief account of the UNILOF scheme has been
given by one of the authors [4, 5]. The starting point is the Zakharov-Shabat
equations for the relativistic case (1.1) in a new, triangular gauge (this is a key point
of the scheme). Selection of this special gauge not only provides the unification but
also produces non-linear equations in manifestly Lagrangian form [5].

An important degenerate case in the UNILOF scheme corresponds to the two-
dimensional Toda lattices. These have been explored previously by Mikhailov,
Olshanetsky, and Perelomov [6, 7], Fordy and Gibbons [25] (periodic lattices)
and by Leznov and Saveliev (unclosed chains, ref. [8]). Here we study the non-
degenerate case.

1 Some of these results have been announced in [3]
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Starting from the generic linear 2 x 2 matrix problem (1.1), we derive a system
of two fields (or, rather, a one-parameter family of gauge-equivalent systems)
which may be considered spinor. This model will be referred to as "the generic
system associated with the algebra ^ = s/(2,(C)"5 or simply as "the ^-system." We
may easily reformulate it in terms of two complex scalar fields. Reducing each of
the two formulations of the ^-system, we obtain both known models such as the
massive Thirring model and the complex sine-Gordon equation and new ones e.g.,
the second massive spinor model and 0(1,1) sine-Gordon equation.

This communication's main purpose is to supplement the regular scheme for
construction of integrable systems with an adequate procedure of finding their
soliton solutions. To do this, we extend Zakharov-Shabat-Mikhailov's dressing
method [9,1, 6] to the linear problems of type (2.2). Here the difficulty is that one
can utilize the canonical normalization of the corresponding Riemann problem
(very convenient and normally used) only for a certain particular representative of
the aforementioned gauge-equivalent class. Of course, provided the solution for
this special case is known, solutions to other ^-systems may be obtained merely
through a gauge transformation. However, this strategy seems to be inefficient
since the latter implies non-local substitutions for the field variables. In order to
avoid these, we take a different line and do not impose any a priori normalization
conditions on the dressing matrix. Although calculations become more involved,
this enables us to "dress" the whole family of gauge-equivalent ^-systems
simultaneously, iV-soliton solutions appearing in a unified closed determinant
form.

Solutions to the reduced equations are obtained by constraining parameters of
solutions to the ^-system. At this stage, the difficulty is encountered in the case of
the Minkowskian complex sine-Gordon equation. The problem is that unlike the
other reductions, this one is not related directly to any real form of the s/(2, (C)
algebra. Consequently, we have to introduce an auxiliary gauge which induces a
rather complicated mapping of the dressing matrices manifold onto itself.
Nevertheless, as soon as this mapping is found, the reduction conditions are
straightforward.

In this paper we confine ourselves to the "dressing" of the zero seed solution
(zero background). However, in the case of scalar fields these solutions provide an
immediate information about the solitons on the nonzero constant background.
The latter may be obtained via the Miura-type transformations taking each of the
two complexified sine-Gordon equations to the same equation, but with the
opposite sign of the mass term.

The paper is organised as follows. The ^-system is derived and reduced in
Sect. 1 and its iV-soliton solution is constructed in Sect. 2. In the subsequent
sections we specialize the parameters of this solution so as to satisfy the following
reduced systems: In Minkowski space - the (extended) massive Thirring model
(MTM, Sect. 3); the usual complex sine/sinh-Gordon equation [referred to as 0(2)
SGE, Sect. 6] a new massive spinor model and a new complexified version of SGE
[called 0(1,1) SGE], Sect. 4. In Euclidean space (Sect. 5) - extended 0(2) SGE and
the Euclidean MTM. In Sect. 7 the Miura maps are presented, and in the last
section we discuss connections between scalar and spinor systems, including the
correspondence between SGE and MTM.
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1. The Model

Below all the quantities are assumed to be complex unless the opposite is specified.
Consider the set of linear equations:

id+Ψ = (λ2UΪ + UZ)Ψ, ίd_Ψ = (λ-2U2+Uo)Ψ, (1.1)

where £/^(z + ,z_), UQ(Z + , Z_), and Ψ(λ; z + ,zJ) are 2 x 2 matrix-valued functions
of complex variables z+ and z_, δ± =δ/δz±, and λ is a spectral parameter. The
integrability conditions for (1.1) are:

ί/ 0 -]=0. (1.3)

Subtracting the trace multiplied by the identity matrix from each of the four
matrices l / | 5 UQ leaves (1.2)—(1.3) invariant. Hence, without loss of generality, we
may consider U}, UQ es/(2,(C). Next, the set (1.1) is covariant under the gauge
transformation [9,1]:

Ψ = gΨ, Ui=gϋig~1

9 U±=gΌU-l + id±g g-\ (1.4)

g(λ; z + , z_) e SL(2, (C). In accordance with the central idea of the UNILOF scheme,
let us fix the gauge by choosing U^ upper-triangular matrix and t/J lower-
triangular one: (C/ί) 2 1 =(L/2) 1 2 = O. Then we find from (1.2*):

(U0

+)12tr(L/2-σ3) = 0, (^o )2i tr(C/2

+σ3) = 0. (1.5)

First, let us assume (C/^)12 = ([/o )2i = ° τ h e n Eqs. (1.2±) imply δ ± diag(7j = 0,
and we may introduce complex functions a±(z±) such that diagt/^ = \a±(z±)σz.
For the traceless (7^ respectively L/̂  the choice tr((72

fσ3) = 0 respectively
tr(LΓ

2~σ3) = 0 in (1.5) corresponds to what we call the degenerate case: α + ( z + ) Ξ θ
respectively a~(z_) = 0. In this paper we adopt that α ± (z ± ) + 0 for all z± .

Now let us denote matrix elements as follows:

' " l o -a-12)' U ° - { q 2 -Fηj

(a~β ° 1 ίf"/2 Ί
In this notation the compatibility conditions (1.2)—(1.3) are written as

q2-a + q4 = 0,
(1.7)

- 0

(1.8)

Redefining the fields: <?i,2-*fl+<h,2> 93,4~*a~93,4> ί 1 ± ^ α ± f ± and changing the
variables z+ so that 5 ± ->α ± (z ± )3 ± ,we may, without loss of generality, fixa± = l.
Next, the system (1.7)—(1.8) possesses a "residual" <C* gauge invariance
((C* = C\{0}):

% β ± Θ , (1.9)
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which amounts to the selection of g = exp(^(9σ3) in (1.4). On the other hand,
Eqs. (1.7)—(1.8) imply: d_(F+ +ω + q1q2) = d + (F~ + ω_q3q4\ where ω+ are any
two constants verifying

ω++ω_=2. (1.10)

Hence, there exists potential π such that F+

In view of the invariance (1.9) we may set π = 0, thereby obtaining a family of
gauge-equivalent systems:

qi+q3 = 0, (id+F-)q2-q4 = 0,

0

(1.11")

For each pair ω± obeying (1.10) the system (1.11) will be referred to as the "generic
system," or merely as "the ^-system." Let us also note that (1.1 Γ) yields a
conservation law d_(q1q2) + d+(q3q4) = 0, whence

qίq2 = d + Λ, q3qA=-d_Λ. (1.12)

Recovering A from here, we can specify the transformation (1.9) mapping the
^-system with ω+ into that with ώ ± . Namely, the corresponding Θ is:

Θ = i(ώ_-ω_)Λl. (1.13)

For two distinct choices of ω+ the ^-system (1.11) is manifestly Lagrangian.
From the field-theoretic point of view, the most interesting case appears to be that
with ω+ = 1, the corresponding Lagrangian being given by

(1.14)

The second choice is ω _ = 0 (or ω + = 0). At ω _ = 0, ω + = 2 eliminating q3 and
we obtain Mikhailov's model [10], derivable from

(1.15)

Notation. In this paper we discuss field theories both in Minkowski (denoted M2)
and Euclidean (E2) spaces. The Greek indices will be reserved to label the
corresponding vector components, with the usual summation convention being
adopted. In M 2 the laboratory coordinates are x° and x1, and the metric signature
is (H—), i.e., kμx

μ = k°x° — k1x1. Also the light cone variables will be used:
^ = i ( x o + x1)? ξ = ±(χo — χ1)AnE2 the laboratory coordinates arex x andx 2 , kμxμ

= kίx1+k2x2, and we shall use the Laplace coordinates z = ^(x1+ίx2),
z* = ^(xί—ix2) instead of η and ξ. y-matrices are defined through the Pauli
σ-matrices: 7° = y0 = σu y1 = — yλ = iσ2, y

5 =y°γ1 in M2 andy μ = σμin E2. Finally, *
denotes complex conjugation,7 transposition, and f Hermitian conjugation.

If we want the ^-system to represent a model of relativistic (or Euclidean) field
theory the transformation properties of qu ...,q4 should be specified. There are
two possibilities related to scalar and spinor fields.
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1.1. Conventional and Extended M TM in M2 Space. In M2 let us set z + = η, z _ = ξ
and denote qι = uu q2 = u%, q3 = v1, g4 = tf2 Then the Lagrangian (1.14) is:

£p

ί = iu%ulξ + ίv%vlη + u%v1 +v%uι +u1u%υίυ% + (c.c). (1-16)

Ii\p1=(uu vγ)
τ and ψ2

 = (u2> vi)T belong to the two-dimensional vector space that
forms the spinor representation of the Lorentz group, the ^-system (1.16) becomes
a model of two spinor fields:

Lx = n f t / φ σ j ^ i p + ip(i® σ j ψ + i {N>(/<8> σ j i p ] 2 - K>(/® σ 2 )v] 2 } , (1.17)

where ψ = (φ1 ?t/;2) τ, ψ = (φ 1, y32)> Ψi = ψho> Vy = ΨiΨι+Ψ2ψ2- Identification2

ψi = ψ2 = ψ reduces (1.17) to the massive Thirring model (MTM) [11]):

μ μ (1.18)

with ψ = (u,v)τ. In terms of u and v, Eq. (1.18) is rewritten as

c£2 = iUξu* + ivηv* + uv* + u*υ + \uυ\2. (1.19)

MTM may be extended to the (generically) non-Lagrangian model [12],

ίuξ + v + ω_\v\2u = 0, ivη + u + ω + \u\2v = O, (1.20)

which emerges from the system (1.11) under the reduction

(1.21)

MTM corresponds to ω ± = 1. Specialization (1.21) preserves, of course, the gauge
equivalence between (1.11) and (1.14). As a result, the extended MTM (1.20) is
transformable into the conventional one (1.19) through the change of variables
(1.9), (1.12), (1.13). At ω_ = 0 the system (1.20) is the reduced form of Eq. (1.15)
derivable from JS?3= —uηu^ + \u\2 + ίu2u^up

Remark 1.1. Under the definition of η, ξ through xμ given above, the choice z + = η,
z_=ξ leads to "infraluminic" (i.e., travelling at velocities v:\v\^ί) solitons of
MTM. If we set z_ = —ξ, we would obtain tachyon solutions of the model (1.18)
with iψγμdμψ replaced by —ίψγμγ5 dμψ. As both types of solutions are connected
through the trivial substitution ξ-+ — ξ,we confine ourselves to the former case.

1.2. The Second Massive Spinor Model in M2. Let z + = iη, z_ = — iξ, and let ω±,
qι, . . . 5 g 4 e R . Defining a covariant spinor ψ = (u,v)τ, where

(1.22)

we reduce the ^-system (1.11) to another spinor model in Minkowski space:

iuξ + v + ω-{v2-υ*2)u*=0, ίvη + u + ω + {u2-u*2)v* = 0. (1.23)

By means of the substitution (1.9), (1.12), (1.13), Eq. (1.23) may be transformed into
(ω ± = l)-form5 derivable from the Lagrangian

$ 2 2 2 2 (1.24')

2 The sign of the nonlinearity being nonessential [11], the identifications ψ2 = ± ipx are equivalent
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or into (ω _ = 0)-form, defined by if 5 = iuηuξ — iu2 + {u + u*)2 (uu*)ξ + (c.c). Integra-
bility of the model (1.24') has been first suggested by V. E. Kovtun, who has found it
to possess a higher conserved current (private communication). In the covariant
notation Eq. (1.24') reads (ψ~\pτy0):

L* = iψΊμ SμW + W + s (WJμΨ ~ ΨΊμΨ*)2 (I -24")

1.3. Euclidean Thirrίng Model. In the Euclidean domain we set z + =z, z_ = εz*,
ε = + 1 . In contrast to M2 space, here we cannot confine ourselves to a certain
particular choice of ε, say ε = l (cf. Remark 1.1). Solutions of the system (1.11) with
ε = — 1 and ε = 1 are unrelated and will be treated independently. Let us denote
qί = uu q2 = sv^, ^3 = υu <l4. = u2 a n d require that the columns ψί=(uί,υι)

τ and
Ψi — (W2> Όi)Ύ transform as 0(2) spinors. Then Eq. (1.16) represents a system of two
Euclidean spinor fields:

j ψ 4- iεfy>\γ μ ®σjip] 2 - [_^(yμ®σ2)ψ]2}} .
(1.25)

Here ψ = {ψ1,ψ2)
τ, Wf = (ψhψ2\ ^ = diag{l,ε1 / 2}. Imposing the condition

= Ψi—Ψ ( τ = ±1) reduces the system (1.25) to the Euclidean MTM:

LΊ = iψ\ dμψ + ψWψ + i τε(ψϊyμΨ)2. (1.26)

On the other hand, if we start from the ^-system (1.11) and require that

τqX = q1 = u, ετq^ = q3 = v, τ = ± l ; ω^=ω_=ω, (1.27)

we shall arrive at the non-Lagrangian model

iuz* + ευ + τεωv\u\2 = 0 , ivz + u + τεω*u|i;|2 = 0, (1.28)

containing MTM (1.26) as a special case of ω = l [ψ = (u,v)T'].

1.4. The Second Spinor Reduction in E2. If we set qί=u — υ*, q2— —{u
= v — u*, q4 = u* + v, z+=z, z_ = —z* in Eq. (1.14), we shall obtain another

spinor model in the Euclidean domain. In the covariant notation ψ = (u,v)τ,
ψ = ψτγί, ψ = ψ*yί9 y5= —iy\y2> it looks like:

^s = iψhμ δμψ+ψ^y 5ψ - s (ψyμψ - <pyμψ*)2

1.5. 0(2) sine/sinh-Gordon Equations. Let us define new fields φί=e~wq1 and
φ2 = e~iΌq% (Ό — constelR) which are required to be scalars both in M2 and E2

cases. q2 and q3 may be expressed through φu φ% by means of the first and fourth
equations in (1.1 Γ):

= -ieiυ{\ + ω _ φ 1 φ * ) ~ 1 δ _ φ 1 . (1.29)

Inserting these expressions into the remaining two equations, we obtain a system
of two complex scalar fields, i.e., a scalar formulation of the ^-system (1.11):

(1.30)
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where δ = ω+ — ω_, 2+ = 1 + ω±φ 1φf. At ω± = 1 it is derivable from

^ 9 - δ _ φ ι δ + φ * ( l + φ 1 φ * ) - 1 - φ 1 φ f + (cc). (1.31)

First, let us consider the model (1.31) in M 2 space: z+ =η, z_ =ξ. Imposing the
restriction τφ2 = φι = φ, τ= ± 1 reduces (1.31) to

Equation (1.32) defines the complex sine- and sinh-Gordon equations [13-15, 26]
for τ = — 1 and τ = 1, respectively. In this paper they are referred to as 0(2) SGE in
order to be distinguished from 0(1,1) SGE (Subsect. 1.6).

Remark 1.2. As in Subsect. 1.1, we restrict ourselves to the choice z_ =ξ, which
leads to the subluminal solitons of 0(2) SGE. Substitution ξ^ — ξ changes the
mass term sign in (1.32) and these are converted into tachyons (cf. Remark 1.1).

Now let us pass to the Euclidean domain and put z+=z, z_ = εz*, ε= ± 1 .
Imposing the conditions τφ2 = φ1 = φ, co% =ω_=ω in Eq. (1.30), we obtain the
(non-Lagrangian) extended 0(2) SGE which is lacking in M 2 :

ι + τ(ω* - ω) φφfφz^\ ~ 2 = 0, (1.33)

S> = \ +τω|φ| 2 . At ω = 1 Eq. (1.33) may be derived from the Lagrangian

(1.34)

Remark 1.3. Due to the coincidence of the reduction conditions (q1=τq%,
q3=τεq%), the Euclidean MTM (1.26) is completely equivalent to 0(2) SGE (1.34),
the same also being true for their extended versions (1.28) and (1.33). Thus,
solutions for the two systems will be constructed simultaneously.

Under the restriction φ = φ*, Eqs. (1.32), (1.34) define the real SGE,

-φ\ (1.350

-εφ2 (1.35")

in M2 and £ 2 , respectively. At τ = l, setting φ = sinh/ yields J£11 = d + fd-f
— sinh2/. At τ = — 1 there are two cases: at | φ | ^ l , we put φ = sin/ and obtain
Jδfn =d + fd-f — sin2/, while at | φ | ^ l substitution (p=+cosh/ leads to
jS? n =d + / 3 _ / + sinh2/.

1.6. Sine-Gordon Equation with 0(1,1) Isotopic Symmetry. Let us substitute
z+ -+iz+, z_—• — zεz_, ε = + 1 , and require that ω± = 1, qu . ..,g 4elR. In both the
M2 and £ 2 case we introduce scalar fields φ± and φl2 such that φ~ =quφ

+ =q4,
φ± =φi±φ2' Eliminating q2,q3 from (1.11) as in Subsect. 1.5 produces a new
system of two real scalar fields derivable from

j£f12 = $ + φ+ S_φ~(\ + φ + φ~)~1 —εφ + φ~ = d + ψ <3_φ(l + Φ φ)~ 1 —εφ φ .

(1.36)

Here φ = (φ 1 ? φ2) belongs to isotopic space with 0(1,1) invariant scalar product:
φ-φ = φ1φ1 — φ2φ2, whence the name: 0(1,1) SGE. Similarly to 0(2) SGE, it
admits a complex formulation [see Eq. (4.7)]. Further, in M2 the system (1.36) can
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be extended to a non-Lagrangian equation (here we set z + = η, z _ = ξ and fix ε = 1):

ϊ 1 ±-ω±φϊφ£φ*@ϊ2±δ'φϊφϊφ±@l2@lί=09 (1.37)

with ω±elR.,δ = ω_—ω + ,@± = l+ω±φ + φ~. The reduction restrictions coincid-
ing, Eq. (1.37) is equivalent to Eq. (1.23) while the Minkowskian 0(1,1) SGE (1.36)
is equivalent to the second spinor model (1.24). Imposing of the constraint
φ + = τφ ~ = φ (τ = +1) on the Lagrangian (1.36) provides a deeper reduction to the
real SGE (1.35).

2. TV-Soliton Solutions for the Generic (Nonreduced) System

The gauge transformation generated by the matrix

g^diagμ 1 / 2 ,^- 1 / 2 } (2.1)

converts the linear problem (1.1), (1.6) to the following form3:

iδ±Ψ = {λ±2A2 + λ±1AΪ+A0

t)Ψ = A±Ψ, (2.2)

where ΨeGL(2,(C), A2 = \σ3, Ao

t=±F±σ3, and

) Hi ϊo); Hi ϊ)
The compatibility conditions (1.11) being invariant under the transformation (2.1),
we can use this stratified gauge instead of (1.1), (1.6). The motivation is that in
constructing solutions it provides us with an effective way to take into account the
special form of the linear problem matrices. Indeed, the linear problem (2.2) with
diagonal A2, AQ and off-diagonal A* [so that σ3A

±(λ)σ3 =A±{ — λ)~] results from
the Z2-reduction [6] of the general quadratic bundle (in which all the matrices
AQΛ>2 are generic). Hence, the manifold {Ψ(λ}} of fundamental solutions Ψ(λ) to
Eq. (2.2) is invariant under the involutory transformation Ψ(λ)-*σ3Ψ( — λ)σ3 [i.e.,
σ3Ψ(-λ,z±)σ3 = Ψ(λ,z±)H(λ) for some constant #(/l)eGL(2,(C)]. In this paper
we construct solutions qt vanishing at infinity so that Ψ(λ) can be chosen to obey
simply

σ3Ψ(-λ)σ3=Ψ(λ). (2.4)

To check this, take ^(z±) = 0 as the "bare" solution of Eq. (1.11) and choose the
related Ψ(λ) in the form Ψ0(λ) = exp{ — ί(λ2z++λ~2z_)A2}, evidently verifying
(2.4). If the dressed fields satisfy gt (z+)-•() at infinity we can select Ψ such that
Ψ(λ,z±)->cΨ0(λ,z±), ceC. Then Ψ(λ) verifies (2.4) asymptotically and, therefore,
identically.

The Dressing Procedure. In construction of soliton solutions we utilize the idea of
Zakharov-Shabat-Mikhailov's "dressing method" which is equivalent to solving a
rational Riemann problem [9,1, 6]. Define the GL(2, (C)-valued function χ(λ,z+)

3 This transition has been advised by A. V. Mikhailov. Another way of obtaining the stratified
gauge (2.2) is delineated in [5]
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("dressing matrix"), meromorphic in λ, with meromorphic inverse, regular at
λ=co, through the formula

χ{λ)=Ψ(λ)Ψo1(λ). (2.5)

Equation (2.4) implies σ3χ( — λ)σ3 = χ(λ), σ 3χ~ 1( — λ)σ3 = χ~1(λ), whence

(2-6')

where #, P ι, β 1 are 2 x 2 matrices. By the Liouville formula it may be inferred from
(2.2) that d + det Ψ = 0, and we can select Ψ in such a way, that K = χ(oo) e SL(2, (C).
Moreover, as σ3χ(cx))σ3 = χ(oo), R belongs to the diagonal subgroup
<L*cSL(2,(£):R = dmg{r,r~1}. Next, it is straightforward to verify that when
ω_ =0, r is constant [see Eqs. (2.28), (2.29) below] and we may normalize χ(λ)
canonίcally: χ(oo) = l . Generally speaking, it is sufficient to determine solutions
only for this particular case. Solutions to other ^-systems could then be obtained
through the gauge transformation (1.9), (1.12), (1.13). However, a serious drawback
to these latter solutions would be the presence of the nonlocal multiplier eΘ.
Therefore we prefer not to fix the gauge (and, consequently, the normalization) and
construct solutions for the whole family of ^-systems simultaneously. In other
words, we supplement the solution for the case ω _ = 0 (which is of limited
importance itself) with a closed expression for r(z+) (or, equivalently, for eΘ).

We shall be concerned with the generic situation of v̂  + + μk. Requiring that
residues of the left-hand side of the identity χχ ~1 = t vanish gives

09 ί = l iV. (2.7)

Without loss of generality, choose the degenerate P\ Qj matrices as

PΛB = xUtB, QiAB = ̂ ή, A 9 B = 192 (2.8)

Here x\ y\ sι, t ιe(C 2, ί=l,...,N. The components of these vectors may be
rearranged to form the vectors \xA}, \yA}> \SA}> l ^ ) 6 ^ ? A = \,2. For instance,
{xA\ = (xA, ...,xA) while xι = (x\,xι

2). Here and below the small Latin indices run
over 1, ...,N, whereas the capital Latins take only two values, 1 and 2. Also note
that <UA\VB} = UAVB+ ••• + M W Insertion of (2.8) into (2.7) yields

2 | α 2 i l = - < ί l i 2 | , (2.9)

where N x N matrices a1 and a2 are defined through

a^ivj-μfΓ1 (v/A +μiέ2t{), ^ = {vj-μfy1 (μiS\t{ + v/2t{). (2.10)

These matrices obey the obvious identities

l Si> <ίil = «i<v| —|μ>α 2, \s2} (t2\ = a2(v\-\μ}a1, (2.11)

where <v| = (v l 9..., vN), (μ\ = (μu ...,μN). Equation (2.9) implies:

\xu2> = ίal2\sU2}9 <yU2\=-Hh.2\al\. (2.12)
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Coordinate Dependence of s1 and t\ Using (2.5), the linear problem (2.2) may be
rewritten in terms of χ:

id±χ χ-ι+λ±2[χ,A2]χ-ι = λ±1A^+Aξ. (2.13*)

Inserting Eqs. (2.6) and (2.8) into (2.13) and requiring that residues of the left-hand
side at λ = vi,μi vanish, we obtain in view of (2.7):

(id±+v^2Λ2)ti = 0, (id±-μ±2A2)si = 0, (2.14)

whence the dependence oft1', s1 on z± is found to be (m*, nι = const e(C2):

tι' = exp{j(v2z++vf2z_),42}m\ sί = exp{-i(μ?z + + μ^2z_)A2}ni. (2.15)

Recovering of the "Potentials" qb F
±. As soon as the constraints (2.14) are imposed

on χ and χ" 1 , the expression f_(λ) = iδ_χ χ~ι + λ~2[χA2]χ~1 on the left-hand
side of (2.13") defines a rational function of λ with a single pole at λ = 0. Below,
expanding f-(λ) in the Laurent series in the vicinity of λ = 0, we shall determine A[
and AQ as the coefficients at A"1 and λ°, respectively. On the other hand,
expanding f-{λ) at λ = oo, we shall arrive at (formally) different expressions for A[
and AQ. Finally, comparison of the two results produces a priori valid identities
which will then be efficiently utilized. Equation (2.13+ ) will be treated in the same
way.

First of all, let us note an elementary relation

>. (2.16)

Here a is any non-degenerate N x N matrix, $0 stands for the augmented matrix

β~1) and | w i , 2 ) G ^ N Using (2.16) one easily proves that 4

(2.17)

where Λ l i 2 = d e t α l i 2 . Now, expanding (2.13*) at λ = 00 produces

(2.18)

(2.19)

(2.20)

ylo = i δ _ Λ J R" 1 . (2.21)

On the other hand, expanding (2.13±) at 2 = 0 yields

At = -2i{Πμjvjι d+[R(Λ2AΓι)°Ί XQ'jiΓ2)R~l

+ Πvjμj'd + lΣPi

1v^R-]{Δ^^R-1}, (2.22)

A ί = i δ + Λ l ? - 1 + i ( J 1 J ί 1 Γ δ + ( J 2 J Γ 1 Γ , (2-23)

A: =2Π(vjμ;1)Rσ3Σ(Pi

1vr2)(A1A^ΓR~1, (2.24)

J2)R-1, (2.25)

4 From now on we use the notations: Σfi = fι+...+ffi, Uf-} = f^ •... fN. The subscript
respectively ± indicates the diagonal respectively off-diagonal part of a matrix
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where the identities (2.17) have been utilized. At this stage we can write the
JV-soliton solution to the system (1.7)—(1.8) depending on an arbitrary functional
parameter r(z±). Using the notation {tAv~2\ = (tAv^2, ...JAv^2), A = 1,2 we find

from (2.18), (2.19), (2.21), and (2.24):

it2v-2\a^1\sίy9 (2.26)

, qι = -r2(t2\a~γ

ι 1^),

a21\s2), F-=2ir~1d^r. (2.27)

Calculation of the Function r(z+). In order to determine solutions of the ^-system
(1.11) we have to specify the function r(z±) by the requirement that Eq. (1.11") hold.
Substituting Eqs. (2.26) into (1.11") and comparing to (2.27) produces

2 ί r - 1 3 + r = - ω _ < ί 1 | α 2 - 1 | s 2 > < ί 2 | f l Γ Ί 5 i > . (2.28)

2ir-1d^r = ω_Π(vjμ^)2{tιv-2\a2

1\s2)(t2v-2\a^\s1). (2.29)

To recover r(z±) from here, we shall need certain auxiliary identities.

Lemma 2.1. Let the matrices al5 a2 be defined by Eq. (2.10) and s$γ,s$2 stand for the
augmented matrices. Then the following relations hold for any n,£:

<ty\^2\siμ-
ιy=π(vjμ7i)(ty-1\^ι\s1y, (2.30)

<t2v-1\^2\s1μ
n) = Π(μjv^)(t2\^1\sίμ

n-1). (2.31)

Proof. Consider an auxiliary expression

(a) ^ = Λ2 + < t 2 v V 2 | s 1 μ - 1 >

and transform it by means of the identity (2.16):

Applying the first relation in (2.11) yields then

^ = 7 7 v A r M e t ( α 1 - | 5 1 > < ί 1 v - 1 | + | S l

while the identity (2.16) implies:

Finally, in view of Eq. (2.11) we have

(b) ^ = 77vJ.μΓi{77μ.vΓi/l2 + < ί y - V 1 | s 1 > } .

Comparing (a) to (b) we establish (2.30). Equation (2.31) is proved by analogy.

Corollary. The following identities hold:

Πvjμr\ι2v-2\a[1\s1} = Πμjvi\t2\a^\Slμ-2), (2.32)

77^v7 1 <ί 2 v |α 2 - 1 | s 1 μ- 1 >=77v A r 1 <f 2 v- 1 |α 2 - 1 | s 1 μ>, (2.33)

Πvjμj\tιv-2\a-2

ί\s2} = Πμjvj\tι\a~2l\s2μ'2>- (2-34)
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Proof. Putting ί=-\ in Eq. (2.30) and comparing to Eq. (2.31) with n=-ί
produces the relation (2.32). Similarly, the identity (2.33) is proved by combining
Eq. (2.30) with ^ = 1 and Eq. (2.31) with n= 1. Next, let us note that new identities
may be generated from (2.30)-(2.33) merely by the permutation of indices 1 +± 2.
For example, Eq. (2.34) is the permuted Eq. (2.32).

Lemma 2.2.

Proof. Equations (2.23) and (2.25) provide alternative expressions for F

(2.35)

(2.36)

Comparing these to (2.27), we are led to Eqs. (2.35), (2.36).
Now, applying the identity (2.34) in Eq. (2.36) and comparing (2.35), (2.36) to

(2.28), (2.29) results in the following

Proposition 2.3. Solutions (2.26), (2.27) satisfy the identities (1.11") if and only if up
to an arbitrary multiplicative constant

r(z + ,z_) = (AίA2

ίr-/2. (2.37)

Soliton Solutions in Explicit Form. In order to have a determinant formulation of
solutions, let us note the elementary identity [3]

\u2) =
1

detα

0 I

+

\u2} i
(2.38)

On the right-hand side of (2.38) there is a determinant of (A/Ή-1) x (JV+1) matrix
composed of N x N matrix a, Λf-column \u2} and iV-row <M1 |. NOW, substituting
Eq. (2.37) into (2.26) yields the JV-soliton solution to the ^-system (1.11).
Symmetrizing the found expressions by means of the identities (2.32)-(2.34) and
employing the representation (2.38), we arrive at the main result of this section5:

Theorem 2.4. The general N-soliton solution of the Ή-system (1.11), propagating on
zero background, is given by

(t2\aλ

 1 | 5 1 > = -

<tί\a2

ι\s2y=-

Aω

Ί~

0 i <ί

q4=-
μ

h —

s2y i a2

0 i (t2v~ι

) I a2

0 I < ί , v "

a

(2.39)

(2.40)

(2.41)

(2.42)

5 Although in the remainder of this paper we do not write determinants explicitly [as in
(2.39)-(2.42)], in view of the identity (2.38) all solutions should be understood as determinant
ratios
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Remark 2.1. If we are interested in solutions to the second order system (1.30), then
only q1 and q4 are needed. In this case the following formulas turn out to be more
efficient5:

(2.43)
q4= - Π ( v A r i ) ( z M - i ) " + - i (tlv-2\a^\s2)

These are obtained by using Eq. (2.30) for {— ± 1, Eqs. (2.32) and (2.34).

Remark 2.2. Solutions in the form of determinants ratio are usually supposed to be
hardly verifiable. In order to simplify the verification, we shall provide simple
closed expressions for the derivatives of (2.39)-(2.42), which are involved in the
equations of the ^-system. Consider first an alternative representation for the
solutions:

(2-44)

which follow from (2.20), (2.22), and (2.37). Comparing then (2.44) to (2.39)-(2.42)
produces the necessary derivatives:

In view of Eqs. (2.35), (2.36), and (2.45) the verification is straightforward.

Remark 2.3. Redefinition x ' - ^ x', t 1 - ^ " 1 ^ , s'->^sl, y£—> ί̂~
1yi, // ?^-e(C leaves

P\ Qι and therefore the solutions, unchanged. Below this invariance will be used
to normalize sι and f in a suitable way.

3. Extended Massive Thirring Model in Minkowski Space

In M2 we put z+ =η,z_ = ξ. The reduction to extended and conventional MTM is
defined by the restrictions (1.21), which amount to the requirement that iAf and
iA$ lie in the real form su(2) of sJ(2,C) algebra: (Afy = Af, {A$f = A$. Since
in this case (ιF~1(/l*))t also satisfies Eqs. (2.2), an additional involution Ψ(λ)
->(!fί~1(i*))t is defined on the manifold {Ψ(λ)}. In other words, a coordinate-
independent matrix H(λ) exists such that lF(λ) = (Ψί"1(λ*))tH(λ). For χ (2.5) this
implies

χ(λ*;η,ξyχ(λ;η,ξ)=Ψΰ(λ;η,ξ)H(λ)Ψo1(λ;η,ξ). (3.1)
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For general H(λ) the right-hand side of Eq. (3.1) possesses essential singularities at
λ = 0 and λ = GO while the left-hand side is rational in λ. These singularities are
removed if and only if H(λ) is diagonal. Furthermore, in the generic case H(λ) may
be easily shown to be actually ^-independent:

Lemma 3.1. Assume m\,mι

2ή=0, ί = l , . . . , JV. Then H(λ) is a constant matrix.

Proof. Equation (3.1) implies that H(λ) = χ{λ*Y χ(λ) is a rational function with
simple poles at λ= ±vb ±vf, regular at Λ=oo. Consider, e.g., the residue at
A = vf:res{ίί(λ),vί}=p i(g)t i, where p* = χ(vf ) f JRX*, and tf is given by (2.15). The
residue is (η, ̂ -independent only if for any constant ce(C 2 the vector
c' = c res {H(λ% v j is constant as well. However, provided c' φ 0 and in view of the
assumption, the expression c\/c'2 = (m\/m2) exp {i(vfη + v[~ 2ξ)} does depend on the
coordinates. Therefore, c' = 0 for any c e C 2 and the residue vanishes. Q.E.D.

For a diagonal constant matrix H Eq. (3.1) implies χ{λ) = (χ~1(λ*)fH.
Equating poles and the corresponding residues in the left-hand side of this
equation to those in the right-hand side produces, without loss of generality

(3.2)

v~μf, i=ί,...,N; (3.3)

^ ^ i = l , . . . , J V . (3.4)

From Eq. (3.4) it ensues that t W ^ i ^ f i x W r y * , ^ e C . By Remark 2.3 we
may set ί{ = 1, i = 1,..., N. Substituting then sι*H for f and μf for vf in Eq. (2.10), we
note that a\=-a2 and Δf = {-ί)NΔ2. By means of Eqs. (2.37) and (3.2) H is
evaluated to be the unit matrix, and finally we find:

mί = n\*, mι

2 = 4 * , i = l , . . . , N . (3.5)

Thus, we are able to formulate the following

Proposition 3.2. The general N-solίton solution to the (extended) Massive Thirring
Model (1.20) is extracted from the solution (2.39)-(2.42) of the ^-system by imposing
the constraints (3.3), (3.5).

Now let us exhibit the JV-soliton solution of MTM in covariant form. Under
the proper Lorentz transformations we have:

x"^O' i V x v ,O 1 1 = O 2 2 = coshφ, O 1 2 = O21=sinh</>. (3.6)

In spinor representation the rotation (3.6) is given by the matrix S = exp( — \ φσ3),
while the reflection x1-^— x1 is represented by S = σί.To specify the transform-
ation properties of solutions, let us adopt that the column ψi = (μhμr1)τ

transforms as a covariant spinor. That is, if μf = eβ\ then we have /?;-•/?,• — \ φ under
SO(1,1) rotations (3.6), and βi^-βi under the reflection x1-*—x1. Next, it
appears useful to introduce a unit complex space-like vector fcf = — ^iΨiyμΨi
eM^Ψ—Ψlγo) so that kf=-icosh2βi9 k\ = iύnhlβi and a scalar ζ?:exp(C?)
= n\μj~1/2. Lastly, by Remark 2.3 we may, without loss of generality, impose the
restriction ni

ιn
i

2 = μi. Then JV-soliton solution of (extended) MTM is 5 :
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where Cf = i fcfx,, + ζf, and ax matrix acquires the form

4 = coshfo + ζ* - \ βt + \ βf)/sinh(βf - βt).

Under 50(1,1) rotation (3.6) a1-*aι and ψ = (u,v)τ transforms like a covariant
spinor: ψ->e~φσ*/2ψ. Under the reflection x1^ — x1 we have ai-*a\ and (for
ω± = 1) xp^σ^xp6.

In conclusion let us remark that JV-soliton solution of the conventional
(ω+ = 1) MTM was obtained first in [16], in a different (non-determinant) form.

4. 0(1,1)-Sine-Gordon Equation
and the Second Massive Spinor Model in M2

Let us consider Minkowski space and set z+=iη, z_ = —iξ (cf. Sect. 3). The
systems (1.23) and (1.37) emerge under the condition of reality of ω ± , qu ...,q4. In
this case AQ and A* lie in sl(2, ΊR) which is equivalent to existence of the following
involution on the manifold {χ{λ)}:

{χ-\λ*ψ = H-'χ-\λ), (4.1)

H being diagonal and constant in analogy with Sect. 3. Equations (4.1) imply:

H = dmg{h,h*}=R*R-1; (4.2)

vi —ιiv(i)> m i —nm1 , m 2 — ιtn m2 ,

μf = y^m, nψ = h*nψ, nψ = ythnψ,

i = 1,..., N; ιb yt = ± 1. Here we have introduced two independent permutations of
N numbers: {1,...,JV}-*{(1),...,(JV)} and {1, ...,tf}->{[l],..., [N]} ((/) and [/]
denote the corresponding images of i) such that ((0) = [[*']] = Ϊ VΪ e {1,..., A7 }̂. By
means of Eqs. (4.3), (2.37), and (4.2) h is calculated to be

h = (Πιjyj)
ω-12 (4.4)

(from now on the value of h is fixed). So we have

Proposition 4.1. The general N-soliton solutions to the (extended) second massive
spinor model (1.23) and (extended) 0(1,1) SGE (1.37) are extracted from the solution
(2.39)-(2.43) of the ^-system by imposing the restrictions (4.3)-(4.4).

N-Solίton Solution of 0(1,1) SGE in Covariant Form. Below we limit ourselves to
the case ω+ = l. Let us define two Lorentz scalars, txp(ζf) = n\ and exp(z?)
= (my ~ \ and two unit vectors, kf and q?(i=ί9...,N) such that kf = \ (μf - μf~

 2),
k\ = -\{μf + μ[2), q°t=\(v[2-vf\ q\ = \(yf + vf 2). Due to the Remark 2.3, we
may impose the constraints n\n\ — v^ and m\m\ = otvb where Ό{ = {± 1 for i = [/] 1
otherwise}, while δι = {±l for i = {i); 1 otherwise}. Using then Eqs. (2.43) for
qx = φ~ and q4 = φ + , we obtain 5:

-Zy, φ~ =Π(μjvj1) ( e ' ^ 1 k ζ>. (4.5)

' Below we, for brevity, restrict ourselves to the proper Lorentz/orthogonal transformations
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Here b^iδ/^ + Όfi-^'ή/ivjμΓ2-!) and ζ^kfx^ζf, z—iqfx^zf.
Since v2μt

 2 = (qlj + εμvqjv)k iμ, solution (4.5) is indeed invariant under the Lorentz
transformations (3.6)6.

One-Soliton Solution. For N=ί, introducing eζ~ = (5Γ 1 / 2 ϋΓ 1 / 2 exp(-z?-ί?) 5

-C?), ea = ίμ1vu e^iμ^1 we rewrite (4.5) as

± _ e x p { ± [ s i n h ^ ( c o s h α x + s i n h α x ) + z ] }

~~ cosh {cosh^(sinhα x° + coshα x1) + C)

Here, in view of Eqs. (4.3)-(4.4), ea*= -ττe α , eβ* = -ττeβ, e^* = τe\ e**= — τez (we
have denoted γίv1 δx = τ, ^ u ^ Ξ τ ) . At τ = l wehavelm£ = θ, the denominator of
(4.6) vanishes nowhere and the soliton is regular in the finite part of (x°, x1) plane.
At τ = — 1, conversely, φ * is singular there. In the generic case of sinh/?Φ0, φ± is,
in addition, unbounded as |xx | or |x°|->oo. To make sure that solution (4.6) indeed
represents a localised object, it is advantageous to pass from φ ± to new variables.

Namely, provided τ = l, Eq. (4.6) implies φ + φ~^0, and we can introduce
complex field φ = ρei& with ρ = (φ + φ~)ί/2 and 5 Ξ a r c tanh[(φ + —φ~)/(φ+ + φ " ) ] .
If τ = — 1 , the soliton (4.6) obeys φ + φ ~ ^ 0 , and we define ρ = ( — φ + φ~)ι/2,
θ Ξ arc tanh [(φ + + φ " ) / ( φ + — φ )~]. Transforming to φ, Lagrangian (1.36)
becomes

1 2 1 2 τ = ± l , (4.7')

or, in the covariant notation [Jμ = i(φ* dμφ — φdμφ*)~\\

\d,M2 . .o 1 J2,

In terms of the new variable solution (4.6) decays rapidly as Ix1!—>oo (or as
|x°|->oo). This justifies its being referred to as a soliton. At ττ= — 1 the soliton is
infraluminic, while at ττ = l it is a tachyon.

The Real SGE. Among the solutions (4.5) there are ones remaining finite as
|x°|,IX^-KX). This important subclass satisfies the constraint τφ+=φ~
= φ (τ= +1), with φ verifying the real SGE (1.35').

Proposition 4.2. The general N-soliton solution to the real SGE (1.35') is extracted
from the solution (4.5) of 0(1,1) SGE by imposing the restrictions

), -̂ = ̂ . (4.8)

Proof. Under the reduction (4.3)-(4.4) the identity (2.33) acquires the form

1\eί>. (4.9)

On the other hand, Eqs. (4.8) imply bι£=—μ2δib%vj2δjy whence
φ+ =τiN(e~zv~2\b21\μ2eζ). Making use of (4.9), we obtain
φ+ =τ(-i)N ie'z\b21\eζ} = τφ~. Q.E.D.

Combining Eq. (4.8) with (4.3)-(4.4), we can cast the JV-soliton solution of the
real SGE (1.35') into the following ultimate form5:

φ = <e-z\b21\ez}9 (4.10)

where b2

j={eZi+z'-τe-Zi-zή/(μ]μr2 + ί) and exp{(z?)*} = ϊίexp{z{J.)}.
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5. Massive Thirring Model and O(2) sine/sinh-Gordon Equations
in Euclidean Space

In E2 we set z+=z, z_=εz*,ε= + 1 . Reduction to the (extended) 0(2) SGE (1.33)
and, simultaneously, to the extended MTM (1.28) is defined by the requirements
(1.27) which amount to the following constraints:

(Aϊ)i = τ£2Aΐ9 (Aoγ = εA+, (5.1)

with ^ = diag{l, j/ε}. Unlike the cases discussed above, each of the conditions (5.1)
relate two different matrices. Consequently, this reduction is not associated with
any real form of the sl(2, (C) algebra; nevertheless, its solutions are extracted in the
same way. From (5.1) it ensues that a diagonal matrix H exists such that

χ{λ) = £-\χ-\τfε/λ*)yH, (5.2)

in the generic case (mΐ,m ι

2Φ0, i=l,...,N) H being constant. Also it may be
inferred from (5.2) that

W = S2H. (5.3)

Now, comparing the left-hand side of (5.2) to the right-hand side, we have

Γ 1 , ί=l,. . . ,JV; (5.4)

F= -τε}/ε~(μfΓ2 ̂ -'(RT'Q^ (5.5)

H = Π(μjVr ψ(A */A fΓ <?R^, (5.6)

where we have used (2.17). Expressing t1 from (5.5): tι = kiH^, kteC and inserting
into the matrices (2.10) gives, with the help of (5.3):

eίδ=±{]/ε)N, (5.7)

where ^ a r g ^ z l ^ 1 ) . Combining Eqs. (5.6) and (5.7), we obtain
H=±τNΠ\μj\

2£>2N + 1exp(-δΩσ3) with Ω = lmω. Finally, picking
ki=±τNΠ\μj\-2

9 i = l , . . . , Λ Γ yields

mi=e~*β«i*, mi2 = εN]/εeδΩnψ, (5.8)

the values of ]/ε and δ being fixed. Thus, we arrive at

Proposition 5.1. The general N-solίton solution to the (extended) Euclidean MTM
(1.28) and 0(2) SGE (1.33) is extracted from the solution (2.39)-(2.43) to the
^-system by imposing the restrictions (5.4), (5.7), (5.8).

Let us cast the Euclidean 0(2) SGE N-soliton solution into a covariant form6.
Define Euclidean unit vector kι

μ through the relations k\ = — \ ί(μf + εμf~
2),

^2 = 2(tf — Ψϊ'2)> ι = l? ...,iV and a scalar ζ^ by exp(C?) = exp( — %δΩ)n\. Accord-
ing to Remark 2.3 we may impose n\n\ = μt. Then solution to 0(2) SGE is obtained
from the first formula in (2.43)5 :

) . (5.9)
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Here ζt — \kι

μxμ + ζ°, and matrices bi=τ\/ε\μ)ai and b2 = \μ}a2 are given by

The quantity (μiμ*)~2 = (kι

μ + iεμvk
ι

v)kj* being invariant with respect to SO (2)-
rotations of E2 space, bu b2 and, eventually, φ are SO (2) scalars.

The one-soliton solution at £2 = 0 looks like

Hence, in contrast to the M 2 case (cf. Sect. 6), the Euclidean 0(2) sinh-Gordon
equation [Eq. (1.34) at τ = l ] possesses both singular (ε= — 1) and regular (ε = l)
solitons.

Reduction to the real Euclidean SGE. At ω = 1 the real solutions in (5.9) satisfy the
usual SGE (1.35"). In order to isolate the real φ's, let us first recall the identity (2.33).
Under the conditions (5.4), (5.8) it reads

(μ*2e-ζ*\b2-
ί\eϊμ2} = εN+1(e^*\b2-

1\e^. (5.10)

Next, consider a permutation {1,..., N} -• {(1),..., (JV)} such that ((/))
= i Vze{l, ...,N}. Imposing the reduction conditions:

(μf )2 = - εμ^2 => k[* = k®, exp(C?*) = κf+1 exp(C(°0) (5.11)

with κ~ ± 1 , we simplify the expression (5.9):

φ = (e~^\b21\eζ). (5.12)

Also we observe that bi

2

j^=—εκ{i)μ^)

2b(

2

ιnj\μfj))~2κ{j). Using this relation and
Eq. (5.10) one easily verifies that φ — φ*. Thus, we have

Proposition 5.2. The general N-soliton solution to the real SGE (1.35") in E2'-space is
given by Eq. (5.12) subject to the constraints (5.11).

Let us say that a pair (μf, ζf) corresponds to a "soliton" provided (ί) = i. If,
conversely, (i) Φ i, then the set (μi9 ζf, μ(i), ζfί}) parametrizes a "bion." Asymptotically,
as | z | 2 ^oo, solution (5.12) splits into a set of "solitons" and "bions." In the case of
ε = l Eq. (5.11) implies that the "soliton" component is absent and (5.12) is a
nonlinear superposition solely of "bions," regular at both τ. At ε = — 1 both types
of constituents contribute in (5.12), "solitons" and "bions" being singular at τ = 1
and regular at τ = — 1.

In conclusion let us note that in the case τ = ε = — 1 the N-soliton solution to
the real SGE (1.35") is known in Hirota's form (see [22] and refs. therein).

6. 0(2) sine-Gordon Equation in Minkowski Space

In M2 space (z+ =η,z_= ξ) the reduction to 0(2) sine/sinh-Gordon equation (1.32)
is defined by imposing the conditions (υ = consteR):

qi=eίυφ, q4. = e-
iϋτφ*, ω ± = l . (6.1)



Solitons of the Unified Lorentz Fields 441

Then q2 and q3 are automatically constrained by (1.29). Unlike the E2 case, the
above restrictions do not result in any straightforward algebraic constraints on AQ
and Aγ matrices. In this situation the simplest way to extract the specialised
solutions consists in analyzing the explicit expressions. From Eq. (2.43) we have

τq%= - j

Identifying then

μt = vf, m\=μfnψ, mι

2= — τv[ιnι

2* (6.2)

yields <ί 2 v |=-τ<sf | , | s 1 μ" 1 > = |(ί1v~2)*>, a\=-a2, and, finally, qί=τqt

Regular Method of Finding the Reduction Conditions. To prove that relations (6.2)
extract the most general iV-soliton solution to 0(2) SGE, we shall exhibit the
involution defined on the manifold {Ψ(λ)} and responsible for the discussed
reduction. The restrictions this involution induces turn out to be given just by (6.2).

Let us start from the triangular gauge (1.6), the conditions (6.1), (1.29) being
imposed. The gauge transformation (1.4), generated by the matrix gτ:

w iτll2eiΌ

(τ 1 / 2 fixed), converts I/*, E/o matrices into the following ones:

U2 = Ί σ3, ffo = ( 4 ^ ) " l ίφξφ ~' - (cc.)] ̂ 3

ί/0

+ = (4iS>) ~1 l(φηφ ~» + 2τφηφ*) - (cc.)] σ2

,-2\

o - ( 6 4 )

~iΌφ*w2 0

At τ = 1, respectively τ = — 1, these matrices times ί lie in su(ί, 1), respectively 5w(2)

real form of 5/(2, C) algebra: {ϋ^ = 3Γϋ^, φ ^ = ̂ ϋ ^ , with

^" = diag{l, — τ}. Consequently, there exists a matrix H(λ) such that

Making now the composite gauge transformation with g = g^1gs(λ), we return to
the stratified gauge (2.2)-(2.3). The relation (6.5) induces then the involution

ί(λ) (6.6)

on the manifold {Ψ(λ)}. Here

In analogy with the consideration in Sect. 3, we can demonstrate that H(λ) is a
diagonal matrix, Eq. (6.6) being reduced to

(6.8)
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In the generic case of m i , m ^ 0 , i = 1,..., JV a rational function

H(λ) = χ\λ*)G(λ)χ(λ) (6.9)

possesses no poles at λ = ±vb ±vf (the proof repeats that of Lemma 3.1). Thus, the
Laurent expansion of H(λ) at 1 = 0 contains only a finite number of terms and can
be easily evaluated from (6.9):

H(λ) = ̂ -1/2\A1A21\dmg{λ9-τΠ\μjv]-1\2λ-1}. (6.10)

Finally, inserting Eqs. (2.6) and (6.10) into (6.8), and equating the corresponding
poles and residues yields the reduction conditions (6.2). So we have

Proposition 6.1. The general N-soliton solution of 0(2) SGE (1.32) is extracted from
the solution (2.39) of the ^-system by imposing the constraints (6.2).

In order to provide the covariant form of solutions6, let us define unit complex
space-like vectors k?:k?= —ji(μf + μ^2), kf = \i(μf — μf~

2) and scalars ζf: exp(C?)
= n\. In view of Remark 2.3 we may impose n\n2 = μt. The iV-soliton solution (2.43)
to 0(2) SGE is then rewritten as 5 :

φ = <e-?\bϊ1\e!y, (6.11)

where ζ. = ^kfxμ + ζf and b2 = \μ)a2((μ~1)*\ matrix is given by

Since (μf~
 1 μ*) 2 = (k1} + εμvkjv)kiμ, solution (6.11) indeed represents a scalar. Finally,

it should be noted that at τ = — 1 the 2-soliton solution is known in Hirota's form
[15].

Sometimes, it is worth having a closed expression for the modulus of N-soliton
solution. The modulus of the solution (6.11) reads:

\φ\2 = τ(|detfo1/detfo2|
2 - 1 ) , (6.12)

where bγ = |μ)α 1 <(μ~ 1 )* | matrix is defined by

bll = {μΓ V ; exp(Ci + ζf) ~ τ(μr 'μf)~1 e x p ( - ζt - ζf)}/l(μΓ lμj)2 - 1 ] .

To obtain (6.12) we observe that dctG(λ)= - τ , detJ/(A)= -τ9~γ\AγAlι\2 and
detχ(oo) = l. Comparing then the determinants of the right-hand side and left-
hand side of (6.8) at λ = ao produces (6.12).

The Real SGE. Now let us extract solutions of the real SGE (1.35'). At this stage it
is useful to fix υ = \π. Then condition φ = φ* is equivalent to the equalities {A*)*
= +iA*, (AQ)*= —A^, which induce an additional involution on the manifold
{Ψ(λ)}: Ψ(λ)^Ψ*(iλ*)e{Ψ(λ)}. Following the standard procedure we arrive at

Proposition 6.2. The general N-soliton solution to the real SGE (1.35') is extracted
from the solution (6.11) of 0(2) SGE by imposing the restrictions

μ* = iμw^k}* = k(l), exp(C?*) = fciexp(C°)), (6.13)

where κ{ = + 1 and the parentheses denote any permutation of indices such that
((0) = i Vie{!,...,#}.
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The quantities labelled by i satisfying (i) = i correspond to single solitons,
whereas at (i) + i pairs {ί,(i)} label bions (breathers).

The iV-soliton solution to the real sine-Gordon equation is, of course, well-
known (see, e.g. [17-20]). The sinh-Gordon case has been treated in [21].

7. Connection Between Solutions with the Vanishing
and Non-Vanishing Boundary Conditions

Let us consider the complexified sine-Gordon equations in M2 space, i.e., (1.32)
and (4.7). As we have already mentioned in Remark 1.2, the sign of the
corresponding mass terms may be changed merely by substituting ξ-+ — ξ. This
substitution takes subluminal solitons to tachyons and vice versa, boundary
conditions remaining the same. Below we shall exhibit a less trivial invertible
transformation that also changes the mass term sign but, unlike the above
substitution, relates solutions with the vanishing asymptotics M~->0 to solutions
with the boundary conditions |φ|->l as \xx\ (or |x°|)->oo. In particular, the
previously constructed solitons (subluminal, decaying at infinity) are converted
into subluminal kinks.

It appears useful to rewrite 0(2) sine-Gordon equation,

\φ\2) = 0, (7.1)

derivable from the Lagrangian (1.32) with τ = — 1, as

Qηξ + Q(QηQξ - W ί1 - £ 2 ) " * + eρ(l - Q2) = 0, (7.2')

[VtWV^+EVC1-^)-1]^0- (7.2")
Here ε = 1, φ = ρea, 9 e IR, ρ > 0. Consider solutions satisfying ρ ̂  1. In view of (7.2")
we may introduce new variables by

e M l - ρ 2 ) 1 ' 2 , §η=-$ηQ

2(l-Q2y\ 5ξ = V ( l - ρ 2 ) - ' (7.3)

(these relations define S up to an additive constant). By simple substitution one
verifies then that ρ and # obey (7.2) with ε= — 1. Thus we have

Proposition 7.1. Assume that φ = ρeιS~ is a solution of Eq. (7.1) such that ρ ̂  1. Then
φ = ρe^ with ρ and $ defined through (7.3) solves the equation

Φηξ + ΦηΦξΦ*(l - \Φ\Tl ~ Φ(l - \Φ\2) = 0 (7.4)

Remark!.1. According to Eq. (6.12) with τ= — 1, iV-soliton solution (6.11) of
Eq. (7.1) [propagating on zero background, i.e., \φ{xμ)\-+0 as Ix^-xx)] verifies
ρ^l . Applying the transformation (7.3) one generates a solution to Eq. (7.4)
consisting of N kinks (\φ(xμ)\^l). The formula for its modulus is straightforward
from (6.12).

In the case of τ = l Eq. (1.32) defines 0(2) sinh-Gordon equation:

^ ^ ^ H 2 ) = O. (7.5)

Let us introduce a new field φ = ρexp(ϊ5) by the relations

Q = (\+QΨ\ 5η=-$ηo
2(\+Q2Γ', ^ = ^ 1 + ί ?

2 ) - 1 . (7.6)



444 I. V. Barashenkov and B. S. Getmanov

The following statement is then directly verified.

Proposition 7.2. Assume that φ = ρeι& is a solution of Eq. (7.5). Then φ = ρexp(i3)
with ρ and 3 given by (7.6) solves 0(2) sine-Gordon equation (7.4).

Similar assertions may be proved for 0(1,1) SG model (1.36) as well. The
corresponding equations of motion read (we put z+=η, z_=ξ):

In terms of the product and quotient variables, 0> = φ + φ~ and l =
Eqs. (7.7) are conveniently rewritten as

= 0, (7.8)

^ ^ ^ ^ (7.9)

Equation (7.9) permits us to define the new fields # and Ά through

(7.10)

Inserting then Eqs. (7.10) into Eq. (7.8), we are led to

Proposition 7.3. Assume that φ± is a solution of the system (7.7) with ε = 1. Then φ±

with ̂  = φ + φ~ andM = φ+/φ~ defined by (7.10) obeys the same system (7.7), but this
time with ε = — 1.

8. Concluding Remarks: Relationship Between the Models Discussed

One of the advantages of the UNILOF scheme is that it provides a deeper
understanding of the relations between scalar and spinor integrable systems.
Consider, for instance, Minkowski space. It is well known that on the quantum
level the (real) sine-Gordon equation is equivalent to the massive Thirring model
[23]. On the classical level the equivalence disappears [24] - at least because
MTM involves twice as many field variables (taking in account the order of
equations). However, one can suppose that MTM is related to some two-field
generalisation of SGE. The UNILOF scheme allows us to exclude at least 0(2) and
0(1,1) SGE from the list of possible candidates: MTM and these two equations
arise under the distinct reductions of the same more general system.

The situation changes drastically in E2 space. According to Remark 1.3, the
Euclidean MTM (1.26) is in one-to-one correspondence with 0(2) SGE (1.34)
[expressing v from the first equation in (1.28) and inserting into the second one
yields exactly (1.33)]. Instead, in Minkowski space there is a relation between other
systems. Namely, in Subsect. 1.6 the second massive spinor model (1.24) has been
shown to be equivalent to 0(1,1) SGE (1.36), (4.7). Since the real SGE is a reduction
of the latter, the above observation provides the spinor model to which SGE
corresponds classically (in the sense that solutions of SGE at the same time satisfy
the equations of this spinor model). Lastly, both in E2 and M2 spaces the generic
system (1.14) may be interpreted either as a model (1.17), (1.25) of two spinor fields
or as an equivalent system (1.31) of two complex scalar fields.



Solitons of the Unified Lorentz Fields 445

We close this section by including, for the reader's convenience, a diagram
illustrating the relationship between the systems involved in the non-degenerate
5/(2, C) case of the UNILOF scheme:

The J£-system of
two spinor fields

The seconc

MTM

i massive

spinor modei

M2,E2

E

M2 ^ Γ

The ^ - s y s t e m of

two scalar fields

2

0(1,1) SGE

0(2) SGE

SGE
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