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Abstract. We construct the open and closed string NSR-models in terms of
D =15 bosonic string theories. All anticommuting NSR-operators are obtained
after fermionizing 4 bosonic dimensions, and the NSR-Hilbert spaces are
embedded as linear subspaces of the bosonic Hilbert spaces. We thus show the
existence of various 10D supersymmetric sectors of the state spaces of D=26
consistent bosonic strings.

1. Introduction

String theories containing space-time-bosonic and -fermionic degrees of freedom
[1] are known to be interpretable as 2 D (two dimensional) quantum field theories.
Those theories leading to space-time-fermions are based, in the old formalism of
Green and Schwarz [1], on theories possessing a priori 2 D-fermions only. Because
2 D bosonization and fermionization [2, 3] have become a tool of investigation in
2D models, one might wonder if it is possible to construct the NSR (Neveu-
Schwarz-Ramond)-models [1] in terms of the consistent D =26 bosonic string
theory. This has been anticipated by Freund [4] and partially achieved by the
authors of [5].

In this paper, motivated by [5], we use D=15 closed compactified and open
bosonic strings, which are not necessarily consistent, in order to construct explicitly
all the operators characterizing the open and closed NSR-models in terms of purely
bosonic ones. We make use of the fermionization method of [3] and of results on the
quantum equivalence of various fermionic realizations of Virasoro algebras in two
dimensions [6]. We describe the possible choices of subspaces of the bosonic Hilbert
space which become the Hilbert spaces of the spinning string. That is, we construct
10D supersymmetric sectors of the closed or open D =26 bosonic string.

However, it turns out that it does not seem to be more efficient to calculate, for
instance, superstring scattering amplitudes using results obtained from bosonic

! However, the NSR models were not treated by [5]
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string theory. The same conclusion applies to heterotic string theories [7] and to all
string theories based on the new formalism of Green and Schwarz [1], because the
transitions from the old to the new formalism, and from the “candidate”
superstring in [5]* to the new formalism are quite impractical. These “candidate”
superstrings are string theories which are formulated on the Ramond sector only.
We will describe and subsequently classify them. Their classification is done by
means of an analysis of the Lorentz transformation properties of their massless
groundstates. The crucial technical ingredients will be the triality properties of
SO(8), since SO(8) constitutes the relevant classification subgroup of the Lorentz
group for massless states in all 10D theories.

This paper is organized as follows: In the next section, we will review all the
necessary formulae of closed compactified and open bosonic strings and also those
of the NSR-models. Section 3 is devoted to the construction of anticommuting
operators from commuting ones, following [3]. We will write down all the relevant
commutation relations which are needed in Sect. 4 to understand the emergence of
the various NSR-models. Finally, in the last part of this paper, we will investigate
the candidate superstrings of ref. [5]. In particular, we will show how chirality is
assigned to a fixed set of groundstates.

2. Bosonic and Fermionic Formulae

One of the most satisfactory ways of deriving the constraints and equations of
motion both for the open and closed spinning and (compactified) bosonic strings
starts with the action [8] in 2D Minkowski space

1 1 i -
S=m—, A_‘; dzée {E g“ﬂaaX"ﬁﬁXu-Fi tﬂ"g“@al//uea“
1 = boap 1 = a, B
_5 (XaQ 0 W ) aﬂXlJ—Z Xﬁ'pu €, €p B (21)

where, for u=0,...,D—1,
X*=2D real scalar field ,

" =2D Majorana-Grassmann spinor field ,

and e, is the zweibein field, and y, is its 2.D supersymmetry partner (for each a, y, is
a Majorana-Grassmann spinor field).
The 2D y-matrices in a Majorana representation are

—i i , i
Q°=<. ) , Ql=<. ) , QS=lQOQl=< ) .
1 1 —1

2 These string theories, which are likely to be superstring theories, were found in [5], although
some of the arguments used seem invalid. But after completion of this work we received [11] which
is the revised and more detailed version of [5]
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The charge-conjugation operator is given by C=1, and

1
r’abeaaeﬁb = gaﬁ > €= det (eaa) > Nap = < _ 1) .

From now on we set &’ =%. We vary Sin (2.1) with respect to X*, /*, y,, e,* and use
the symmetries of (2.1) to choose the superconformal gauge

Xa=10"N€sa » 2.13)
.1a
eaa=e¢5: ’

where # is an arbitrary 2D Majorana-Grassmann spinor field. In the supercon-
formal gauge, the equations of motion become

ox#*=0,
(@0 —i0%0,) " =0 (2.1b)
and the constraints read
V(0o +i0°0,) X, =0 ,
2.1¢)

Qo £0) XY + i “(0o £01) ¥, =0 ,

where d,=0/0£°, 0,=0/0¢', M=02 —02, Y*=e*?y*. Exploiting the residual
conformal invariance and 2 D global supersymmetry of (2.1)—(2.1c) we are free to
choose finally the light-cone-gauge

Xt=qt4+ptt, YT=0. 2.2)

We impose the suitable boundary conditions on X* and /* and obtain?:
bosonic string field X*

physical space-time :
X*=q"+p*c,

X =q +pt+i ) ﬁn"—z'”+i Y %

o
n+0 nto N

o 2.3)

, S ol &l
X =g +pt+i Y Tz +i Y 2", i=2,...,d—1(d<D),
nto 1 n*0
with ad =@ :=1p), z=€'¢79, 7=¢iC*+9),
For open strings: o~ =d%~, and d<D .
For closed strings: oz~ and @)~ are independent, and d<D .

3 The conventions chosen are: X * = LZ (X° 4 X1); d*¢ =dodr; the open strings are parametrized

by R x [0, 7], the closed ones by R x [0, 2x], where R X [a, b] denote the 7- and the o-intervals
respectively; Y*X, =Y X +Y X" -Y'X
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compactified dimensions (for closed strings only): I=d,...,D—1,

ol al __
X'=X{+Xk=q¢"+pt+2L%+i Y Zz"+i ) —zi ",
n*0 n n+0 n
OZI
Xi=qi+pi(t+o)+i Y, 7"2“” , 2.9
n¥0
aI
Xp=qr+prx—o)+i Yy, —z 7",
n+0 n

with of :=pk, & :=pi, and
2L'=pi—pk , P'=pL+pk ,

and of, a! independent, for ne Z.
Thus uncompactified closed strings can be thought of as having pj =p%.

The open string can be compactified by changing 6,X* (6 =0, 1) =0,X (¢ ==, 1)
=0into 0,X'(6=0,7)=0,X (6 =7, 7)=T, where I' lies in some lattice A. But it is
sufficient for our purposes to take I'=0 and just consider some
remaining dimensions (for open strings): I=d,...,D—1:

I <1

X'=¢"+p"t+i Y In gy Y In g ,
nto N n¥o 1
1 (2.5)
with ol=af , and aéso?{)=§p’
fermionic string field

1
—Jt=0,
%
1 _
—$'=Z dv"z"”+z d;z77, (2.6)
1/5 vel vel
1~ — o J=d,...,D—1
. iLJ d‘l,,.l v J\f’l v , > i
Tk L ey & }i=2,...,d~1

Here, the two sets of indices {i} and {J} are introduced only for convenience;
physically there is no a priori difference between '’ and /. The index set I is

I=Z7 , for R (Ramond) boundary conditions ,
I=Z+% , for NS (Neveu-Schwarz) boundary conditions .

For open strings: d, '=d; .
For closed strings: d, **! and d, **! are independent.

In the usual way one finds for the dependent variables o, , &, ,d, , d, , and p~ the
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following expressions*:

1
“n_ =—+ { Z ;+ma—m+z n+vdl—lv( V)}

p meZ
=3 Aty o)

y4 meZ

) | A 2.7
d, =3 { Z d:’-fl-malllm} >

p meZ

and finally (for open strings: replace pk and pl by $p")
§QptpT —())=km’=N,+ N, +ipk—c ,

i 5o 2.8
FQppT —(PP) =k =N+ Ni+ipi—c 28
where for right movers (unbarred oscillators)
N,=Y oi,ai+ Y al,ei=N;+N; ,
n>0 n>0
S 2.9
Ny=Y dildil-v 29)
v20

The analogous formulae hold for the left movers (barred oscillators). Thus we have
for closed strings:

(@) m*=m*=>N,+ N+ pk—c=N,+N;+ip? —¢ (2.10)

(b) if uncompactified: pg=p; =0, and thus i=2,...,D—1.
for open strings:
(a) here m?=m* gives no constraints because c=¢, N,=N,, Ny;=N,, pL=pzr ,

(b) if d=D, ie. i=2,...,D—1: tm=N,+Ns—c , @.11)
(c) ifd<D: §m*=N,+N,+4p*>—c , where p'=Lp’ . (2.12)

The numbers ¢, ¢ are normal ordering constants which are introduced after
quantization [1,7]:

[0, "] =110 (87 +6™) }both for left
(d, di T} =0, 4 0 (01 +61) and right movers ’
o, a5 ={ds, dj} =0=[qi,px] ,
lg7.p"1=~i, (2.13)
l¢',p/1=id" |
(gL, pil=% 6" =[qk. Pxl ,
(bt =abli | (d)* =d-, | also for left movers.

4 For ease of notation summation over repeated indices will always be understood
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Requiring closure of the Poincaré group P in the physical dimensions yields that
for purely bosonic strings (d,=d,=0):

D=26 and c¢=c=1. (2.14)
for spinning strings :
D=10 and

¢ or ¢=0, for R-bec
¢ or ¢=%, for NS-bc.

thus getting (right-b.c., left-b.c.) = (NS, NS)-, (NS, R)-, (R, NS)-, (R, R)-models for
closed and (R)-, (NS)-models for open strings.

Our method to construct the NSR-models form bosonic strings works for all
bosonic theories with ¢ =%, ¢ 2. But we will do the actual computations only in the
special case ¢c=¢c=1. We will never require the closure of the bosonic Lorentz
algebra, but we need at least D = 15 dimensions. Thus the special case of consistent
bosonic strings is automatically included in our treatment.

}imposed on Y dz¥ or Ydz',

3. Fermionization

In order to get eight 2 D fermionic fields analogous to Vi(z),i=1,...,8, [Eq. (2.6)]
from compactified bosonic strings, we take, according to [3], D —d=5 compacti-
fied dimensions 4 of which will be used in the following. Let us denote them by
I=1,...,4.

Since everything we will do can be carried out separately for the right and left
moving sectors of closed strings, and since identical results hold for open bosonic
strings with D —d =5, we will restrict our attention to the right movers of the closed
string.

Let us define, for right moving closed strings,

I I
0'(@):=2¢"—ip'logz+i ¥ zn4i y Foow
n<o0 n n>0 n
=2¢"—ip"logz+ QL+ 0% , 3.1)

where ¢' =gk, p'=pk, and z=¢€'*"9, [0, 2x].
For open strings, we write

I I
Ql(2):=2g"—ip' logz+i ¥, 2z i Y pom, (3.2)
n<o n n>0 n
where ' =4p’ [cf. (2.12)] and thus [¢', p']1=%i6", and z=¢".

Thus, all the commutation relations of the operators occurring in the expansion
of Q'(z) in Eq. (3.1) are identical to those of the mode-operators of Q’(z) in
Eq. (3.2).

Then, taking the standard orthonormal basis of IR*, {¢;|e; - ¢;=4;;}, we use the
notation
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{+e:}={Ay} ={vector weights of SO(8)},

4
{% Y (Fe)ld — =odd}s{/ls} =one set of spinor weights of SO(8),
i=1

4
{% (e)l# —= even}s {Ag} =the other set of spinor weights of SO(8),
i=1

{+e;+e;li%j} =generators of the root lattice Ag of SO(8).
Now we define the operator-valued fields
Be,z) =z 1 ¢ie" Q@) = 762 ple" Q< p2icaze ppie Q> | (3.3)

where we restrict our attention to e € {4, }. Formally we expand B(e, z) as a Laurent
series (where we continue analytically te R—~7e )

B(e,z):=), z7"B¢ , 3.4
vel

and the index set is

I1=7 , for R-b.c.

imposed on B(e,z) .
I=Z+%, for NS-b.c.} P € 2)

In order to have uniquely defined mode operators B;, we need to know the
allowed values of p. From (3.3), (3.4) we see that the domains of definition
D(B) are:

D(B)r={lp,a)le-p+3€Z} , for R-bc.
={Ip,a>|pe {A+Ar} U {ls+ Ar}} ;
D(B)ys={Ip.a)le p+3€Z+%} , for NS-bc.

={p,a>Ipe{Ay +Ar} U AR} ,

where |a) denotes any oscillator-state. This is consistent, because, as we will see
below, B(e,z) and BY translate |p,a) into ) c(x, B;p,e)"|p+e, ), and from the
above we note that B

(3.9)

Ip,a> e D(B)< B(e, z)lp.«) € D(B) ,

both for R- and NS-b.c. Furthermore D(B)nsl D(B)r.
Using (o))t =al ,, we get that (B =B_¢.
We note that the explicit form of B;, which we will not bother to write down,
because it is not needed here, crucially depends on which [p) B(e, z) is acting.
Let us define the Virasoro generators,

1
Lyi== Y tafinoty:, n*0,
2 meZ

(3.6)

@
ol ol . n=0,
=1

m=

1 1
LO:ZE z :al-i-mal—mzzz (P2)+

meZ
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where af =p’, cf. (2.4), and in case of open strings p'+— p’ because af = p7, cf. (2.5). If
we take L, to be the Hamiltonian, we see that:
R-sector :
Lozt s Loy =tld><=p)e{lp=4, a=00}u{lp=4s «=0>} . (3.7
Thus the vacuum is 16-fold degenerate.

NS-sector :
Ly20 ; Loy =0<[v)=|p=0, a=0) . (3.3)

Thus |0) is the unique vacuum.
With (3.3), (3.4), and (3.6) one obtains®:

[f'p, Bfl=(e-f)B; , feR*, (3.92)
[N, B{]=Bi(—%—v—e-p) , (3.9b)
[Lo, BY]=—vB} , (3.9¢)

= Bjlvd>=0, v>0.
Taking e, fe {4y}, using contour-integration methods, one gets (see ref. [3])
[BS,B{1=0, e f=0,
{BY, B} =0y440 » (3.10)
{Bs,Bi}=0 .

Introducing now ad hoc the second part of the anticommuting algebraic structure
[3], namely the operator cocycle,

{Celece,=(=1)"""ere, ., efe{ly} ;
(co)"=c-c ; (3.11)
CeCo =1},
which can be represented in terms of Dirac matrices, we get the desired result
{coBE,c; B} =0,1,00°"7° . (3.12)
Using operator product expansion we obtain

$B(e,w)B(—e,w)s:=1lim {B(e,z) B(—e, w)—<v|B(e,z) B(—e,w)[v)}

_—.e-P(w)Ee'iw;w—Q(w)Ee‘ngZ oz ", (3.13)
oB(e,w)B(f,w)s=B(e+f,w) , e-f=0, (3.14)
sB(e,w)B(e,w)3=0 , (3.15)

where |v) stands for either |0> or one of the vacua of the R-sector.

$ A sample calculation is presented in Appendix A
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Finally we want to define selfadjoint fermionic field operators. Let, for
j=1,...,4,
€

/2

H*"i(2): ! (ce,B(ej,z) —c_.;B(—¢;,2)) .

V2

%
Since B(e,z)™* =B<—e, 1 ) we see that exactly in 2D Minkowski space, where |z|
V4

Hj(Z):= (cejB(ejsz)+c—ejB(_ej>Z)) 5

(3.16)

%
=1 and thus - =z, we have
z

Hi(2)* =Hi(z) } i=1,...,8
H@: =Y Bz, on pEy=p® S T
1 e
m=ﬁ (ce, B o, By %)
=14, (3.17)

Hi =% (co By —c_ o, BJ )
/2
(H)*=HY,
{H{,H,’f}=6v+u,05j’k Lk=1,...,8 .
(Lo, Hi]= —vH]

4. The NSR-Models

In this section we will make use of the fermionization/bosonization formula (3.13)
in order to derive Eqs. (4.8) which constitute the essential step from compactified
bosonic dimensions towards the anticommuting part of the NSR models.

The first equation of (4.8), i.e. the Ramond-type expression, was also derived in
[5]. In contrast to our methods those authors plugged Eq. (3.13) into the bosonic
form of L, [i.e. into the left-hand side of (4.8)] and subsequently employed
¢-function regularization to determine the extra contribution { for L™ . Instead,
we take recourse to the representation theories of SO(8) and of Virasoro algebra,
using the results of [6] on the quantum equivalence of seemingly different 2D
quantum field theories. This approach seems to be a rather natural one, since one of
our aims is to prove the quantum equivalence of L2 [left-hand side of Eq. (4.8)]
with L™ [right-hand side of Eq. (4.8)] on a Hilbert space to be determined.

Using Egs. (3.13), (3.16) we see that

i

Pj(z)Eej-P(z)=§ SH*z) (T **HyH'(2)s , j=1,...,4, (4.1a)
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where
(T =8k 69 —57k 50y | i j=1,...,8 , (4.1b)

are the generators of the SO(8) vector-representation (e.g. i>j). The Pi(z) with
their moments

1 ,dz .
P =3 7P’(Z)Z+"

form a generalized Cartan-subalgebra of the gssociated affine Lie algebra SO(8),
with pi=al. The full Kac-Moody algebra SO(8) is generated by the currents
Tif(z):=%8H"(z) (T H'?)S (4.2)
or, more precisely, by their moments
ij = i +n
Ty 27_” § ‘T @)zt

which satisfy the SO(8) commutation relations
(T, T = (T4 "7 = T 099+ T84 =T 57 k1 6275798, 1
(4.2a)
Here k is the standard notation for the central extension of a Kac-Moody algebra. &

is c-number valued in every irreducible representation of the Kac-Moody algebra.
Because

[p;l’p}ln] = 1 ‘n: 5n+m,05i’j B
we see that the currents (4.2) obey a SO(8)- algebra with k =1. Since {pb} =Cartan
subalgebra in this representation of SO(8)< SO(8), we obtain

(a) k=1,

(b) {weight vectors of SO(8)}={p, with |p) being the corresponding eigenstate},
(c) since all allowed types of momenta are of the {4y }- or of the {4,}/{As}-type, we
have the following classification of momentum eigenstates with respect to their
SO(8)-transformation properties:

{lp=Ay)} =the 8 weight-vector-eigenstates spanning
the 8 D irreducible vector representation,

{|p=is>} =the 8 weight-vector-eigenstates spanning
one of the two 8D spinor representations,

{lp=45>} =the 8 weight-vector-cigenstates spanning
the other 8D spinor representation.

In addition we note that
{p=te tejli%j}u {0} =all the roots of SO(8) .
Hence the highest root y obeys % =2.
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(d) Combining (a) and (c), we see that the level x of the Kac-Moody-algebra-
representation furnished by (4.2) is given by

xi=—p=1. 4.3)

Now, since SO(8) is simply laced and because of (4.3), it is shown in [6] that

1 rankSO(3) . B 1
L(2):== 2 ST TV == X PEPY .,
2 @@J)=1 2 (4 4)
_ rankSO(8)'1 dimSO(®) . i % '
g(z)'~dimS0(8) 5 (i;:l xT' (T2 %,
obey
L)=2() , 4.5)

X X

where X X denotes ‘“bosonic” normal ordering, i.e. with respect to T}7.
Equation (4.5) says that the two 2D quantum field theories described by the
respective generators of their Virasoro algebras, £ and 2, defined on the same
Hilbert space, are quantum equivalent in a highest weight (i.e. L, is bounded from
below) unitary representation of the Virasoro algebras.
Moreover, we get from [6] that

_ k 8)~!
26 =0 LG | “6)
where

1 dlfJ .
— g Jg .
L(Z)-—2 z = H'Z+¢-8 ,

for all purely imaginary 8D irreducible representations i(T%),; of SO(8). Oy is the
value of the quadratic Casimir operator of the representation under consideration,
dimSO®) )
Ou= Z (iT")*. Thus Q) equals 7, since the fermion operators H'(z) are in the
G.)=1
vector representation of SO(8). Finally

=0, for NS-b.c.} imposed on  H'(z) .

Thus
1 1, dHY ; 1R
Z X ; x==5 I(z)s 4,
1 (Pe)(Pre)i=532—— QHI() +{0:NS_ 4.7
Calculating the moments, L, of £ (z)= Z L,z™™, we get
meZ
1 « 1 g x 1 o i . 1
R: L,=; Z x Ut nl—px =75 Z OHyln+kHl—k°(_k"'m)+_ Omo >
2 . 2 2"
4.8
{ 1 (4.8)

NS: L,=z Y Xopenal,X=5 Y CSHi H.3(—r—m) .
2 neZ 2 reZ+3
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This shows the important equivalence of the free bosonic with the free fermionized
theory. We note that the contribution of the 4 compactified dimensions to the
normal ordering constants ¢ =¢=1 in the bosonic string will be equal in both the
boson and the fermion picture. Thus we may set

1 7:R
L oi=Y Hi Hj-
Lo=5p +'§Oa nOlh Z vHi v+{0 NS

The difference between the ground state energies, zero in the Neveu-Schwarz- and 4
in the Ramond-sector, correctly accounts for the different vacua (3.7), (3.8).

Now we come to the last part of the construction of the NSR-models. First, we
take the d=10, D —d =5, not necessarily consistent free bosonic string. We also
assume that 7€ R. Secondly, any 4 of the D —d compactified or (for open strings)
remaining dimensions shall generate our H}. Third, we choose arbitrarily a pure
momentum eigenstate (i.e. eigenstate of p;, pg or p), which we denote by |v,>,
subject to the sole condition v =1, in the D —d —4 =1 dimensions. (We call |v,) the
“hidden” vacuum for reasons to become clear.) Thus we select one of the many
candidate Hilbert spaces H=#; @ #z ®|pDi=2, . a1 0t H=H @|pDi=s. . a1,
where

#={[¢#>i=2 ..... 9®(H |U>)I 1,..., 4)®|Vi?>lgs} 5

. 4.9)
={|¢>i=2 ..... o @HL,|0))=1,..., 4)®|Vh>lgs} >
and # indicates left and right movers.
Now let us rewrite, for the purely bosonic compactified strings, Egs. (2.7), (2.8),
(2.10), and (2.12) on these Hilbert spaces H:

closed. Em? =N+ N'+5 (pk) —=N'+Li % ,
%m2=Ni+NI+% (pi)Z __7EN1+L6 _5_ , (410)
open: Fm* =N+ N+ () —L=N1+Lo , (4.11)
2 o
closed.: = (LntLy) o =p—+ (Lo+Lh)
2 4.12
open: o = (L + L) ¢12)

where I indicates the 4 nontrivial compactified or remaining dimensions.

Plugging our fermionized expressions into these equations, identifying H} with
d; or b} [1], since { Hi} obey the required commutation rules and (H;)* =H%,, we
then get immediately the d=D =10 open and closed spinning strings, namely the
NSR models:

s 1
closed.: NS#: % m*2= Y oaflefi+ Y bfib,#“r—z, 4.13)
i=0.0 >0
R*: %m“= Y oaFieFi+ Y dEdSon 4.14)
n>0 n>0
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constraint: m? =m?,

1 . . 1
open: NS: —m?=Y o ,oi+ Y bLbir—=, 4.15)
8 n>0 r>0 2
R: %mzz Y ol,d+ Y didin, (4.16)
n>0 n>0
1 .
closed.: ———: PO A < Z dmind®i(—m—n)
1 ; ;
5 Y b,f{.,bfﬁ(—m—r)) , 417
open: ®,, =analogous to (4.17) , (4.18)

where # denotes left or right movers; the reader may convince him-(her-)self easily
of the fact that the factors (—m —k) or (—m —r) in (4.17), (4.18) are equivalent to
(—m/2 —k) or (—m/2 —r) (used in [1]) or to the factors accurring in (2.7).

Of course we do not get directly the constraint-equation for &, ~. It can be
constructed using (2.7), where all operators needed are available now.

The groundstates are given by [cf. notation in (4.9)]:

any R-sector: {|0)> ®(|4s) or [A) ®Vid}
any NS-sector: {|0> ®|0> ®|vs>} .

Observe that, since the fermionization procedure of Sect. 3 ultimately depends only
on the scalar products of the orthonormal basis vectors e;, and since the
commutation relations of the p*, ¢*, o,F do not single out some fixed directions
either, we can choose any other orthonormal frame {¢;} instead of {e;}, e.g. {4} or
{/13-} thanks to triality. Thus, similar results hold if we start with B(A,, z) or B(/g, 2),

and we easily get
{Bis1/210>} = {M's: aI = O)} 5

{Bi‘;l/2|0>} = {M's‘a GI=O>} ’

thus having explicitly created the R-groundstates out of the unique NS-ground-
state. We note that the set { B*y,, B, ,} is an important ingredient in constructing
the fermion emission vertex, in our framework.

Last, we write down the expressions for the Lorentz generators [1]. The
interesting ones are the generators built from i, d} in the transverse directions:

J”=L""(af,,q" P+KS

(4.19)

(4.20)

4.21)
K”_ 5 Z dr,:l+n(Tl )kld-n8 > meZ >
and
Sdkdl s =dkd}
or
KU— Y z b +r(:rl )klbl r8 > meZ

for right movers, or open strings.



492 G. Keller

Comparing (4.21) with (4.2), we note that the physically relevant SO(8),
generated by K, and the SO(8) generated by the fermionic currents 75 are
equivalent, i.e. K= —T}J, Vm, and the structure constants of the K—SO(8)
= —those of T—SO(8).

Thus the momentum operators {p - e;} = {p - 7;;} form a Cartan subalgebra also
for the transverse Lorentz group, and we conclude immediately that the transfor-
mation properties of the groundstates under the transverse Lorentz group are as
follows (cf. Egs. (4.1a)—(4.3)):

(a) the NS-vacuum |p=0) is a singlet,

(b) the R-vacua are the weight-vector-eigenstates of both chiral irreducible
spinor representations:

D eiM's> = (ei ’ ls)l/ls> s etc.

The same conclusion can be drawn if one uses Egs. (3.7), (3.9), (3.20) to obtain that

(a) {Hs} act on {|A) @45y} as the 16-dimensional representation of the
Clifford-algebra.

(b) {H{} act on all massive states obtained from |v), i.e. {HY,, ... Hm, o)},
also purely as y-matrices.

(c) K¥ built from Hj acts on {|4;) ®|4s>} as K¢, ® K¢k, realizing both chiral
sectors of the SO(8) spinor representation.

In conclusion we found: with intermediate use of 2D Euclidean space, i.e.
allowing teC, we have explicitly constructed all possible NSR-models from
bosonic string theory on all admissible Hilbert spaces which are subspaces of the
bosonic string. We have chown how to identify the various groundstates and how to
realize them in terms of bosonic states and have verified their physical SO(8)
properties. Using appropriate GSO-projections in the NS- and R-sectors [1], we
can readily identify various 10D supersymmetric subspaces of the bosonic string,
since all states obtained by the action of {H ¥} on |v) are linear combinations of
Ip¥, a*)-states.

Note that the full anticommuting structure characterising the NSR-models
could not be implemented using only a commuting structure.

As an example we describe what we call the “minimal” embedding of the
superstring in the bosonic string. “Minimal” refers to the fact that the embedding
can be achieved using only D=15 bosonic dimensions, which is somewhat
remarkable since naively one expects that D should be equal to 19 at least, because
we need 4 bosonic dimensions to construct {di} and 4 to get {b/}. But because
D(H}) 1L D(H}), D=15 is sufficient. Thus we take D=15, d=10 and choose the
common “hidden” vacuum |v,) of the NS- and the R-cector in the 15 dimension.
Consequently the operators p*, p', ¢7, ¢, &%, b,*' and d,}' are realized using the
following bosonic dimensions (see Table 1, p. 493).

Of course the subspaces we have chosen are stable under the action of all physically
relevant operators.

Finally we want to comment on the interacting string. The expressions for the
vertex operators and propagators can be found e.g. in [10]. We then see that

" We take {1,} to be {¢;} here, and afterwards, more generally, {1} =4 linearly independent
vectors of {+4}, and {1} shall be positively oriented
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Table 1

Bosonic dimensions Spinning string dimensions Operators
i=0,1 i=0,1 pt.q
i=2,...,9 i=2,...,9 oFi g, pt
I=1,...,4 i=2,...,9 b¥i
I=1,...,4 Jj=2,...,9 dji

(a) All NSR-propagators can be identified with the bosonic one, since e.g.
(L§ —1)=L§ —%, on any NS subspace
=L¥ , on any R subspace ,
(b) with our conventions the vertex for tachyon emission for bosonic strings is

V¥(p,z¥)= Z#—pz/s eiP2- Q% .
with conformal weight 4=1<p?>=m?= —8.
Taking special values for p, e.g. p=(k™, k™, k', 2¢;,0), we get p* =k* —4 and
thus k%= —4. So we have
K2k e I
V*((k,2€),z%)=z%"7 170" : g ¥ 7 ;g OY,

LRk
=z%"5 172" B¥(e;,z%) ,

where Q' is given by (3.1), (3.2). Taking linear combinations of Vs, we then get the
tachyon (k* = —4) emission vertex of the NS-sector in light-cone-gauge and in a
Lorentz frame where k™ =0:

k2 .
Vns(k, z)=const - (k- Hi(z)) -z~ 8 - 122 |

Similar results are expected to hold for all boson-emission vertices of the NSR-
models.

(c) This simple procedure does not work in the R-sector, because we would
have to modify the vertex operators of bosonic string theory in order to get the
fermionic vertices of the NSR-models.

Thus it does not seem possible to simplify the calculation of correlation
functions involving external fermions by just reading them off from scattering
amplitudes of bosonic string theory. Furthermore, there are also some drawbacks
affecting the correlations of external NSR-bosonic states: First, for reasons of
selfconsistency, we must include projection operators in the bosonic string
correlation functions which guarantee that only the states belonging to the chosen
NSR-subspace propagate. Secondly, as demonstrated in the case of the tachyon
vertex, each NSR-bosonic vertex operator which we can construct from the
bosonic string vertex operators will in general be obtained in an individual Lorentz
frame. Thus even after inserting the suitable projection operators into the bosonic
string correlation functions we can get the corresponding correlators of external
NSR-bosons at most for a very limited number of them.
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5. Possible Superstrings Formulated on the Ramond Sector

As promised in the Introduction, in this section we focus our attention on the
superstring candidates of [5], i.e. on the Ramond sector of the d=10, D=15
partially fermionized bosonic strings, and we choose v2 = 1. The reason is as follows :
The integer fermionic modes of the Ramond-sector provide us with a mass formula
which, in the case of d=10, D =15 and vZ =1, is the expression expected to hold for
every superstring which is formulated in the new formalism and exhibits only the
physical degrees of freedom. Correct chiralities of the states and of the operators are
two necessary requirements which have to be satisfied by a string theory which
“wants” to become, for instance in the present case, a superstring. Thus we will
investigate the chiral properties of the states and of the di-operators if one uses not
only the standard Lorentz generators K3, but also their triality-transformed
versions (see below). Because it seems to be rather difficult to construct the 10D
supercharges, we will not be able to prove that our candidates really are superstring
theories.

With this in mind we reexamine the Ramond-sector constructed in the previous
sections, i.e. where the anticommuting coordinates were obtained from {B(4y, z)},
defined on Dy(B), with mass-formula

f—

=m*?=3% afiafi+ Y dEdFn (5.1
8 n>0 n20
and where the transverse Lorentz generators are given by Eq. (4.21). Because the
Cartan subalgebra of the physically relevant SO(8) is generated by
v -p}
we know that the groundstates

12>} . o}

form the two irreducible spinor representations of SO (8). Thus we cannot build on
them a supersymmetric spectrum. (This is the reason why we have to introduce the
NS-fields; namely in order to get the vector-like groundstates.)

We now wish to generalize this construction. One motivation is the fact that the
fermionic operators in a superstring theory based on the new formalism behave like
spinors under the action of the Lorentz group. Because the d-part of the transverse
Lorentz group is based on the SO(8) generated by { — T} [Eq. (4.2)], and because
the { —7;} themselves are induced by {(T%),} which specify the transformation
properties of the {di} under the transverse Lorentz group completely, we are
interested in exchanging the vector-like (7¥),, with spinor-like (7).

Thus let us consider the following SO(8) triality-rotations,

P T
v st (T J)kl](441b)'—)z Y lu=i(0V) (5.2
and

i ———

4 [Via Yj]szi(Cfij)kz 5 (5.3

where the 8 D irreducible representations i(a*),,; and ("), are of type s, (5.2), and
of type 5, (5.3), which means that their weight-vectors are {4} and {1} respectively.

V5 i(Tij)k1|(4.1b)'_’
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It is convenient to write
(T (@) :=(TY), of Eq. (4.1b) ,
(Tij)kl(s#): =(0'#ij)kz of type s*

where ¢¥ and s* stand for ¢ or ¢ and s or § respectively.
The transformations (5.2) and (5.3) are given by real automorphisms [9], i.e.

(Tij)kz (s #) =4* ijmn(Tmn)kl @ , (5.5)

where A4 *¥,, € R. Moreover the Cartan generators {iT*(v),. . ., iT*(v)} are mapped
as follows [9]:

(5.4)

iT’(s“*)=% (T'+T*+T*FTH0) ,

iTz(s‘*)=% (T'+T*-T*+TH () ,

, (5.6)
iT3(s‘*)=% (T'=T*+T*+ T4 () ,

T =3 (FT 2T TP+ TH @) |

where the upper sign refers to s, the lower one to 3.
After these group theoretic remarks, we return to Sect. 4. Under the triality-
rotations (5.2), (5.3) the currents (4.2) obviously are transformed as

T(z,0)TY(z,5%) , (5.6a)
and by (5.6) the Cartan-generators are mapped as
{A,- P} {As P} . (5.6b)

Now, because the moments of {As+ - P} also obey the abelian Kac-Moody-algebra
with k=1, we know that Egs. (4.3)—(4.5) still hold.

Secondly, because the map (5.5) is a real automorphism connecting the 3
inequivalent 8D irreducible representations of SO(8), we know by [6] that also
Eq. (4.6) is still valid. Of course Q) equals 7 in all these 3 cases.

Third, because

X, PYA, P =X PYA-P) =30 PYJ P) %, 5.7

we conclude that in the SO(8)-rotated theory Egs. (4.7) and (4.8) are also correct.
Thus the constructions of Sect. 4, (4.1)—(4.8), can be carried out independent of the
SO(8) conjugation class, i.e. independently of whether we make use of T(z, v), of
T'(z,s) or of T¥(z,5). The states {|A,»}, {|As>} are thus the groundstates in all these 3
cases.

Furthermore, the Lorentz generators (4.21) become

Ki(s*)= —TH(s*)= ~§ Y gdb [yl dls (5.8)

for right movers, or open strings.
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Of course the Lorentz algebra still closes, as in the case of Ki(v), since all 3 types
of KiJ obey the same SO (8)-algebra, and because of (5.7).

_Thus we have found: The Ramond-type operators d} transform as 8,, under
K§/(s*), and the chiralities of the groundstates are given by

{125} :8,
{1} : 85

{1A>} : 8,
{12} :8,
which can be easily verified using Eq. (5.6b).

This looks very promising because now we can have spinor- and vector-like
groundstates and fermionic operators of the third chirality-type. So we get the
supersymmetric spectrum required for candidate superstrings.

Let us finally consider a second kind of generalization of the Ramond-model
(5.1). We could have fermionized the 4 bosonic directions using any orthonormal
frame {¢;} = {Rej|R € O(4)}. Special cases are {&;} = {1,} and {&;} = {13}. It is easy to
verify that all the results of Sect. 3, 4 and 5 hold, if we replace, according to these
basis transformations,

} ~under Kii(s)
(5.9)
} under K¥(5)

_{|/1s+AR> o _{MV"‘AR>
D(B(AV,Z))R— (—Blﬂ,‘y—+AR>} D(B(ls’ Z))R_ @'25+AR>}
_{Ils+AR>
or HD(B(A'_?;Z))R_@,AV+AR>}

and SB(dy,z)B(—Ay,2z)3=4y P(z) (Eq. (3.13))
becomes $B(Ag#,z) B(—Ag+,2)8 =Ag+ - P(2) .
We denote the fermionic fields H(z), the inducing representations (T'), the currents
T(z) and their moments 7}, by H'(z), H*(z), H(z); (T, (T®)ea, (T™)zz: etc., in
the case of B(4y,z), B(4,2) and B(4 z) respectively.
Summarizing (5.9) and these remarks we obtain the following Table 2:

Table 2
SO(8)-representation (4.2) Transformation property of the
(or, equivalently) Ramond groundstates
Lorentz-algebra ({lli)}, {Mi—)}) under
induced by s v
Koﬁfg

_ - (5.10)
(D) @) G.e. (T®), (T™)ea®), (T™)ca(v)) (8,89
(D)) (8,85
(1 G) (85,8,)

Here, the shorthand in the upper right half of the Table 2 (5.10) means that K¥ is
acting on {|A,>}, {|4;>}, and that K and K®act on {IA,p}, {IAs>} and {|As>}, {|Ap}
respectively. So we learn that one always needs (7') (s) or (T)($) in order to get
candidate superstrings.
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Using (5.10) we are in a position to compare the bosonic states making up the
GSO-projected NSR-model and our candidate superstring. We assume that the
massless states of both theories are given by

{140}, {14} (5.11)

Because (5.11) uniquely fixes one of the three possible domains of definition of the
operators H,, we are led to investigate the action of the superstring operators HZon
the states (5.11). For the candidate superstring we choose (7') (5), and for the NSR-
string we choose (T) (v) as the inducing representation of the Lorentz algebra. It
then follows that the states (5.11) transform as (8,, 8,) in both theories.

In order to perform the correct GSO-projection (onto G= —1 states), we must
act with an odd power of (b’,)-operators on |0%, and with even and odd powers of
(d,)-operators on {|A;>} and {|A;)} respectively. Taking into account (3.17), it is
easy to check that at the first two mass levels we get the following set of basis vectors
(apart from cocycle factors):

groundstates: NSR-superstring
{{bi—1/2|0>} = {Mv)}} Y {Ms>}
{20} U {lAs}

Superstring candidate

1% mass level : NSR-superstring
{{bL 1 obi 1 ab% 105} U (B 55105} 2 {14, @l 1 05
U{ltecte,te,y; kemEn+k}}
w {{o 15212100} 2 {|A,> ®al|0)}}
U {dL 1A} = {14+ A}
U {1140} = {14 ®al 110> }}

Superstring candidate
{HoA} 2 {14+ 245}
v {{H%A} 2 {12, ®al,10})
v{ltetente); kEmEnktk}}
U {14 ®al]0)}
U {14 ®@al [0} .

Thus we get the same states with the same chiralities. It is very plausible that this
result holds true at each mass level®. We will comment on the implications of our
calculation during the following

Discussion. On the Hilbert spaces #, #°, #79, e.g.
H'=|piea,.0 @ * @HLIAY UHLIAD) @D}

8 Note added: Using the formulation of [11] this statement can in fact be proved without too much
effort
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we have constructed, by an SO (8)-triality transformation, in light-cone gauge, an
automatically chiral string theory with supersymmetric spectrum. Here, the
fermionic operators ;%9 transform vectors into spinors and are thus expected to
be part of the supersymmetry generators. For a given type of #, i.e. for #  or #° or
#° the set of the groundstates is fixed. But their chiralities are not fixed and can be
adjusted choosing the appropriate 8 D irreducible representation of SO(8) which
induces the SO (8) current-algebra. There is the conventional Lorentz algebra which
closes also after triality transformation. All the massive states are obtained by the
action of {# ;%% and {o’,} on the groundstates.

Having established the equivalence (with respect to the spectrum of physical
states) between the 8 D superstring candidates (in Green-Schwarz formalism) and
the NSR-superstring, it only remains to construct the 10D supercharges Q%
Together with the Lorentz generators K%(3) they should provide the full 10 D super
Lorentz algebra in the Green-Schwarz formalism. Although finding the Q¢should
not be an impossible task [in view of (4.20) and of the SUSY properties of H7], it
seems to be a rather laborious one. Having in mind the results of [1], it is obvious
that we also need y ™ and y ~, for which there is simply no room left in our 8 D world.
We see that our 8D language has its limitations.

This is manifestly so if we want to compare our would-be superstring, which
explicitly exhibits all the physical degrees of freedom, with the superstring in its
“new” formulation, because the “new” formalism never solves explicitly for the
physical components; one always uses the full 32-spinor and the 10D Clifford
algebra in its 32 D reducible representation, taking into account various projection
properties.

Summarizing we restate the remaining open problem: In order to prove the 10 D
supersymmetry of our candidate superstring theories we need the supercharges Q°,
which are unknown so far.

6. Outlook

It is not obvious whether it will be possible to incorporate the fermionization in
string field theory and consequently the embeddings of the NSR-strings and of the
heterotic strings in a bosonic string. The reason is that fermionization and the
creation of the gauge algebra are highly nonlinear transformations on component
oscillators, and that in both cases one needs to invoke additional structure (operator
cocycles) in order to get the desired subtheories. So we do not expect that purely
bosonic string fields are capable of producing superstring and heterotic fields
without additional ingredients.

Functional integrals look much more promising, because the partition function
of bosonic strings restricted to the 10D supersymmetric subspaces must yield the
superstring expression. But, of course, the question mark concerning the embedding
of the interacting superstring is still present.

Appendix A

The commutation relation (3.9¢c) can be easily derived using Eq. (5.3) of [3].
However, for the sake of completeness, we will sketch its verification.
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Taking into account (3.1), (3.3), and (3.4), Eq. (3.9a) is a well-known result, and
consequently we get

[k p?, Be, Z)]zzTeie»Q< [k p?, e2ie 1) zeP¢ie0>

82
=ZTeie-Q<eZie~q(e.p+%_e2)zepeieQ>
=B(e,z) (e p+5é?) . (A1)

Because Lo=% p?+ N, we now calculate [N, B(e,z)]. Remember that the Baker-
Campbell-Hausdorff formula for operators 4 and B with [4, B]e C is given by

eAeB = pA+B+112[4.B] (A2)
Writing
d
o‘£=d_y ea{,yiyzo , (A.3)

and because [a},, 0L]=0, for m <0, we see that

[V, €)= 3 ot e 0]

n>0

I d aly e Q< ieQ < oly
=Y al, - {e*e —e e o
nZo dy{
eoy 1 ey, 1
I d aly—Y — z7F4— pelzm ay—y —z k- pe'z"
= Z Ay d_ {e :E:o k 2 —e€ i<o K 2 }|y=0
n>0 y

where in the last step we used (A.2) and the commutation relations (2.13), and thus®

n>0

1
[N,eieQ<]= Z al—n {!‘ dsesie~Q<<a£+% elzn>e(1—s)ie~Q<
0

L 1 .
__j‘ dsesie-Q< (a{l __ eIZn>e(1—s)ze'Q<}
; 2
el (A4)

I I -y —=zk
n>0

_ d — Z ﬁz"‘ - i ie Q<
._ZE<e 2k >_z e (%)
By the same method we obtain
. d .
[N, eeQ> =2z — e'°2> | (A.5)
dz

® We use the fact that

d 4 ! . d _
Z A= dses 4N 4 (1 —94()
p | 210
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Combining (A.1), (A.4), and (A.5) we get
d

[LO’B(e7 Z)]=Z 2; B(es Z) . (A6)

Now we plug in the Laurent-expansion (3.4) for B(e,z). The result is
[Lo, BY]= —VBy . (A.7)

By Eq. (A.1) we know that

(0%, B]=Bj(e-p+ie?) ,
and since Ly=% p*+ N, we get

[N, B{]=Bi(-v—%—e'p) , (A.8)

because e =1. This proves all the commutation relations (3.9a)—(3.9¢).
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