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Abstract. A new proof of the M. Herman theorem on the smooth conjugacy of
a circle map is presented here. It is based on the thermodynamic representation
of dynamical systems and the study of the ergodic properties for the
corresponding radom variables.

1. Introduction

In this paper we present a new proof of M. Herman's famous theorem about
smooth conjugacy of diffeomorphisms of the circle to rotations. Our proof is based
on a version of thermodynamic formalism which was used earlier for the study of
Feigenbaum's mappings of the interval (see [1]) and later for some critical
mappings of the circle (see [2, 3]).

Consider a strictly monotone continuous function φ such that φ{x + \)
= φ(x) +1.11 defines a homeomorphism of S1 through the equation: Tφx = {φ{x)},
XE [0; 1). Denote the rotation number of Tφ by ρ.

Assumptions. A.I. φeC2 + γ, y >0, φ'^const>0
A.2. ρ is irrational and if

is the expansion of ρ into continued fraction, then kn^ const nv, v>0.
If ρ is irrational and φ e C2, then Denjoy's classical theorem states that Tφ is

topologically isomorphic to the rotation with angle ρ. In other words there exists a
strictly monotone continuous function ψ, ψ(x + ί) = ψ(x) + l, such that ψ(φ{x))
= φ(x) + ρ. If we denote Rρ=Tφo φ o = x + ρ, then the last equality means TψTφ

= R T

Herman's Theorem. Under the Assumptions A.I, A.2 the function ψeC1.

For us it will be convenient to prove a statement equivalent to Herman's
theorem. This is pointed out in Arnold's paper [11]. Let us write the equation for
the density π(x) of an invariant absolutely continuous measure, provided that such
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a measure exists: π(Tφ(x)) _ 1

π(x) φ'(x)'

Herman's Theorem. Under the Assumptions Λ.ί, Λ.2, Eq. (1) has a continuous
strictly positive solution.

The equivalence of the two formulations follows from the equality ψ(x)
X

= \π(y)dy. Take any point xoeSι and its semi-trajectory 0 = {xn}o, xn=T£x0
0 ; _ !

which is everywhere dense on S1. Put τφc0) — 1 and n(xt) = f] (φ'(xk)) ] . Thus, the
k = O

function π is defined on 0 and satisfies there (1). We shall show that it is continuous
on 0 and can be continued to a positive continuous function on the whole circle.

Our method uses the ideas of the renormalization group theory in the theory of
dynamical systems, as it is presented in [4, 5]. We hope that it can also be useful for
the critical mappings of the circle.

The first proof of Herman's theorem was published in [6]. Later there
appeared shorter versions (see [7]). For us the exposition presented in the
dissertation by Yoccoz [8] was very useful.

In contrast to the positive results of this paper, there are examples [12] of C 2

diffeomorphisms arbitrarily close to a rotation which are not C 1 conjugate to a
rotation, even if their rotation numbers satisfy the hypothesis given here.

2. The Symbolic Representations of Real Numbers Generated by Tφ

Denote by ρn = — the nth approximant of ρ, i.e. ρn = [fc1? fc2,..., k„]. The numbers

pm qn satisfy the recurrence relations

Pn+l=K+lPn + Pn-l> Pi = 1 > Pθ = 0, (2')

<ln+l=h+l<ln + <ln-l, Ql=kί9 qO = ^' (2")

Take any integer m^qn+1. It can be written in the form

where 0 ^ a{ S ki+ v This representation is nonunique. For any x0 e S1, let us denote
by C{Q\X0) the closed intervals whose end-points are x0, xqn, C\n\x0)= T^C^\x0).
The following lemma is well-known.

Lemma 1. For every n the intervals C("\x0\ 0^i<qn+u Cf + 1\x0\ O^j<qn are
mutually disjoint except the end-points, and cover the whole circle.

Introduce the partition ξn of S1 whose elements are C\n\x0\ 0^i^qn + l — \,
Cf + 1\x0\ O^j^Qn —1 The partitions ξn are monotone-increasing, ξnSζn + i i n

the sense that each Cξn consists of several Cξn+ί. To be more precise each Cj " + υ(x 0),
O^j<qn is also an element of the partition ξn+1. But each C[n)(x0) is partitioned
into (fcΠ + 2 + l) elements of ξn+1 because we have the equality:

c\n\x0)=c<r+2χx0)v kn+\j ι c\n

+γn\jqn+ί(x0). (3)
7 = 0
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qn+ i +qn- i*i

In other words if 0n = (J , then each C[n) contains exactly fcπ + 2 new points
ί = 0

of 0n+1# It will also be important that C|n)(x0) = C(

o

n)(Xj). One can construct a unique
symbolic representation of any xeS1 not belonging to the set of end-points of all
C\n\x0\ 0^i<qn + 1, using some inductive procedure. Put an + ί = A if x e C[M + 1 \xo\
0^i<qn and an + ί = kn + 2-j if S ί̂
<kn + 2 C s e e (3)]. For

i ( o ) U ^+Jqn + 2(0) ? \ 0 ) P B + 1
7 = 0

Thus, we write

x<r+(aθ9aί9...9an9...) = a9

where αt = yl, 0,1, ...,fc ί+1, Ϊ + 0, ao = A, 0, ...,kι — 1. The Lebesgue measure /
induces a probability measure on the space of all admissible sequences
a = (a0, au ..., αM,.. .)• It is easy to see that the only restriction on the word a is the
following one :a n + 1 =Ai ϊ ϊa n = 0. This is a "hard core" type condition in statistical
mechanics. Remark that each element of the partition ξn corresponds under this
representation to a finite word (ao,au...,an) of length (n+1). In particular, the
words (0, A,..., 0, A) and (A9 0,..., A9 0) correspond to the elements C(

o"
}, C(

o"
+1},

respectively. The proof of Herman's theorem will be based on the ergodic
properties of the sequence of random variables an with respect to the measure
induced by the Lebesgue measure.

3. The Formulation of the Main Lemmas and the Derivation
of Herman's Theorem

Let us recall the

Denjoy Lemma (see [9]). There exists an absolute constant C > 0 such that for every
XQES1, 7?>0,

c c

Henceforth all constants depend on φ but do not depend on n. Assume that
Denjoy's lemma can be strengthened in the following way:

q (4)
i = 0

where χfew + 1 c l l <oo. Then it implies Herman's theorem. Indeed, let us consider
n

π(Xi) for 0^i<qn+1. Take C\n\ 0^i<qn+ί, whose end-points are xbxi + qn. It
contains inside itself kn + 2 points Xί + qn+jqn + ί, ^ύj^kn + 2, and

+ 4n+jqn+i-l

Π φ>{Xt
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It shows that π(xί + qn+jqn + ι) differs from π(xf) by a multiplicative factor which is
bounded by e

±ikn + 2εn + 1+εn). Thus, for every XJEC\"\ we have

expί-εn-

1

which implies the desired continuity and positivity of π on 0. Now we formulate
some lemmas which will give a stronger version of Denjoy's lemma.

For any yeS1 consider yeC^(xo)cC\l'k)(xo).

Lemma 2. There exists a constant λ<l not depending on y,k,n,x0 such that

Put Hm(y0)= 'iy;), and take Cj">(x0).

Lemma 3. \Hn_k(y{Q}) — Hn_k(y(Q})\ ̂  const ?}, where the constant λ is the same as in
Lemma 2.

Put J<">x ; =|x, + i B + 1 -x, | ,and

bn = max < max λnv>.

Lemma 4. \Hn(y0) - Hn{x0)\ ^ const bn for every y0 e C(

o"
+ υ(x 0).

[y]
Lemma 5. \Hn(y0)-Hn(x0)\^const X frn_k(n-/c)v + constn v + 1 2 n / 2 for arbitrary

k = 0

Sconstλψ,

Lemma 6.

Lemma 7. For every 0 ̂

j = oφ(Xj) J

<constn2v + 2λv

7\ λί<λ2<l.

Lemmas 4-7 give the stronger version of Denjoy's lemma alluded to before. We
may choose εn = constn3 v + 3λψ* in (4). All lemmas are proved in the next two
sections.

4. Proof of Lemmas 2-5

Proof of Lemma 2. Take an element Cf~1} of the partition ξ(n~ ι\ The partition
ξ(n) decomposes C(

ί

n""1) into (kn+1 +1) elements. One of them is C|" + 1), while the
others belong to the trajectory of the CftK Take first C\n + 1). There exists some



New Proof of M. Herman's Theorem 93

C(«>cC<«-i) s u c h t h a t cflqnDCf + 1). By Denjoy's lemma

and

<
£{Cf) =

Assume now that kn + 1 > 1 and take some CfcCΓ^ Then C^ β n CC[ I I " 1 ) for at
least one choice of sign. Then again with the help of Denjoy's lemma

N o w we discuss the case kn+ι = ί. Here C(?~ί) = C\n + 1) + C\ήlqn_ι and the ratio

^ql)Λ

 c a n be very close to 1. The partit ion ξ{n + 1) decomposes C\nlqn_ι into

)
(kn + 2 + 1 ) elements. As above the ratio of the lengths of these elements to t{Cf~1})
is less than (1 + e " c ) " 1 if fcB + 2 > l . If kn + 2 = ί, then we have C ^ ^ 1 + C C ^
C C (

i " ~ 1 ) a n d

= ^(q i i + 1 ) )+^(q i v + ^j =
-2C\~1

Thus, after two steps the ratio in all cases becomes less than (1 +e~2C)~1. This
immediately gives the statement of the lemma.

Proof of Lemma 3. Take y{o\y{

o

2)CC\n\xo)cCf-k\xo) or C^- f c + 1 )(x 0). First we
remark that C\n\x0) = C^fo ). Thus, we may replace x0 by xt and assume that
ttK^ffft^ix), where m = fe or fe-1 is an even number. Then

^ix). Now we can write using Lemma 2,

^ max m Q E D

Proo/ o/ Lemma 4. Let / = £ PogφXyJ — logφ'Cx;/)]. We have
i = 0

For / 2 we have a trivial estimate with the help of Lemma 2 for k = n:

\I2\ S const max \yt — xj 7 ^ const/lMy.
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Introduce ρ f = ^

d 2 + y

φ (Xi)
) χ

ί+γ

In the above (and henceforth) α , αf,... are some uniformly bounded numbers. Put

Q'i = Qi Π
ji

For b[ we have the estimate \b\\^constbn. Furthermore,

Ψ

and

Qi

_ x 1

~eΓ2

Ψ(xi)

This yields

and

1

Q'i

1

QΌ
^ const + const bn ^ const fcπ,

\QO -Q'i\^ QoQ'i c o n s t ftΛ ^ c o n s t & π ρ 0 ,

| ρ o - ^ l ̂  const fcπρ0.

The last inequality shows that ρf differs from ρ 0 by a very small number (assuming
that bn are small enough), i.e. the mapping Ύx

φ: C
(

o"
+ 1 ) ->Cj" + 1 } can be well enough

approximated by a linear map. Now we can write

V ψ K °(v Ύ"

S const ftBρ0. QED.



New Proof of M. Herman's Theorem 95

Proof of Lemma 5. Take x0 and construct the sequence of the intervals C|m)(x0),
m = n,n + ί. Then y0 eC |" + 1 \x0) for some ί, 0 ^ i < qn, or y0 e C^n)(x0) for some j , 0 ^ j
<#„+!• In the first case

Jn = Hn(y0)-Hn(x0)= ^ l

s = 0

β n - 1

+ Σ l>g φ'tVs) - log φ'{xs -qn + f)] .
s = g M - i

Remark that j;,π_£6C^+ 1 )(x0)CC (

0

/ ί )(x0) and recall (see Sect. 2) that Cf\x^
r

= C[+)/x0). Therefore, each of the sums has the form J'r— £ [logφ'(z^υ)
s = 0

-logφ'ίzf^], where z%\zφeC(S\x) for some x and 0 ^ r ^ ^ n - l . Write (see
Sect. 2)

r = an-iqn-ι+an_2qn-2+ ... +aoqo,

where 0 ^ at ^ fef f t . Then

J'r=ΣΣia ιq i + + β Σ g + i + ( . _ 1 ) β < i

< an - i qn - i + ... + a j + i q j + i + iq j

Consider each inner sum separately. For every s the points z{

s

ι\ zf] belong to some

C(Q}. Using Lemma 4 for long cycles (j ^ - J and Lemma 3 for short cycles I j < -

we can write: ^ ^ Γ ^ Ί

l_2J
\J'r\= Σ bΛ_k(n-fc)v

const rcv

which implies the desired result.
In the second case the arguments are the same if7 < qn. lϊq/ ^j < qn{β +1), 0 < £

SK+u w e aPPly the same arguments for the differences,

and then consider the difference

Qn-ί

Σ [log φ'(xs) - log φ'(ys _ ̂  )] .
s = 0

Our previous arguments also work now, and thus, we get the needed
estimation. QED.

Corollary. |Hπ(x0) | = Σ < const n 3 v +

Indeed, apply Lemmas 5-7 for x 0 and y0, where ///J(j;0) = 0. Such y0 exists,
because

</?(x + l). . .)-φ(φ(.. .φ(x).. .) = ! ,

times qn times
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and in view of the mean value theorem there exists y0 for which

d _<zn-i

qn times

We have used the results of Lemmas 6 and 7. Their proofs do not depend on
Lemmas 4 and 5.

5. Proofs of Lemmas 6 and 7

Proof of Lemma 6. We have to estimate the sum

Putting fc = I - |, rewrite it in the following way:

h= Σ Σ
s = 0 j : C ( " 4 1 ) c C

i v τr Ψ \ j ' Λ(n)
+ Z, Σ —j-r^-AWXj.

ί = 0 ;:C(Π+ 1 > c C ( n ~ k + ! ) ψ \Xΐ)
j t J

Choose an arbitrary point yf~k\ y(

t

n~k + ί) in each C("~k\Cγ~k+1\ Then

(In - k + l ~ 1 φ"(y(n ~ kΆ
κ= h ^w^/{crk))prk)

_ι Y 1 T \Jt '/>ίs~<(n — k+\)\jΛn — k+\)

t=o (o (y\ )

+ "ϊ Σ\(y~,
where 1

(«-fe)

J ' j

1

Due to the smooth properties of φ each of the two last sums is not more than
nγ_

const A2.
Assume that we have succeeded in proving that for some constant p the

differences

\p(rk)-p\, wr
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Then

l
,{n-k+l)\

Xn-k+l)/(r(n-k+l)\_n\ ST ψ U s V^(»~fc)[

t = o φ'iy/1 )

The absolute value of the last two sums is not more than const λψ*'. The expression

in square brackets is an approximation of the Riemann integral \——-dy = Q. Due

to the smoothness properties of the function φ it differs from the integral by a
ny_

number with absolute value less than const A2. Thus, we have to show only
inequalities (6). It will be proved via some ergodic theorem type arguments for the
Markov chains.

Let us return to the increasing sequence of partitions ξn and the corresponding

symbolic representation which were introduced in Sect. 2. Consider the con-

ditional probabilities φ w | α y ι - 1 ? . . . , f l 0 ) = ao>au...,an w e h e r e φ ? α j
ί(ao,au...,an_1)

means the Lebesgue measure of the element of ξm corresponding to the admissible
word (α 0 , . . . , am).

Lemma 8. The following inequality holds:

g -coπstλ s

< ^(an\an-U ? an-s> a'ή~s- 1? ? aθ) < βconst;^

provided both words are admissible.

Proof. T h e w o r d s (αΌ, . . . , < _ , _ 1 ? α π _ s , . . . , α j , ( α ' o , . . . , « ; _ , _ l 9 α n _ s ? . . . , α π _ 1 ) ,
(α'o, . . . , < _ , _ ! ) c o r r e s p o n d t o t h e i n t e r v a l s C ^ o ) C C ^ l } C C [ ^ 2 ) , w h e r e mo = n9n + l,
m1 = n—ί,n9 m2

 = n — s — l,n — s. T h e n t h e w o r d s (α'ό, . . . , α ^ _ s _ 1 ? α n _ s , . . . , « „ ) ,
(α'ά, . . . , < _ , _ ! , α π _ s , . . . , « „ _ ! ) , (fl'ό, . . . , < _ , _ ! ) c o r r e s p o n d t o t h e i n t e r v a l s
CffijCC^jCCgfj, where / 2 + j < ^ - s _ l 5 if m2 = n-s and i2+j<qn-s if m2

= n —s — 1 . Denote

=

We have
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Using the mean value theorem we can write

. P'ύftft),

where y\m) are some points of the corresponding intervals. Furthermore,

exp{ -

Then

exp - const V ^ 4 ) [ ύ QjS exp | const
I ί=o J C ί

However, due to Lemma 2,

j-ι ^^
. QED.

Lemma 8 shows that the sequence of random variables {an} can be well enough
approximated by the Markov chain. Consider now the conditional probabilities
i(an + m, ...,an\a'n-l9 . . . , α ' o ) , φ n + m , . . . , an\a'ή-l9...9 a'ό), p r o v i d e d b o t h w o r d s

are admissible.

Lemma 9. There exists an absolute constant Cί >0 such that for all n,m,

The proof follows easily from Lemma 8 and the equations

The proof of the following lemma is also simple.

Lemma 10. There exists an absolute constant C2 > 0 such that for all n, m and all the
admissible words (α ' o , . . . ,« ;_ 3 ) , (α'ό,..., < _ 3 ) , (α Λ , . . . , απ + m ) :

Return now to p("~k\ p\n~k+ί). In terms of symbolic representation they can be
written in the form:
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We have to estimate the difference

| φ n = 0|απ_Jk,...,αo)-φ l l = 0)|.

Lemma 11. |/(απ = 0|απ_fc, ...,aQ) — /(απ = 0)|^constλψ' for some constant λ3<l.

Lemma 11 is a Markov ergodic theorem and it can be proved by the methods
of the Markov chain theory. This technique is well-known (see [10]); thus, we shall
describe only the main steps.

Fix an integer m, m ~ j/& and introduce a new probability measure on the
words

a ~ \arv ar\-\-> '->an-m+3>an-n» ? an - 2m + 3>

an-2nv •• > β « - 3 m + 3? ••• ? an-(i- l)m> " ' β n - i m + 3 ? fln~im? J # θ )

by the formula

i-2

11 Aαn-jm? •••? ^n-( ;+l)m + 3l f l«-0*+l)m? ? β «-0" + 2)m +3/•
J = 0

Here ί^]/fc. This measure is the one of the Markov chain with memory m. It
follows easily from Lemma 8 that

exp ( - const λm i) ̂  -jβ- S exp (const Am i).

If we consider the Markov transition operator corresponding to /' for the
transition to m steps, then it follows from Lemma 10 that it is a contraction with a
coefficient uniformly less than 1. Then the usual ergodic theorem for Markov
chains shows that the difference between the conditional probabilities
£(an\an-im,...,a0) for different an_im9...,a0 is less than λ 4 , λ4<l. This gives the
desired result. QED.

Proof of Lemma 7. Lemma 7 is derived from Lemma 6 in a similar way as
Lemma 5 is derived from Lemma 4. Consider the sums

As in the proof of Lemma 6 consider

It is easy to see that in the symbolic representation p{"-k\p(n~k + 1) has the following
form:

2i+ί
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Then the same arguments as in the proof of Lemma 6 show that

l / ^ l ^ c o n s U f - for ί<™<

Moreover, for short cycles we have the trivial estimate

Take now p ^ qn. We can decompose p in the following way,

l_2 J n

P= Σ aAn-2i + Σ bfin-j>
i=1 j=m

where <zf^ const «2v + 1, fcm^const^2v+ι, bj^const(n~j)v, j>m. Using the above

estimates we obtain

^ X at const A ^ + const X b / J .
\ί=l / j = m

This estimate gives the desired result. QED.

Remarks. 1. Using a more sophisticated technique one can show that in

Lemma 11 the right-hand side can be taken as const λ%. This makes it possible to

prove an exponential estimate in Denjoy's lemma and also to consider the rotation

numbers ρ, ρ = [fcl9 ...,&„,...], for which fcπfgconst #" with some B>\ as in [8].

It also implies that conjugacy ψeC1+\ for some τ > 0 .

2. From the viewpoint of the renormalization group ideology the result

proved here means the convergence to the linear fixed point of the renormalization

group transformation (see [4]) for nondegenerate diffeomorphism of the circle.
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