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Abstract. We use methods of constructive field theory to generalize index
theory to an infinite-dimensional setting. We study a family of Dirac operators
Q on loop space. These operators arise in the context of supersymmetric non-
linear quantum field models with Hamiltonians H = Q2. In these models Q is
self-adjoint and Fredholm. A natural grading operator Γ exists such that
ΓQ + QΓ = 0. We study Q+=P_QP + , where P ± = \ (1 ± Γ) are the orthogonal
projections onto the eigenspaces of Γ. We calculate the index i(Q+) for Wess-
Zumino models defined by a superpotential V(φ). Here V is a polynomial of
degree n^.2. We establish that i(Q+) = n — 1 =deg<9F. In particular, the field
theory models have unbroken supersymmetry, and (for n^3) they have
degenerate vacua. We believe that this is the first index theorem for a Dirac
operator that couples infinitely many degrees of freedom.

I. Introduction

In this paper we present index theory for a family of Dirac operators on loop space.
Since loop space is infinite-dimensional, the mathematical framework requires
careful analysis. Each Dirac operator Q which we study will be associated with a
stochastic process over loop space. The most interesting such processes are non-
Gaussian. Our mathematical presentation relies on methods of constructive
quantum field theory [1] to define and study the infinite-dimensional processes.
We proceed by several steps:

1. We define a family of Dirac operators Q and appeal to a companion paper
for mathematical existence theorems [2].

2. For each such Q, we introduce a family Q(κ), 0 ̂  K ̂  oo, which interpolates
between Q = Q(co) and Q(0) = <2o + 6i,o Here Qo is associated with a Gaussian
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process on loop space and Qt 0 is associated with a non-Gaussian process in a
finite-dimensional space.

3. We prove that Q(κ) is Fredholm for O^K ^OO, and we show that the
deformation from β(oo) to g(0) is a homotopy.

4. By this method we reduce the index theory for Q to index theory for g(0).
5. We compute the index of Q(0).
The examples we study are motivated by supersymmetric quantum field theory

[3-5]. In another paper, we have established the existence of nonlinear supersym-
metric interactions in a cylindrical space-time [2]. These models are known in the
(formal) physics literature as N = 2 Wess-Zumino quantum fields. The Hamil-
tonians for the models have the form H = Q2, where Q is a self-adjoint operator.

The operators H and Q are unbounded operators on the Fock space
3tf = y?b®£ff over the circle (one torus) T 1. Here 2tfh and #?f are the bosonic and
fermionic Fock spaces. The Atiyah-Singer framework to study the index of the
Dirac operator Q requires the introduction of a grading operator Γ on the Hubert
space Jf [6]. A natural grading of Jf is given by Γ = (—l)Nf, where Nf is the
fermionic particle number operator [3]. The operator Γ is self-adjoint and
unitary, so Jf splits as an orthogonal sum of eigenspaces Jtf± of Γ,

je=j?+®je_. (i.i)

Let P + denote the orthogonal projections onto Jf±.
A supersymmetric quantum theory is defined by a quadruple (Jίf, H, Q, Γ),

where Jf is a Hubert space and H, Q, Γ are linear self-adjoint transformations on
Jf. The grading operator Γ is unitary and satisfies

QΓ + ΓQ = 0 (1.2)

from which we conclude P±QP± =0. Thus in terms of the decomposition (I.I), the
operators Q and H = Q2 have representations

- ( I β.-> - ( β - . β * <.!)•
where Q+ : Jf+ -• Jf_ is the adjoint of β_. In our examples, Q+ will be Fredholm,
namely it will be closed and have a closed range, with a finite-dimensional kernel
and cokernel. Define

. (1.4)

We study the Atiyah-Singer index of β, namely

i(Q + ) = n+-n. (L5)

for Q given by the Wess-Zumino potential V(φ). Such a V is a holomorphic
function of φ e (C taken here to be a polynomial of degree n ̂  2,

V(φ) =±mφ2+ £ ajΨ

j = \ rnφ2 + P(φ), (1.6)

with m > 0 and with απ Φ 0 if n ̂  3. It is a remarkable fact that with this structure the
field theory defined by Q is finite - all ultraviolet infinites cancel and no
renormalization is necessary. We establish this by nonperturbative methods in [2].
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We prove here:
i) The value of the index is determined by the degree of dV,

KQ+) = n-ί. (1.7)

ii) The index has an integral representation

(1.8)J c
2)'{T2)

where dμc is a Gaussian measure on the space of distributions Q)'{T2) on the two-
torus, where the determinant is a regularized Fredholm determinant, and where si
is a function on Q)'(T2) which depends on V.

In particular, (1.7) proves that the ground state energy E of H is identically zero.
Furthermore, the ground state is degenerate if n ̂  3. Since E = 0, supersymmetry is
unbroken for all these finite volume models. In spite of the fact that for n ̂  3 the
field theory has multiple ground states; the model has a single "phase." In other
words, the model is uniquely specified by the parameters {m, a \ of V.

We conjecture that the same phenomena illustrated here persist in the infinite
volume limit for a subspace of the parameter space {m, α,-}; we are investigating
that question. This appears incompatible with the standard Wightman axioms for
quantum fields [7]. In that framework one assumes a unique vacuum, or else the
existence of a superselection rule which yields a direct integral decomposition into
theories with a unique vacuum. In our case, the Wightman framework needs to be
generalized to include the possibilities of the issues raised here.

II. Dirac Operators on Loop Space

The Hilbert space J*f of our model is a tensor product of the bosonic Hilbert space
J^b and the fermionic Hilbert space 2/fp namely J f = J^,®J^}. In both cases we
assume that the one particle space is built over the circle (one torus) T 1 of length t.

II. 1. The Bosonic Fock Space

The one particle space of the complex scalar field is

The Fock space J^b is a symmetric tensor algebra over W with the natural inner
product yielding on the n-fold tensor product ||/(χ) ... (x)/|| = | |/ | |", fe W. In the
Fourier space (momentum representation) we define annihilation operators a±(p)
on W± so that a±Ωb

o = 0, Ω£ = (l,0, ...,0,...), and

a+p,a+q a+ p ,a+ q , ^

la±(p),a%(qj]=δpq,

where p e t 1 = —-Έ and δpq is the Kronecker delta. The time zero field is defined
by {

-(-P))e-ipx, (Π.2)
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where ω(p) = (p2-\-m2)1/2, and m>0. The canonical momentum is

π(x) = i(2^" 1 / 2 Σ ω(p)^2(at(p)-a + (-p))e-ipx. (113)

The scalar field satisfies the commutation relations

), π(j,)] - [π*(x), φ(y)] = 0,
(114)

lπ(x),φ(y)]=-iδ(x-y),

where δ(x — y) is the Dirac measure.

11.2. The Schrδdίnger Representation (Loop Space)

Another, unitarily equivalent, representation of J ^ is given by the Schrόdinger (or
loop space) representation. Let ̂ ( T 1 ) denote the space of smooth maps (loops)
from T 1 to (C, with the topology defined by uniform convergence of each
derivative. Let ^'(T1) denote the topological dual, i.e., the space of complex
distributions on T 1 . Let dμG( denote the Gaussian measure on @'(Tι) with mean
zero and covariance G^ = ( — d2/dx2 + m2)~112. It is then well known that
J^b = L2(^f(T1),dμG^, see e.g. [1]. Under this isomorphism φ(x) becomes a
multiplication operator, and π(x) becomes — ίδ/δφ(x), where δ/δφ(x) is the Frechet
derivative.

113. The Fermionic Fock Space

The fermionic Fock space J^f is the anti-symmetric tensor algebra over
L 2 (T 1 )φL 2 (T 1 ). The annihilation operators are b+(p), pef\ and they satisfy

{b±(p),b±(q)} = {b±(p),b*{q)} = {b±(p)9b%(q)}=0,

{b±(p)M(q)} = δpq,

where { , } is the anti-commutator. The time zero Fermi fields are defined by

where v(p) = (ω(p) + p)ι/2. Let ψi{x) = ψ*(x\ Ψ2(X) = Ψ*(X\ corresponding to

L 0 ) Then

{ψμ(x),ψv(y)}=0, μ,v = l , 2 ,

{ V M ^ ) ) = O. / ^ = 1 ' 2 ' ( I L 7)

Relations (II.7) mean that φ (/)= J ψ (x)f(x)dx and ψ„(/)= J ψμ(x)f(x)dx, for

f el}{Tι), generate an infinite dimensional Clifford algebra. It also follows from

(II.7) that ψμ(f) is a bounded operator and | |^(/)ll = II/IIL2
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II A. The Operators Nτ

For 0 ̂  τ ̂  1 we define the operators

Nτ,b= Σ Σ Φ)τaΐ{p)aj{p)9

f
(IL8)

p),

on dense subspaces of 3Ί?b and Jff, respectively. Let

Nτ,f= Σ Σ
J=± pet1

be defined on J f. Clearly the number operator is N = N0 and the free field
Hamiltonian is H0 = Nί. For 0 < τ < 1 these Nτ operators interpolate between N
and Ho. It clearly causes no confusion to suppress the tensor products with /.

Let us also introduce the involution

Γ = Qxp{iπNf) (II.9)

on jf9 where Nf = NOff is the fermionic number operator. Γ induces a grading on
J ^ as described in the Introduction.

Proposition ILL For τ,β>0 the operatorsexp( — βNτ>b) andexp( — βNXf f) are trace
class and

\ (11.10)

T r j r /(exp(-i8JV t i /))= Π ( l + e x p ( - ^ ( P r ) ) 2 , (11.11)
pef1

Tv^f(Γexp(-βNτ,f))= Π (l-exp(-jScφr))2. (11.12)

Remark. As a corollary to (11.10) and (11.12) we obtain the following identity

valid for τ,β>0.

Proof. Let J^ipJ), peT1J=±,be the subspace of J^b spanned by polynomials in
the creation operator af(p) applied to the ground state Ωb

0. Then

(11.13)
P,j

and

T r Λ ( e x p ( - βNZt b)) = fl. Tr^ b ( p, j }(exp( - ω(pf af(p) a^pj).
jpj

The spectrum oiaf{p)afp) consists of the eigenvalues Z + , each with multiplicity
one. Thus

which proves (11.10).



80 A. Jaffe, A. Lesniewski, and J. Weitsman

We have

jef^f\^f(pj), (11.14)
pj

and observe that the spectrum of bf(p) bfp) is {0,1}. The proof of (11.11) and (11.12)
follows.

II.5. The Cutoff Interaction

Let V be given by (1.6). The supercharge Q is defined as a bilinear form on Jf.

g = _ L r dxψ1{π-d1φ*-idV(φ)) + ψ2(π*-d1φ-ίdV{φW + h.c.,(nΛ5)

l/2π
where h.c. denotes hermitian conjugate. The domain &0 of Q we choose consists of
Fock states with finite number of particles and ̂ (T1)-valued wave functions.
Notice that Q has the structure of a Dirac operator on an infinite dimensional
manifold [loop space ^ ( T 1 ) ] with circle action. The terms dγφ and dγφ* are
generators of the circle action φ(x)-±φ(x + y\ ye T1. Also (dV(φ), dV(φ)*) is the
connection of a flat bundle over ^(T1). Defining (11.15) as an operator on Jf
requires careful definition of its domain. We first smooth the form Q, and then we
exhibit cancellation of local (ultraviolet) singularities. Finally we justify removing
the smoothing.

We use the following smooth approximation to the periodic Dirac measure

χκ(χ)=κ Σ z ( Φ - n ^ ) ) , (Π.16)
neΈ

where κ>0 and where χ satisfies six conditions: O ^ χ e y ( R ) , χ{x) = χ{ — x),
\χ(x)ds=l, χ(p)^0, s u p p l e [ - 1 , 1 ] , and χ(p)>0 for |p |<l/2. We define regu-
larized (cutoff) fields by convoluting with χκ on T 1 ,

<Pκ(*) = Xκ* ψ{x), Ψμ, A*) = Xκ* ψμ{x) -

The regularized supercharge Q(κ) is defined as a bilinear form on Jf,

where

2 0 = - ? ^ ί dxψ1(π — d1φ* — imφ) + ψ2(π* — dιφ — irnφ*) + h.c., (11.18)
|/2τ*

and

Qi,κ=--^iidxψ1dP(φκ) + ψ2dP(φJ* + h.c.9 (11.19)

where P(φ) is the sum of t h e y ^ 3 terms in (1.6).

Proposition II.2. The form Q(κ) defines a symmetric operator with domain Q)Q, such
that (as a form) its square equals

Q(κ)2 = H0+ J dx(mφ*dP(φκ)-(xp1xp1)κd
2P(φκ) + h.c.)

+ J dx\dP(φκ)\2. (11.20)
Γ 1
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Here (ψμψμ)κ=2(ψμ,κΨμ + ΨμΨμ,κ) Thus H(κ) extends uniquely to a symmetric
operator with domain £#0.

Proof. The form Qo uniquely defines an operator Qo on 20. Furthermore,
Ql = H0. In fact, we have the explicit representation:

Q2 = j dxH0(x),

where

H0(x)= \im{\πκ{x)\2 + \d,φκ{x)\2 + m2\φ^
κ> o

/O — 1 \
and where γ1= I 1. The Wick ordering constants of the bosonic and

fermionic parts cancel identically in the sum, and we can also write

H0(x) = :\π(x)\2 + | ^ ( x ) | 2 + m2\φ(x)\2: + :ψ(x) (Ϊy151 - m) ψ(x):

where HOtb(x) and Ho f(x) are the densities for HOtb and HOtf, respectively. The
remaining terms in Q{κ)2 are well behaved on @)0 x 20. Elementary but lengthy
application of the commutation and anti-commutation relations yields (11.20). In
fact, each term in (11.20) defines an operator on <2)0, so H(κ) is a symmetric operator
on that domain.

II.6. The Zero Momentum Mode

Set

φ o = / - 1 / 2 φ ( 0 ) , Ψμ,o = ^1/2ψμΦ), (11.21)

where φ(p) = Γ112 J dxφ{x)eipx. Define

, (Π.22)

where

^ . (11.23)

We also set H(0) = Q(0)2. Here H(0) is the Hamiltonian of a theory where the only
interacting mode is the zero mode.

11.7. The Cutoff Removed

In this subsection we formulate two results of a technical character, which we
prove in a separate paper [2].

Theorem IL3. (i) The operators Q(κ) and H(κ) are essentially self-adjoint on the
domain &>0 for all 0 ^ K < oo.

(ii) The resolvents of their closures converge in the operator norm asκ-+co to
the resolvents of self-adjoint operators Q and H respectively.
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(iii) Define Q{oo) = Q, H(oo) = H. The mappings κ:-> Resolvent{Q(κ)) and
κ^y Resolvent (H(κ)) are continuous in the operator norm for O^K^CO.

Remark. The theorem suggests that κ^>Q(κ) is a homotopy interpolating between
the field theory supercharge Q and the degenerate supercharge Q(0) which involves
only one interacting mode. We demonstrate this fact in Theorem II.6.

Theorem Π.4. Let τe(0,1) be fixed. There exist constants ζ>0, C< oo such that

ζNτ^H{κ) + C (11.24)

uniformly mO^/c^oo.

Since JVt has a compact resolvent for τ > 0, this crucial estimate yields

Corollary II.5. The resolvents of H(κ) and Q(κ), O g/crg oo, are compact.

Π.8. The Index

Recall that a densely-defined, closed operator is called Fredholm if its range is
closed, and its kernel and its cokernel are finite-dimensional. Let Fred(Jιf+, J-f_)
denote the set of Fredholm operators from j ^ + to JfL, and let Q±(κ) = P+Q(κ)P+
(cf. Sect. I).

Theorem II.6. For O ^ K ^ O O , β + (κ)eFredpf + , Jf_). The index ί(Q+(κ)) is con-
stant for O^/crgoo.

Proof By Corollary II.5, the resolvent of Q(κ) is compact. Thus the kernel of Q(κ)
is finite-dimensional. Using (1.3), KQT(Q(K)) = KQT(Q+(K))®KQT(Q_(K))9 so
dim Ker (Q+(K)) < oo. Furthermore,

Since (Q(κ) + i)~λ is compact, standard results of functional analysis imply that the
range of Q(κ) is closed. This implies that the range of Q+{κ) is closed, and so
Q+(κ;)eFred(JfV> #?-\ Since κ^> Resolvent (Q(κ)) is norm-continuous,
Theorem IV.5.17 of [8] implies that ί(Q+(κ)) is locally constant (and thus
constant).

Proposition IL7. For O ^ K ^ O O , e~βH{κ) is trace class, and

i(Q+(κ)) = Tr (Γe ~ βH{κ)). (11.25)

where Tr denotes the trace on

Proof. Formula (11.25) is the well-known heat kernel representation of the index,
see e.g. [9]. The only nontrivial statement is that exp( — βH(κ)) is trace class. This
follows from Proposition II. 1 and the comparison estimate (11.24).

III. Computation of the Index

In the preceding section we showed that the estimates of [2] are sufficient to
establish a homotopy between β(oo) and β(0) with i(Q + (κj) constant. Here we
evaluate /(β+(0)).
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Theorem III.l (index theorem). Let V{φ) = \mφ2 + P{φ) be a polynomial of the
form (1.6), and let Q be the corresponding supercharge. Then ί(Q+) = n — l.

Proof. By Theorem II.6, we need only consider the case K = 0. Decompose the
Fock space as an orthogonal sum Jf = J ^ © ^ 1 , where J»f0 is the subspace
spanned by the zero-momentum modes. According to this decomposition, the free
supercharge Qo can be written

,0

where the zero modes contribute

Q°o = ±= ((ψ M + ̂ ,(0)) π(0) + (ψ2(0) + ̂ 2(0)) π*(0)

1/2
+ imφφ) (ψM -φM + imφ*(0) (ψ2(0) - ψ2(0))). (III.2)

Introduce new variables z = φ(0) and

) ) , 2 f,

«P2=-i(fe*(0)-fe+(0) + fe_(0) + feί(0)), Ψ^Ψί-

Then we verify

{Ψβ,Ψv}=0, μ,v = l,2,

{ψμ,ψμ}=0, μ = l , 2 , (III.4)

{ΨuΨ2} = {Ψ2,Ψι} = ί.

In terms of these variables

Q° = iΨ1(d/dz) + iΨ2(d/dz) + iΨ1mz-ίΨ2mz. (III.5)

The operator Qt 0 can also be expressed as an operator on J^o, namely

QitO

Therefore

Comparing (III.6) with Sect. 4 of [10], we find that βo + β;,o i s exactly the
supercharge of our model of holomorphic quantum mechanics. In addition, we
verify by explicit calculation that Γ \^0 is identical to the operator yz=y0yιy2y3 in
formula (4.3) of [10]. Thus the index calculation for (βo + 6ϊ,o)+ reduces to the
calculation of [10], where we established w+=n — l,n_=0. On the full Fock space

Clearly QQ has a unique ground state which is an element of 2tf+ it has no ground
state in Jf_. This completes the proof of the theorem.
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Remark. Since n±(κ) are not homotopy invariants, this argument does not suffice
to conclude that n_(κ) = 0 ("vanishing theorem") for κ>0. We conjecture that
n4κ) = 0 holds for all /c^O.

IV. Path Integrals and the Index

In this section we establish Feynman-Kac representations for the trace states
defined by the heat kernels of our Hamiltonian. These states are also called "finite
temperature" states since they correspond to Gibbs states in quantum statistical
mechanics with inverse temperatures β. These representations complement the
Feynman-Kac representation of the vacuum functional established in [2], and the
latter are recovered in the limit /?->oo. Special cases of these representations were
derived in [11] and also in the formal physics literature.

The special feature of the finite temperature states is the fact that the underlying
Gaussian functional integrals are replaced by Gaussian integrals with boundary
conditions in time. In this way the cylinder is replaced by a torus with period β in
the time direction. The bosonic integral has periodic boundary conditions with
period β. For the fermionic integral, however, there are two different cases. The
pure trace state is represented by antiperiodic boundary conditions in the time
direction. The graded (super) trace, on the other hand, gives rise to periodic
boundary conditions in the time direction. Our study requires both types of states:
the pure trace to establish regularity estimates and the super trace to represent the
index.

IV.l. Path Integral Representation of the Index

We define the "finite temperature" free states:

/ \(k) (ΠΓr (Γk(±vr\( RTJ Vl\ ~ * TV ( Γk pynί RH \\ b Π 1

\ • /β f — \ -L r^> i i ^xpi, — P**o f))) * *-yef\' * ^^Pv — P^*o ///? ^ — ̂ ' *• •>

(IV.2)

with Γ given by (II.9). Here Γk denotes Γ to the power zero or one. We set
CΛ/? = ( — zl+m 2)" 1, where A is the Laplace operator on the torus
T2 = R2//Z x βTL. In other words, C^β has periodic boundary conditions with
period ί in the space direction and period β in the time direction. Let
Ij) = iy^do + iy\dι be the Euclidean Dirac operator on T2, where the Euclidean
Dirac matrices yf are

0 - A E /0 - 1

We set Sfβ = (If) + m)~1 as the periodic Green's function of the Dirac operator.
By p we denote the Dirac operator on the torus twisted in the time direction by

π. This twisting is interpreted as introducing boundary conditions for the Dirac
operator which are anti-periodic in the time direction. Functions in the domain of
p satisfy

f(xo + β,x1)=-f(xo,xί).
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Thus we actually replace the period β of the torus in the time direction by a period
2β, and we impose (IV.3). We define Se β = φ + m)~ι as the antiperiodic Green's
function in the time direction and periodic in the space direction. Finally, let
J^CΓ1) denote the Sobolev space of order α over T1, namely the completion of

1) in the norm | | / | | β = \\{-Δ + m 2 ) α / 2 / | | L 2 .

Lemma I V.I. Let s^t. Then
(i) The finite temperature free bosonic state is given by a Gaussian measure with

the periodic covariance C£β.

= C,tβ(f®δ»8®δt), for fge^^T1). (IV.4)

(ii) The finite temperature graded (super) free fermionic state is given by a
Gaussian fermionic state with covariance S^β.

(iii) The finite temperature (ungraded) free fermionic state is given by a
Gaussian fermionic state with covariance Se^.

«)> for

Proof. It is sufficient to check that the covariance operators (IV.4-6) are correct, as
the free, finite-temperature states are well known to be Gaussian with mean zero.
(i). We represent Jfb as (11.13). Straightforward calculations show that

= (1 - exp( - βω{p)))"2 exp( - (β - σ) ω(p)),

and

= (1 - exp( - βω(p)))- 2 exp( - σcφ)),

where σ = t — s and Ho b(p,j) = ω(p)aJ(p)aJ{p). The left-hand side of (IV.4) can be
thus written as

f(p) g(p) (2cφ))~' (1 -exp(-βω{p)))~ ι (exp(- σω{p)) + exp(-(β-σ)

= Σ Σ /(P)g(p)(2co(p))-
neZ pef1

j oo

= Σ Σ ?(P)&P)~- ί
neZ peT1 Zπ - oo

(ii) and (iii). We use (11.14). A calculation shows that
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and

= exp(-σω(p)),

where ΓpJ = Qxp(iπbf{p) b/p)), and the proof of (IV.5) and (IV.6) now follows as in
the bosonic case.

We introduce the following notation. For Φe&J'(T2\ set

A%>P(Φ) = j dx(\dP(Φκ)\2 + mΦ dP(Φκ)* + mΦ* dP(Φκ)), (IV.7)

where

Φκ(xo>Xι)= ί dxΊΦixotX'Jχ^-x'J,

and where χκ is given by (11.16). Let K^β(Φ) be the operator whose integral kernel is

)=i £ dz&S,,β(x -z) d2P(Φκ(z)) lκ(zγ -yi)

+ S^β(x-z)χκ(zί-y1)d2P(Φκ(y))']Λ +

where A + = I J and A _ = I j are the chiral projection, and where the time

component of z is zo = yo, i.e., z = (yo,zί). Propositions II. 1, II.7, Lemma IV. 1, and
standard approximation arguments (see, e.g., [11-13,2]) yield a Feynman-Kac
formula based on the Gaussian measure dμCe β with mean zero and covariance

Theorem IV.2. The index i(Q+(κ)), 0^/c<oo, has the following path integral
representation

KQ+(κ))= ί dμC

where det means Fredholm determinant.

Remark 1. A formal version of (IV.9) was given in [4].

Remark 2. By means of Theorem II.6, i(Q+(κ)) is independent of K and it is equal to
ί(β+). The right-hand side of (IV.9) also has a limit as κ^>co, but in this limit
divergences cancel between the Fredholm determinant and A{fy. Using the results
of [2], we obtain the following representation of i(Q+):

i(β+)= ί ^ Q ^ ) d e t 3 ( l - K ^ ^ ) ) e x p ( - < ^ ) ) , (IV. 10)
3)'{T2)

where detπ is the regularized Fredholm determinant, and where K^ β(Φ)
= \ϊmK^β(Φ\^β(Φ)= lim [4% ^ | ^ 2

sentation (IV. 10) has the property that both det3(I — K^β(Φ)) and exp(-J
exist.
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IV.2. Path Integral Computation of the Index

Below we present an alternative proof of Theorem III.l which is based on the path
integral representation of the index. The advantage of this method is, however, that
it is quite general and may be applied to situations in which a direct computation
of the index is impossible.

From Theorems II.6 and IV.2, we infer that we can set K = 0 in (IV.9) to obtain

i(Q+)= J^ dμc,tβ(Φ)det(ί -K^(Φ))exp(-4°)(Φ)). (IV.ll)

We have under Fourier transform the isomorphism

e >μ * ' 0 1

Using this tensor product representation and the fact that χκ = o(p) = ^~1/2δpo> w e

conclude that the integral (IV.ll) can be expressed as an integral with respect to
t h e px = 0 f a c t o r dμ(-d2jdx2 + m2)-\. L e t

IPO Poet1

where T 1 is here a circle of length β, and let

Also let

Kβ(Φ0)(x,y) = ΓιSβ(x-z) 32P(Φ0(z))Λ + +ΓιSβ{x-z) d2P{Φ0{z))*Λ_ ,

where Sβ = (iy^d0 + m)~ι. Then (IV.ll) takes the form

We infer from Proposition II.7 that the right-hand side of (IV.9) [and,
therefore, also (IV. 12)] is independent of β>0, and thus (IV. 12) is equal to its β 10
limit. This limit was evaluated in Theorem 2.2 of [14], and it was found to be equal
to degdV = n — 1. This proves Theorem III.l.

Remark. It is possible to compute (IV.9) without resorting to the results of [14].
Using Euclidean in variance, we show that the representation (IV. 10) is indepen-
dent of {. We rotate the coordinates by the angle π/2, and use the fact that the right-
hand side of (IV. 10) is invariant under such a rotation. In this manner we exchange
the roles of/ and β; from the independence of β we infer that ί(Q+) is independent
of/. We set now ί=^β = ε, and let e tend to zero in (IV.9). In this limit only the zero
momentum modes contribute to the function space integral. We have carried
through the argument to justify this dominance, as formally proposed in [5],
though we omit the details. The zero momentum modes contribute

i(Q+)=-$\d2V\2exp(-\dV\2)dzdz = n-l,

namely the degree of dV, as claimed.
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