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Abstract. An analog of the classical Selberg trace formula is given for discrete
groups, acting on the upper complex half-superplane. Applications to the
fermionic string measure on the moduli superspace are discussed.

Introduction

Quantum string theory is being discussed now with growing interest both by
physicists and mathematicians. Common expectations are that one of the
superstring models will correctly describe Planck scale physics and, after multiple
symmetry breaking, will lead to the well known effective lagrangians in the low-
energy limit.

Mathematically, quantum string theory exists in two versions. Much work was
done with canonical quantization, which opened a very interesting new chapter of
representation theory. However, it is notably difficult to construct a consistent
picture of interacting strings in the operator approach. The Polyakov path integral
formalism [1] is devoid of this shortcoming, since to account for interactions in
this approach it suffices to sum over all world sheets with topologies compatible
with boundary conditions. In particular, the partition function and the amplitudes
in the critical dimension d = 26 are expressed as a sum of a series, where the g-loop
contribution is given by an integral over the moduli space Mg of conformal classes
of Riemannian surfaces of genus g. In this way a measure on Mg arises, which is
expressed as a certain combination of determinants of the Laplace operators (cf.
[2]). For g > 1 the conformal moduli space Mg may be considered as a space of
surfaces of constant negative curvature. By means of this identification, one can
express the Polyakov measure on the moduli space through the geometric
invariants of the constant curvature metrics, namely lengths of geodesies (cf. [3]).
To this end one uses the Selberg trace formula [4] and certain recent results on the
Weil-Petersson metric of the moduli space. These formulas, announced in [3], are
briefly reviewed in Sect. 2 of this paper. A detailed presentation with slightly more
precise formulas has since appeared in [5]. An objective of this work is to develop
similar tools for the quantum fermionic string theory in the critical dimension
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d = \0. On the way, we give an exposition of the basics of superconformal
geometry. It plays an auxiliary part here but is of interest by itself. Our
presentation follows [6].

This paper is structured as follows. Section 1 is devoted to the notions of
superriemannian and superconformal manifold of real dimension 2|2. Various
physical amplitudes for fermionic strings are represented by path integrals taken
over the superspace of the string field and superriemannian metrics. These path
integrals can be reduced to the finite-dimensional integrals over the super-
conformal moduli space, i.e. superspace of riemannian supermetrics modulo
superconformal equivalence. The main content of Sect. 1 is an exposition of
necessary information on the superconformal moduli space and on the measure on
it, arising in fermionic string theory. We utilize here an analog of the realization of
the classical moduli space by surfaces of constant negative curvature, following [3]
and [6]. We consider only the case g> 1, our surfaces being closed and oriented,
thus restricting ourselves to the multiloop contribution in the theory of closed
string. However, the principal notions of Sect. 1 can be readily generalized.

Section 2 contains a discussion of the fermionic string measure on the
conformal moduli superspace. We first propose a formula for it in terms of values
of the superanalog of Selberg's zeta function. However, this formula involves
points outside of the convergence domain. Unfortunately, we were unable to
establish an analytic continuation of our zeta. Therefore our formula remains
conjectural.

Section 3 presents in some detail our main results on the Selberg supertrace
formula.

We must stress that all our calculations refer to the fermionic string in
the Polyakov formalism. They do not apply directly to the Green-Schwarz
superstring. In the end of Sect. 1 we discuss the relation of the fermionic string
measure to the superstring measure.

We adopted a physicist's writing style in the main body of the paper. In
particular, our treatment of superspaces can be made more mathematically
acceptable with the help of definitions given in [17, 18], which are close in
spirit to the physical language. In the Appendix we explain a different approach
to the supergeometry, based on the generalization of the usual notions of
algebraic and analytic geometry.

1. Superconformal Moduli Space

The bosonic Polyakov string path integrals can be reduced to finite-dimensional
ones thanks to two basic facts of two-dimensional geometry of world sheets:

a) To give an orientation and a conformal class of metrics on a surface is the
same as to define complex local coordinates on it with holomorphic transition
functions.

b) There are only three connected and simply-connected riemannian surfaces:
riemannian sphere, riemannian plane, and upper half-plane.

Using a) and b) together in uniformization theory, one can realize the space of
conformal compact surfaces essentially as a space of discrete subgroups of
SL(2,R).
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To extend this picture to fermionic strings, we adopt the following definition. A
superriemannian metric on a 2|2-dimensional superdomain with coordinates
ZM = (x\x2,θ\θ2) is an odd complex vector field e = eM(Z)d/dZM with the
following properties:

i) anticommutator of έ with its complex conjugate vector field I is a linear
combination of e and I:

{ej}=τe + τe, (1)

ii) vector fields E = e2, E, έ9 e form a basis of the space of all vector fields over
the ring of superfunctions.

Two metrics are called equivalent, if they differ by a phase factor:
e' = exp(ίλ(Z))e, where λ is a real superfield. Ajnetric e defines a Berezin volume
element corresponding to the vierbein έ, £, I, E, the same for equivalent metrics.

A superriemannian metric on a general 2|2-dimensional manifold is defined by
a family of metrics on coordinate charts, such that induced metrics on pairwise
intersections of charts are equivalent. In the following we shall not distinguish
between two equivalent metrics.

It is conceivable that a metric depends also a certain odd constants. An
adequate mathematical language is that of "families," for which we defer to the
Appendix.

In the absence of odd constants, the notion of superriemannian metric is
essentially equivalent to that of spinor structure. Namely, given a riemannian
surface with a spinor structure, we can construct a 2|2-dimensional super-
riemannian manifold as follows. Let the riemannian metric be written as
ds2 = \ρdz\2, where z is a complex coordinate. Then the corresponding super-
riemannian metric is given in complex coordinates I = x1 + ίx2, θ = θί + ίθ2 by the
vector field

έ = (]/ρ)~1(d/dθ + θd/dz). (2)

In general, let a riemannian surface M be defined by an atlas Ua with complex
coordinates z(α) and holomorphic patching functions z{a)=faβ{zi<β)). Let the
riemannian metric be ds2 = \ρadz(Gί)\2 in Ua. Then the associated 2|2-dimensional
supermanifold M is covered by superdomains Ua with complex coordinates
(z(α), θ(α)), and patchings

The spinor structure on M defines the choice of square roots.
An important example is a superanalog Jf? of the Lobachevsky plane H. It is a

superdomain in R 2 | 2 = C 1 ' 1 , defined by Imz>0, with superriemannian metric

έ=Yll2{d/dθ + θd/dz)9 (3)

where Y=Im(z — \θθ\ (z, θ) complex coordinates. The associated volume element
can be conventionally written as

dV=γ-1dzdzdθdΰ. (4)
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The supergroup si, consisting of transformations

„ az + b — a(ε1+ε2z)θ

c(ε1-{- ε2z)θ'

θ
cz + a

conserves the metric (3) up to equivalence, if a, b, c, d are even real parameters with
ad — bc = \ and ε1?ε2 are odd real parameters. We shall call transformations (5)
superprojective. Introducing homogeneous coordinates (z1?z2, ζ), for which
z = z1z2

ι, θ = ζz2

1, we can rewrite (5) as a linear transformation,

= T z, T=D=D~1
(6)

for which Ber T= 1 and

D2 = (ad-bc)(l+ε1ε2).

We have clearly j / r e d = SL(2, R).
Consider now a discrete subgroup Γ of si which may depend on some odd

parameters. Using the language of the Appendix, we can make this more precise as
follows.

Consider a ring A of superfunctions on a superspace S. Let Γ be a subgroup of
^4-points of the supergroup si with the following property: at each point of S the
reduced subgroup Γred c SL(2, R) consists of hyperbolic elements, acts discretely
upon H — 2tfΐQά and has a compact quotient space Γred\H. Then Γ\H x S is a family
of l|l-dimensional complex compact supermanifolds, parametrized by S.

As is well known, the fundamental group of a compact Riemann surface of
genus g can be defined by 2g generators satisfying one relation

A&A^Bϊ1 ...AfieA^B ^l. (7)

Since the dimension of si equals 3|2, one can assume that (7) defines a superspace
in the product of 2g copies of si of dimension 6g — 3|4g — 2. This naive count can be
justified by a rigorous argument, at least at points, where Γred is a classical fuchsian
group with compact quotient space. Conjugating Γ by an element of si we get an
isomorphic quotient space. Again, one can prove the existence of a quotient space
of fuchsian groups of genus g, which is a supermanifold of dimension 6g —6|4g —4.
This space & is a base of a family of l|l-dimensional complex manifolds, endowed
with superriemannian metrics, induced by the canonical metric on 2tf.

On the other hand, in order to calculate fermionic string path integrals, we
must consider a superspace T, which can naively be described as a quotient space
of the space of all superriemannian metrics on a compact 2|2-dimensional
supermanifold of genus g by a supergroup, generated by superdiffeomorphisms
(alias, reparametrizations) and super-Weyl transformations e' = A(Z)e, where A(Z)
is an arbitrary even invertible superfield. In the Appendix we explain how to
envisage such objects as functors. But the existence of a good finite-dimensional
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quotient space is a subtle question even in the classical "bosonic" geometry.
Therefore for the time being we shall simply work with 2Γ instead of T and use
notation T indiscriminately for both spaces. We shall also forget about the discrete
quotient of the diffeomorphism group since we shall be working locally on T.

In the following, we usually omit in notation a base space, like T. Thus, we write
Γ\JV instead of Γ\JP x T etc.

We now recall the heuristic arguments leading to an evaluation of the
fermionic string path integrals.

The action of the fermionic string equals

S= j eXμeXμdV, (8)
jί

where X1(Z)9 ..., X\Z) are even superfϊelds on the 2|2-dimensional world sheet, e a
superriemannian metric on it, dV the associated volume element. We fix a genus
g>\ (corresponding to the loop number in operator formalism) and do not
include the topological part of the action, whose contribution reduces to
multiplication by a constant, depending on g only. We consider closed oriented
strings, i.e. compact oriented Jί.

The g-loop contribution to the partition function is a path integral of exp( — S\
taken over the superspace of Xμ and e. The standard arguments show that in the
critical dimension d = 10, where the superconformal anomaly vanishes, this
integral reduces to an integral over the conformal moduli superspace T. Realizing
it by means of superuniformization, as above, we can represent the integration
measure in the following form:

dπ = |det' Πo(OI" 5|det' Π2(O|dv. (9)

Here dv is a superanalog of the Petersson-Weil measure and Π m are super-
Laplacians on J f, defined as follows.

For yeΓ, put (z', θ') = γ(z, θ) and define the superanalog of the classical
automorphy factor by

dz)ff.

A field of type k on Γ\ Jf is, by definition, a superfunction Ψ(z) with the property
Ψ(yZ) = F*Ψ(Z) for all yeΓ. A scalar product in the space of fields of type k is
defined by the formula

1 2 ,
Y=lm(z-1/2ΘΘ),

where the integral is taken over a fundamental domain U of Γ. The invariant
Laplacian on superfunctions is

where l + is adjoint to e. For the general definition of {Jk on fields of type k see the
Appendix.

The operators \Z\k may have zero modes which are not taken into account in
the calculation of the determinants. In particular, constants are zero modes for
• o For simplicity we assume that there are no more.
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In [6] it is shown that cotangent bundle of T can be identified with the bundle
of odd superanalytic fields of type — 3 on Γ\jΊf. The restriction of the scalar
product (10) on them is the superanalog of the Petersson-Weyl metric. The
measure dv in (9) corresponds to it.

In a forthcoming work of Baranov, Frolov, and Schwarz a different approach
to the construction of these objects is developed, which generalizes to the
supergeometry the results of W. M. Goldman [Adv. Math. 54:2, 200-225 (1984)].
In this approach the tangent sheaf to T is identified with /^(ΓjLiej/) and the
symplectic form corresponding to the Kahlerian Petersson-Weyl metric corre-
sponds to the cup product pairing

H\Γ9 UQ^)®H\Γ, Liej/)->iί2(Γ,R) = R

induced by an invariant form on Liej/.
As we already mentioned, the measure (9) corresponds to the fermionic string,

i.e. to the theory with action (8). The Green-Schwarz superstring is closely
connected to the fermionic one but is not equivalent to it. The difference stems
from the fact that in the superstring theory one should perform an independent
summation over left and right spinor structures, which is not reflected in the
prescription (8). In the euclidean approach "left" and "right" means "analytic" and
"antianalytic" respectively. Therefore one must investiagte the analytic properties
of the measure (9) in order to connect it with the superstring measure.

The analytic properties of the bosonic string measure were established by
Belavin and Knizhnik. Their theorem expresses the measure on the moduli space
via the so called Mumford form. The Mumford form establishes a 1 — 1
correspondence between complex volume forms on the complex linear spaces L2

and 13L1? where Lm is the space of holomorphic m differentials on a compact
complex one-dimensional manifold X. This form analytically depends on X. On
Lι there is a scalar product depending only on the complex structure of X. This
hermitian metric generates a measure on Li considered as a real space. The
Mumford form, or rather its modulus squared, allows one to transform this
measure into that on L2. Since L2 is the cotangent space to the bosonic moduli
space at X, the Mumford form generates a measure on this space. Belavin and
Knizhnik proved that it coincides with the bosonic string measure. This made it
possible to calculate this measure for small genuses via theta-functions [11] and
for arbitrary genuses via theta-functions [12] or via holomorphic differentials and
their zeroes [Beilinson-Manin: Commun. Math. Phys. 107, 359-376 (1986)].

The fermionic analog of the Mumford form was recently constructed by A. A.
Voronov (to be published), following the suggestion stated in Yu. I. Manin's
Berkeley ICM talk. When Π o h

a s o nly constant zero modes, this form establishes
a 1 — 1 correspondence between complex volume superforms on the superspaces
L_3 and 5L_ l5 where Lm is the space of odd holomorphic fields of type m on a
superconformal space X. This form is the holomorphic section of the correspond-
ing bundle on the moduli superspace. Since L_ x has an intrinsic scalar product and
L_3 is the cotangent space to the moduli superspace, the Mumford superform
generates a measure on T. In [15] it is shown, that this measure equals (9). This is
an analog of the Belavin-Knizhnik theorem. Voronov has also given an expression
for the Mumford superform, similar to the Beilinson-Manin formula.
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It is convenient to rephrase the Belavin-Knizhnik theorem and its superanalog
in terms of an extended moduli space T. In the bosonic case it is defined as the total
space of the fibration over T, whose fibre is the product of 13 copies of the Jacobian.
The tangent space to a point of T contains 13LX and the factor space is L%. Hence
the Mumford form gives a complex analyticc volume form on Γ, which we denote
π. From the Belavin-Knizhnik theorem it follows that the partition function of the
bosonic string coincides with the volume of the extended moduli space T with
respect to the modulus squared of π. I.e. the partition function can be represented
as the measure of the diagonal in T x f (bar denotes the complex conjugate
complex structure).

In a forthcoming paper by Baranov and Schwarz [15] this construction is
generalized to the fermionic case. The partition function of the fermionic string
equals to the integral of unity over the diagonal of the appropriate superspace
T' x T with respect to a Berezin measure.

It is likely that the partition function of the superstring should be defined as a
similar integral of unity taken over a different subspace A x B C T x T\ where
AcT',BcT'.

In this way one can make sense of the independent summation over left and
right spinor structures.

2. Measure and Selberg's Zeta

For the bosonic Polyakov string in the critical dimension d = 26 the measure on
the conformal moduli space at a point, corresponding to the surface Γ\H, where
Γ C PSL(2, IR), can be presented in the form

dπ = const (Z'Γ(l))-i3ZΓ{2)dv, (1)

where ZΓ(s) is the Selberg zeta function and dv is the Petersson-Weil measure. This
follows from the Ray-Singer calculation of analytic torsion, as was explained, e.g.,
in [3]. The zeta function is defined by the product

Zr(s)=I\ fί(l-iVy-
s-fc), (2)

{y} k = o

taken over the set of primitive conjugacy classes {y} in the fuchsian group Γ of
genus g > 1, consisting of hyperbolic elements. The element y Φ1 is called primitive,
if it cannot be presented in the form γ = βk, βeΓ, k> 1. Its norm is Ny> 1, if it is
conjugate to the transformation z' = Nyz; it can be calculated from the equation

1 / 2 1/

In order to state the superanalog of the formula (1), we start with the generic
fuchsian subgroup Γ of the superprojective group s/, defined in Sect. 1. On the
open subsuperspace of J/, consisting of hyperbolic transformations (i.e. hyperbolic
at each point), an even superfunction N and a function χ, taking values ± 1, are
defined by the relations

χ(y)(ΛΓy

1/2 + iVy-^2) = (fl + d)(l-l/2ε1ε2)-ε1fi2, iVy,red>l

if y is taken as in (1.5), or by the relations

iVy, red>l,
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if y is taken as in (1.6). This definition is motivated by the fact that a hyperbolic y is
conjugate in si to the transformation

Note thatNote that iVy r e d equals the norm of yred.
Now we introduce the Selberg zeta functions of the generic fuchsian group Γ as

even real analytic superfunctions on the product of C and the supermanifold T:

Π Π ( , ) >
(3)

00

where {y} again runs over primitive conjugacy classes in Γ.
In the next section we shall show that for a > 0 we have

ZJ j- yl ~T~ ΪYlj A ~Γ~ (XJZJ p{ YϊljA ~\~ d)Zjγ yyi ι mjj^-, \ ι*j*-jγ yyj. "*-// *" ' ^/ / Λ\

Zτ{\ + m/2 + a)ZΓ{ - m/2 + a)Zγ, ι((\ + m)/2 + α)Zf, x((l - m)/2 + a)'

where T' is a copy of Γ9 both sides being considered as superfunctions on
T x T x R .

However, for applications to the fermionic string measure we shall have to
apply (4) (or its limiting cases) outside the convergence domain of (3). Therefore we
must resort here to a fundamental conjecture which we were unfortunately unable
to prove.

Conjecture, a) ZΓ(s\ ZΓ(s) admit an analytic continuation at least to the domain
Res> - β [for ZΓ(sJ] or Res> -1/2-ε [for ZΓ(sJ].

b) On an open dense subset of T the orders of zero of ZΓ (respectively ZΓ) at
s = 0,1 (respectively at s= —1/2,1/2) are constant.

Taking this for granted, we can deduce from (4) the following formula for the
measure:

dπ=dv z^z^/iyzmr'Um10

Γ')

3. The Selberg Trace Formula

In this section we set to investigate trace of a function of Πm(Γ). As before, we work
over a base space, omitted in notation. Instead of DmCD> w e shall deal with a
unitarily equivalent operator Π m + m/2, where Π m acts on superfunctions on Jf:

\Jm = 2ίYDD-±rn(θ-θ)(D + D). (1)

For its relation to Πm 5 see (4) below.
Component decomposition allows us to reduce an analysis of its spectral

properties to that of the classical Laplacian Δm. Let
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be an even differentiable superfunction on #P (or rather ^f x S\ where A, B are
even and χ, χ odd. Set

Δm = — 4y2d2/δzdz — imyd/dx.

A calculation shows the following equivalence:

mA = s(l-s)A, B = s/2A,

-iZ = (V4-s 2 )χ, 2m+1χ = (\/4-s2)χ, (2)

χ(s-m)= -

Here s is an even superfunction on S.
Operators Δm are studied in Chap. IY of HejhaΓs book [4] (our Δm is — A _m in

HejhaΓs notation). As is easily checked, (y-\-θ1θ2)
s and θ2y~s verify (2).

Automorphic superfϊelds of weight m with respect to a fuchsian group Γ are, by
definition, differentiable superfields on Jf, satisfying a functional equation

φ(yZ)=j™(Z)φ(Z),

where

^ = (F y r |F y r
w = F^F y -^ 2 , (3)

where the reduced square root in right-hand side of (3) should be positive. Let Am

be the space of such superfields. It is easily seen that Π m acts on it. There is a linear
isomorphism between Am and the space of type m superfields, defined in Sect. 1,
given by φ=Y~ml2Φ for φeAm. We have

m/2. (4)

A corresponding scalar product in Am is

(5)

where the integral is taken over a fundamental domain of Γ. With respect to this
product the linear isomorphism, described above, is an isometry. Hence (4)
establishes an unitary equivalence of Π m and Π m + m/2 and allows us to study
traces of functions of Π m instead of those of Π m

Following Selberg, we start with constructing two-point invariants, i.e.
superfunctions on Jf x Jf, which are invariant with respect to simultaneous
action of si on both points. They can be considered as superfunctions on the
quotient space 2tf x tfjsί. Since heuristically its dimension should be
112 = 4|4 — 3|2, we can expect existence of one basic even invariant R and two basic
odd ones ρx and ρ2- They can be constructed, using some results of [16]. We shall

need only R and r = ρ1ρ2—-:

\z-w-θv\2

R{Z>θl W ' V ) " lm(z-l/2θθ)lm(w-l/2vv)'
(6)

(fli-vi)02 j ( v i - Λ K , θ2v2Re(z-w-θv)

Imz Imw Imzlmw
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We have also

Qi = Qi, (7)

r = (z - z - ΘΘ)(4R) - ιDRDR.

For θ = v = 0 we have R(z, 0; w, 0) = 2chd(z, w) — 2, where d(z, w) is the Lobachevsky
distance. The invariant r reduces to zero.

We now choose real functions of one variable Φ, Ψ9 sufficiently decreasing at
infinity, and define the Selberg integral operator K on superfunctions φ on J-f by
the formula

Kφ{Z) = J dV(W)k(Z, W)φ(W), (8)

where

\ 2 — w —

One can check that K acts upon 4m, using the relation

Jm(yZ,yW)=X(Z)Jm(Z,W)j;m(W).

Therefore, we can consider the operator K as acting upon certain fields on Γ\ Jf,
sections of an appropriate vector bundle. It can be conveniently represented in the
form

KΓφ(Z) = ί dV(W)K(Z, W)φ{W), (10)
u

where the integral is taken over a fundamental domain U of Γ, and the kernel is

κ{z9w)= ΣKz>yW)j?(W)>
yeΓ

k being defined by (9). In fact,

Kφ(Z)= j dV(W)k(Z, W)φ{W)

= Σ J dV(W)k{Z, W)φ(W)= Σ ί dV(W)K(Z, W)φ{W).
y yU y V

Using an easily checked relation

K{γZ,y'W)=ft(Z)K(Z, W)j;,m(W),

we can convince ourselves that (10) is a well defined operator on Am. We shall
define its (suρer)trace by the formula

strKΓ = J dV(Z)K(Z,Z)=ΣS dV(Z)k(Z,yZ)j™(Z). (11)
U γ U
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The right-hand side sum can be transformed as follows. First, calculate the partial
sum over a conjugacy class in Γ. This can be done explicitly since the integral
reduces to that over a simple fundamental domain of a cyclic subgroup in Γ, which
centralizes y and is generated by a primitive element y0, whose power is y. Second,
sum up over conjugacy classes. To apply the result to the Laplacians, we then
check that a function of Dm(Γ), satisfying certain conditions, is an integral
operator of the form (10).

We give now some details of calculations.

av(y)=SdV(Z)k(Z,yZ)j™(Z).
u

From the functional equations for k, j™ it follows that au(sys~ί) = as-iu(y).
To calculate the sum over a conjugacy class of y eΓ, y φid, denote by Z(y) the

centralizer of y. Let Γ\Z(y) be a fixed system of coset representatives and let Av(y)
= Σ au(Ϋ)' We have:

γ'e{γ]

Av(y)= Σ M / ) = Σ flϋί^"x)= f dV{Z)k{z,z)j™{Z).
y'e{γ) seΓ\Z(y) us~W

seΓ\Z(y)

Now Z(y) = {yol neΈ} and [js~1U is a fundamental domain for Z(y). We can
assume that yo = diag(l,AΓj/2,AΓo 1/2)> and to integrate over a convenient funda-
mental domain. In this way we get:

No oo 1

Aυ{y)= I d y ! •" "

1 2

1θ2N
ll2J

In order to integrate out odd variables, it is convenient to change variables

θ1θ2 = y8182,

After a calculation we get finally

N1/2-N~1/2

x((2

where

— j v
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A direct calculation shows that the summand, corresponding to {y} = id, equals
4π(g-l)Φ(0).

The following key result establishes a relation between Laplacians and the
Selberg integral operators.

Proposition. Assume that the function Φ, Ψ, defining the kernel K, have a compact
support or quickly decrease. Then there exists a function h(s), such that KΓφ — h(s)φ,
if Π\mφ = sφ. It can be defined by the formula

h(s) = J dyys~ ^(Q^y) + (y- \)Q2{y) + ]/yQ3(y)). (12)
o

Proof We shall treat in some detail the case m = 0. Let φ = A + iy~ ^Bθθbz an even
superfunction with C\oΨ = s, without linear in θ terms. This means that A and B
satisfy the relations (2). Apply to φ the operator K with the kernel Φ(R) + Ψ(R)r.
Using the relation

2iYDD(rΦ(R)) =

we get

φ = Kφ = J dVr(Ψ(R) - Φ(R) - Φ'(R)R + Φ(R)\J 0)

= J dVr((s - l)Φ(R) - Φ'(R)R + Ψ(R)).

Now integrate out odd variables:

Φ = J ^ ^ 2 Φ(Ro)(A(w) + (2y)-HsA(w)θίθ2)

9 (13)

where

Ψ(R0) = (s~ 1)Φ(RO) - R0Φ
f(R0) + Ψ(R0) (14)

and R0 = \z — w\2(ImzΊmw)~ί is the classical two-point invariant. Now, an
operator K on the Lobachevsky plane, whose kernel depends only on Ro,
is in fact a function of the Laplace operator A (cf. e.g. [4]). It follows that K
multiplies φ by

1-2), (15)
0

where

00

Q(y)=\dxΨ(x2+y)
0

(see [4] for more details). Using (15), we get (12).
The case m + 0 can be treated similarly. We omit rather tedious calculations.
The case of "odd" functions φ (i.e. those depending linearly on θ9 θ) looks even

more cumbersome, if treated directly. However, the following simple remark
reduces the investigation of odd eigenfunctions of Π m to that of even ones.
Namely, if φ is an even eigenfunction of D m + 1 ? then ψ = Y1 +tnί2DY~(1 +m^2φ is an
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odd eigenfunction of Π m , and we have an identity

JdVwJ
m(Z, W)(Φ(R) + rΨ(R))(Yj+m/2D(γ-il+m)l2φ(W)))

where Φ(R), Ψ(R) are certain functions that can be explicitly expressed through
Φ(R) and Ψ(R\ Yw = Im(w - l/2vv).

Summing up, we see that for appropriate h the operator /z(Π(Γ)) equals to an
integral operator KΓ of the form (10), whose kernel k(Z,W) = Φ(R) + rΨ(R) is
related to h by the relation

h(s)= J dueu{s~1/2) J dx(Ψ(x) + (eu-l)Φf(x)){x-eu-e~u + 2y112.
-oo eu + e~u-2

(16)

Using (16), we can obtain a superanalog of the Selberg trace formula. Namely,
put

g(u) = (2π)~1 J dre~iruh(l/2 + ίr).
— oo

A calculation shows that

My)=j^~τr2G(lnN,χ(y)), (17)

where

u)-χe-»ί2g(u)-χe»ί2g(-u). (18)

Our final expression, the Selberg supertrace formula, takes form

Σ
{γ} y y

In N
Σ Σ

{y0} fc=l y 0 yo

where the sum is taken over conjugacy classes of Γ, y0 is a primitive element, whose
power lies in {y}, G is defined by (18), A is a constant, depending only on h and the

oo 1

genus. For m = 0 we have 4̂ = J - ί(g — l)/z(r) thπrdr.
- oo 2

In order to justify our formal calculations, it is necessary to impose certain
restrictions on the function h.

As in Hejhal [4], it suffices to postulate

h(ή = O(r-2), |r|->oo.

In particular, for h(s) = expt(s + m/2)2

r> we have

G(w,χ) = (4πO~ 1 / 2 e~ ( 4 ί r l "V m + 1 ^

from which (2.8) follows.
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We turn now to the application of the trace formula to determinants, appearing
in the fermionic string measure. We start with the operator PΓ= — \Jm(Π + fl2 f°r a

large. We get det' Π m fr°m detPΓ by analytic continuation in a, and a limit α->0,
followed by taking a square root. We take again two copies of generic fuchsian
groups Γ,Γf and consider the following expression:

lndetP Γ - lndetP r

= lim - J ί"
0

J
ε

= lim - J r ldt(str(e-tPr)-(xe-tb-str(e-tPr') + (xe-tb)
ε->0 ε

= - J r Mi(str(e-iPr)-ae-ib) + (r-^r), (20)
o

where α = (4π)~1(m+ l)(g— 1), b is a positive constant. Now we apply the Selberg
supertrace formula to the function h(s\ given by

hε{s)=]r1dt{ets2-(xe-tb). (21)

We get

lndetP Γ - lndetP r

00 In N
3)~i/2e~ta2Y y o

 e-m-Hn*Ny

) ΣN,l2N-i/2^

Taking into account the relations

and

\nZΓJs)=Σ Σ
fro) k = o

= - Σ Σ n-Hi-N--)-1^-",

{yo} « = i

we obtain our final relation

lndetPΓ-lndetPΓ,

= In ZΓ(a +1 + m/2) + In Z(a - m/2)

- \nZΓ(a + (m+1)/2) - lnZΓ(α + (1 - m)/2) - (Γ->Γ).

Appendix. On Supergeometry

Superspaces

A basic notion of the supergeometry is that of a superspace. A superspace is a pair
(X, Ox), where X is a topological space and Ox is a sheaf of supercommutative
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rings, whose stalks at points of X are local rings. Superspaces form a category:
morphisms are defined in a standard way as pairs (/, φ\ where f\X-*Y is a
continuous map and φ: Oγ-^>fjflx) is a morphism of sheaves. In notation, Ox and
φ are often omitted. Sections of Ox over an open subset are called superfunctions.
A morphism X->Y is sometimes called a (X-)point of Y.

The category of all superspaces is too large, and in practice we deal with three
most important subcategories: differentiable supermanifolds, complex analytic
superspaces (or supermanifolds), superschemes (or algebraic supermanifolds). To
define them, it is convenient first to define the reduction of (X, Ox) as (X, Ox/J%
where J is the sheaf of all nilpotents in Ox, including all odd superfunctions. It is
also denoted Xred. Now, (X, Ox) is a differentiable supermanifold, if X red is a
differentiable manifold, and Ox is locally isomorphic to a grassmannian algebra
over Ox/J. Similarly, (X, Ox) is an analytic superspace, if Xτed is an analytic space
and, more precisely, (X, Ox 0) is an analytic space such that Ox ί is a coherent sheaf
of OX1-modules. Both definitions are equivalent to the commoner ones, using
atlases.

Using this language, one can draw from the rich mathematical literature the
relevant methods and results, without inventing half-baked ad hoc definitions.

E.g. a general deformation theory of complex superspaces was recently
developed by A. Vaintrob (thesis; Moscow University, 1986). Its application to the
moduli superspaces will be given in a separate publication.

The notion of superspace serves well in all situations where only finite-
dimensional supergeometry is involved. However, supersymmetric quantum field
theory, in particular, that of quantum fermionic strings, leads to the consideration
of functional superspaces. The basics of infinite-dimensional supergeometry are
less well understood. In particular, the most important new phenomenon, that of
bosonization of fermionic dimensions, is only observed in examples, although its
investigation may deeply change our understanding of the superstring path
integrals.

Anyway, if we adopt a traditional point of view, the moduli superspace arises as
a quotient space of an infinite dimensional superspace with respect to an infinite-
dimensional gauge supergroup. To define it properly, one can adopt a different
definition of a superspace, as a functor of its points.

Functor of Points

We can consider a superspace (X, Ox) as a union of sets of its Y-points, X(Y), where
Y runs over all superspaces. If we add to this data the information about maps
X(Y)-+X(Y')9 induced by all morphisms Y-» Y\ we get what is technically called a
representable functor from the category of all superspaces to the category of sets. It
encodes in fact all information necessary to reconstruct (X, Ox). If we describe X by
local coordinates and take as Y only spectra of supercommutative rings, or even of
grassmannian algebras, we get the notion essentially coinciding with the
physicists' usage.

This approach to supergeometry was developed by Schwarz in [17,18]. It has
immediate application to our problem, the construction of the moduli space. In
fact, it is easy to define precisely the functor of points of the gauge supergroup, the
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functor of points of the superriemannian metrics and then the corresponding
quotient functor. The latter is quite adequate for the solution of certain local
questions, such as calculation of the tangent space at smooth points. However, it
has one major drawback: it is not represen table, i.e. it is not of the form M(Y) for a
superspace M, while to reduce the path integral to a finite-dimensional one we
seemingly need just that. Doubtless, a remedy for this can be found, but we leave it
for the future.

We now turn to an explanation of the fermionic string supergeometry in the
language of superspaces. We shall work mostly with complex analytic
supermanifolds.

Superconformal Structure

Let M be a complex supermanifold of dimension 1|1. We denote by 3~M the sheaf
of holomorphic vector superfields on it. It is a locally free sheaf of rank 1|1, whose
sections in a local coordinate system are ad/dz + bd/dζ. A superconformal structure
on M is defined by giving a locally free subsheaf ^ M c 3~M of rank 0|l with the
following property: if D is an odd vector field, local base of ^ M , then {D, D2} is a
local base of &"M. A pair, consisting of M and a superconformal structure on M, is
called a superconformal manifold.

(In [3, 6] such a pair is called a superconformal manifold without odd
parameters or simplest superconformal manifold.)

Examples

a. Let M = <£}\1, (z,0) a global coordinate system on M. A standard super-
conformal structure on M is given by D = d/dθ + θd/dz. In fact, D2 = d/dz.

b. Let M = P 1 | X with homogeneous coordinates (zl9z2,ζ)- This projective
superspace is covered by two coordinate neighbourhoods U: (z, θ) = (z1z2 S ζz2 %
17': (z', θ') = {-z-\θz~ί). Superconformal structures, defined by D = d/dθ + θd/δz
on U and Ό'= d/dθ'Λ-θ'd/dz' on 17', coincide on I7nl7', since D' = zD. This
superconformal structure will also be called standard.

Superconformal Structures and Theta Characteristics

Let N be a complex manifold of dimension 1. A theta characteristics on N is a pair
(/, α), where / is an invertible sheaf on N and a: I2 -^ Ω1N is an isomorphism (we
denote by Ω1 JV the sheaf of holomorphic differentials). Two pairs (/, α) and (J;, α;)
define the same theta characteristics, if there is an isomorphism β-.I-^Γ such that
α = αΌ]82.

Each theta characteristics on N defines a superconformal manifold
M = (JV, 0 ^ 0 γ\ I) (i.e. odd superfunctions on M are sections of / and M r e d = N). A
superconformal structure on M is given by vector fields D = d/dθ + θd/dz, where z is
a local coordinate on N and θ is a section of/ such that <x(θ® 2) = dz. This structure
is well defined, and depends only on the isomorphism class of (/, α).

Conversely, let M be a l|l-dimensional complex supermanifold with a
superconformal structure ^ M . Set JV = M r e d, J = ̂ MN, I = J~ί. We shall show
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that / defines a theta characteristics. In fact, the supercommutator, here denoted
[, ], defines the following map of sheaves:

φ(D®D') =

From the definition of the superconformal structure it follows that φ is an
isomorphism. As is easily seen, 3Γ0M\N = 3~N. Hence φ induces an isomorphism
φ\N\J®2s^^ΓN. The dual isomorphism is what we need.

The described constructions are mutually inverse and define a bijection
between the isomorphism classes of the following objects:

a) Theta characteristics on the Riemann surface N.
b) Superconformal manifolds M with M r e d = N.
We recall the following classical facts. Let N be a compact Riemann surface of

genus g ̂  0. It has 2lg theta-characteristics /. The parity of dim H°(N, I) is called the
parity of /. The number of even (respectively odd) characteristics equals

22g -1 + 29~ i (respectively 229~ί - 2g"x). For a general N we have dimH°(N91) = 0,
if / is even, 1, if / is odd. A holomorphic deformation of (N,I) does not change
parity, although can change dim H°(N, I).

In particular, for g = 0 there is only one theta characteristics. Hence any
superconformal supermanifold of genus 0 is isomorphic to IP1'1 with the standard
structure described above. However, there is a whole family of different, although
isomorphic, superconformal structures on P 1 ' 1 , corresponding to different choices
of projective coordinates modulo the action of the superprojective group.

Similarly, there are many superconformal structures on (C1'1, all isomorphic to
the standard one.

Families of Superconformal Manifolds

A (complex) family of superconformal manifolds is a pair (π, &Ί), where π is a
morphism M->S of complex superspaces which locally on M is a superfibration
with l|l-dimensional fibre, and 3Γγ is a locally free rank 0|l subsheaf of the relative
tangent sheaf: ̂  C &Ά4/S. Moreover, for a local base D of ^ u {£>, D2} should be a
local base of 3ΓM/S.

This is a proper formalization of the notion of a superconformal manifold,
depending onmparameters, the parameters being coordinate (or general) super-
functions on the base superspace S.

In the main text we work also with real analytic families and consider
differentiable superfunctions on complex supermanifolds. The necessary changes
in definitions are self-evident.

It is convenient sometimes to omit S in notation and to consider a family of
superconformal manifolds as a superconformal manifold. The following result,
applicable also to families, shows that we know already the general local
description of superconformal structures. We shall call a (relative) local coordinate
system Z = (z,θ) on M associated with a superconformal structure &~ί9 if
D = Dz: = d/dθ + θd/dz is a base of ^ .

Lemma. Every superconformal structure in a neighbourhood of each point has
associated local coordinates. Let Z,Z' be two local coordinates, D = DZ, ω = ωz
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= dz — θdθ, D',ωf similarly defined by Z'. Then the following properties are
equivalent:

a) Z and Z' are associated with one and the same superconformal structure, or, in
other words, are related by a superconformal transformation.

b) Dzf = θ'Dff.

c) D = FD', where F = F\ is an invertible even superfunction.

d) ω' = Gω, where G is an invertible even superfunction.
If these conditions are satisfied, we have F = Dθ', G = F2 = dz'/dz + θ'dθ1'/dz.

Sketch of Proof The first statement is proved as in [20] for differentiable
supermanifolds. The rest is verified as follows:

a) <S> c) => value of F

d) <= b)

with the help of the identity

ω' = φz'/dz + θ'dθ'/dz) + dθ{Dzf - Θ'DΘ1).

The signs are defined by the following conventions: d is an odd operator and the
ring of differential forms is supercommutative. (In the physical literature the Wess
convention is often used: d is even, ring of forms is superanticommutative.)

Automorphisms of P 1 ' 1

Let A — AoφA1 be a supercommutative ring. The group GL(ί\2;A) consists of
matrices of the form

D β oc

T = ( δ a b I a,b,c,deA0; oc,β,y,

y c

with D and ad —be invertible in Ao.
We have

bYWδ

Set SL(l|2) = {T |BerT=l} . Embed GL{\,A) = A% into GL(1|2) as diagonal scalar
matrices. Since Ber(T BerT) = l, the map

is a group isomorphism. In particular, we may and will identify the projective
linear group PGL(1|2) with SL(1|2).

Defining the action of GL(1|2) on the projective coordinates of P 1 ' 1
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we see that SL(1|2) identifies in this way with the automorphism group of P 1 ' 1 in
the sense of holomorphic (or algebraic) supergeometry.

However, not every element of SL(1|2) stabilizes the standard superconformal
structure on P 1 ' 1 , described earlier. Set

Dy = dβ-coc; Dδ = bβ-au),

SC(l|2) = C(l|2)nSL(l|2).

Proposition. Te GL(112) transforms into itself the standard superconformal structure
on P 1 ' 1 , iff TE C(l|2). In particular, SC(ί\2) is the automorphism supergroup of the
superconformal manifold IP 1 ' 1.

Proof. Consider the action of T on the coordinate patch (z,θ):

,_ az + b + δθ _ A Dθ + ot + βz _ Γ

cz + d + yθ ~"B ' ~ cz + d + yθ ~Ίί'

Now, (zf, θ') is associated with the initial superconformal structure, iff
Dzz' = Dzθ' θf, i.e.

DZΓΓ = BDZA-DZB A.

After some calculation we arrive at the equations, describing C(l|2).

Laplacians

Let {M.ZΓγM) be a superconformal manifold. Denote by Tx the sheaf of
differentiable complex vector fields generated by ^ M . Set Bip>q)) = Γ(T{~P(S) Tλ~

q).
A superriemannian structure on M is a section of TJU(ί), say, e. Since
eesBS~lt~ι)

y we can define a scalar product on BiP'q) by

where dV is the canonical volume form, associated to e.
Since the sheaf Tx (respectively 7\) can be described by means of holomorphic

transition functions, we can define, by analogy with d, d, differential operators
Dp,Dp, and also their conjugates with respect to e:

Dp:B
{p>0) ^B^-V'.D*,

Dp:B
{0>p) ±*&~Up)\D+.

Finally, their composition gives the Laplacians:
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