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Abstract. We study an adiabatic evolution that approximates the physical
dynamics and describes a natural parallel transport in spectral subspaces.
Using this we prove two folk theorems about the adiabatic limit of quantum
mechanics: 1. For slow time variation of the Hamiltonian, the time evolution
reduces to spectral subspaces bordered by gaps. 2. The eventual tunneling out
of such spectral subspaces is smaller than any inverse power of the time scale if
the Hamiltonian varies infinitly smoothly over a finite interval. Except for the
existence of gaps, no assumptions are made on the nature of the spectrum. We
apply these results to charge transport in quantum Hall Hamiltonians and
prove that the flux averaged charge transport is an integer in the adiabatic
limit.

1. Introduction

The adiabatic limit is concerned with the dynamics generated by Hamiltonians
that vary slowly in time: H(t/τ) in the limit that the time scale τ goes to infinity.
Quantum adiabatic theorems reduce certain questions about such dynamics to the
spectral analysis of a family of operators, and in particular describe the way in
which the dynamics tends to follows spectral subspaces of H(s). s = t/τ is the scaled
time. A folk adiabatic theorem states that if H(s) has energy bands bordered by
gaps, as in Fig. 1.1, then a system started at f = 0 in a state corresponding to an
energy band bordered by gaps of H(0\ will at time ί, be in a state of the
corresponding energy band of H(s). If, in addition H(s) is infinitely differentiable
and s varies over a finite interval, a second folk theorem states that asymptotically
the tunneling out of such an energy band is exponentially small in τ. (For
Hamiltonians that are k times differentiable, tunneling is bounded by a power of
1/τ.) Both folk theorems emphasize the importance of the gap condition and both
make no assumptions on the nature of the spectrum in the energy bands. In
contrast, most of the proofs of quantum adiabatic theorems do make additional
spectral assumptions. Indeed, the earliest results were obtained for finite
dimensional, self-adjoint and non-degenerate matrices. In the general case there
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Fig. 1.1. An energy band bordered by gaps for the family of Hamiltonians H(s)

are two essential complications. One is that one deals, in general, with unbounded
operators and the second that the spectrum need not be discrete. Unbounded
operators introduce technical difficulties. More complicated spectra, on the other
hand, introduce a new element.

We shall prove the adiabatic theorems in their natural "folk" setting. We shall,
of course, impose technical conditions on the Hamiltonians so as to guarantee the
existence of unitary time evolution. Our main tool is an "adiabatic evolution"
which we introduce and study. Adiabatic evolutions define parallel transports
associated with the bundle of spectral subspaces of the physical Hamiltonian.
However, geometric considerations alone do not determine a unique evolution. It
turns out that the requirement that the "adiabatic evolution" approximates the
physical evolution "as best as possible" determines it uniquely. This is the
evolution generated by:

P(s) denotes the spectral projection on the appropriate energy band of H(s).
Note that HA(s, P) is formally self-adjoint if H(s) is. It is formally a 1/τ approximant
of H(s). Furthermore HA(s, P) = HA(s, β); in particular HA(s, 1) = HA(s, 0) = H{s).

Kato introduced the concept of adiabatic evolution in (8), where he considered
the case of H(s) which is completely degenerate on P(s\ i.e. there exists a function
E(s) so that H(s)P(s) = E(s)P{s) for all 5. In this case the generator of the adiabatic
evolution, Eq. (1.0), reduces on P(s) to

The E(s)P(s) term can be eliminated by a suitable choice of phase factors and so
leads to the generator

which is the generator of adiabatic evolution one commonly finds in the literature
[3,21,25]. From a geometric point of view this is a particularly nice choice, for the
holonomy associated with it is purely geometric. (This will be discussed elsewhere.)

The history of adiabatic theorems in quantum mechanics goes back to Born
and Fock [4] who proved in 1928 an adiabatic theorem for H(s) bounded with
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Fig. 1.2. The domain A with the two handles. Each handle (= loop) is threaded by a flux tube with
ίluxs Φγ and Φ2. There is a magnetic field acting on A but there is no magnetic field on A due to the
fluxes (Φl9 Φ2) The Hall current is defined to be the current in loop # 2 due to an electromotive
force acting on loop # 1

purely discrete spectrum. The system is started in a nondegenerate eigenstate. In
1950 Kato [8] extended the proof to H(s) that may have some continuous spectra
provided the system is started in the spectral subspace of a discrete eigenvalue E(s\
possibly finitely degenerate. In this particular case the analysis of Sect. 2 is
effectively a generalisation of Kato's to higher orders in 1/τ. In 1959, Lenard
extended the adiabatic theorem to arbitrary high orders for Hamiltonians that are
of the anharmonic oscillator type [13]. Garrido [6] and Sancho [18] have
formally extended Kato's work to higher orders in τ. In 1981 Nenciu [15] proved
an adiabatic theorem for bounded time dependent self adjoint operators and
announced a generalization to the case of unbounded operators. For H(s) that are
analytic in s, Landau and Lifshitz [11] describe formal methods to compute
exponential tunneling. Such methods can and have been used also to compute the
tunneling out of energy bands of continuous spectra. For example Zener tunneling
of electrons in a periodic potential and constant electric field has been computed in
this way.

We apply the results to a problem that arises in the context of the quantum Hall
effect. The choice was made not so much because this best illustrates the theorems,
but, because our original interest in the Hall problem has led us to reexamine the
adiabatic limit.

In the Hall effect, one is interested in a current in the y direction due to an
electric field in the x direction. More precisely, in the current flowing in loop # 2 of
Fig. 1.2, due to an electromotive force (emf) acting on loop # 1 . The Hall
conductance is the ratio of current to electromotive force (which is switched on
"adiabatically"). By Faraday-Lenz law the emf is related to the rate of change of the
flux threading loop # 1 and so the limit of weak emf, which is the limit of interest in
linear response theory, is related to the adiabatic limit.

The renewed interest in the Hall conductance comes from a remarkable
experimental discovery made in 1980 by von-Klitzing [9]. He found that at low
temperatures the Hall conductance of certain two dimensional layers, was
quantized to be an integer multiple of l/2π, in units of e = h = l.
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An understanding of this phenomenon is based on the observation [12,16,1,2,
23] that a suitable definition of the conductance in linear response can be
interpreted geometrically within the theory of characteristic classes [14]. The
geometric character of the problem comes from the following structure: Hall
Hamiltonians, which are defined precisely in Sect. 3, are time dependent Hamil-
tonians depending on one parameter, the flux Φ2 in Fig. 1.2. The time dependence
comes from the flux Φί which increases with time to generate an emf. Although the
two fluxes play distinct roles in the Hamiltonian, in the adiabatic limit the role
played by Φί reduces to that of a second parameter. One is naturally led to
consider the fibre bundle over the two dimensional torus with points in the base
labeled by Φ = (ΦU Φ2) and fibres which are the corresponding spectral subspaces.
The Hall current turns out to be related to the holonomy associated to adiabatic
evolution.

In linear response, the study of charge transport (defined below) is intimately
related to the study of the conductance. In particular, integer quantization of the
charge transport relates to quantization of the conductance in multiples of l/2π.
By charge transport one means the following: Consider the charge transported
around loop # 2 as the flux generating the emf in loop # 1 increases by one unit of
quantum flux, which is 2π in our units. The analysis of charge transport requires
control of the dynamics for finite times, and so is amenable to rigorous analysis.
The analysis of the conductance is harder because it involves long times: The
conductance is defined as the asymptotic (in time) ratio of current to emf, assuming
a constant emf for large times. This limit introduces extra complications and shall
not be considered here.

The main result which we prove in Sect. 3 is that in the adiabatic limit, the
charge transport averaged over the flux in loop # 2 is an integer. (For fixed flux in
loop # 2 we find no reason for integer charge transport.) This is shown by
comparing the actual charge transport with the adiabatic charge transport. The
latter, when averaged over Φ2, is an integer for geometric reasons that were
mentioned above. The two charge transports differ by two terms. The first is a
tunneling term, and so, small by an application of an adiabatic theorem. The
second term is not related to tunneling in any obvious way. Moreover, in general
this term has no reason to be small, but as we show, its average over the flux in loop
# 2 is of order of at most 1/τ.

Motivated by an argument of Thouless and Niu [24] for the absence of power
law corrections to the conductance, we have been tantalized by the prospect that
there may be no finite power law corrections to integer charge transport. We did
not find any obvious support for this. In [24] an implicit assumption on the Green's
function is made which enables Thouless and Niu to relate the problem to that of
noninteracting electrons in homogeneous fields, for which the result holds. Also,
Shapiro [20] described a class of models with no corrections to linear response
whatsoever.

Let us motivate our choice of adiabatic evolution, Eq. (1.0). The physical
evolution, from (scaled) time sf to s, Uτ(s;sf), is the solution to the initial value
problem:

Uτ(s';s') = l. (1.1)
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With P(s) we associate an adiabatic evolution, UA(s;s',P)9 in such a way that it
mimics Uτ(s;s') as closely as possible, except that it decouples P(s) from its
complement Q(s). Decoupling means:

UA(s; s', P)P(s') = P(s)UA(s; s', P), UA(s; s', P)Q(s') = Q(s)UA(s; s', P). (1.2)

We say that UA(s;s\P) has the intertwining property. The requirement that
UA(s;s\P) approximates Uτ(s;sr) as closely as possible, subject to intertwining,
says that, under natural conditions to be specified in Sect. 2, the following relations
hold:

P(s)Uτ(s; s')P(s') = UA(s; s\ P)P(s') + O((s - sf),

Q(s)Uτ(s; s')Q(s') = UA(s; s\ P)Q{s') + O((s - sf).

The physical evolution is therefore approximated by the adiabatic evolution
generated by:

HΛ{s,P)=-i/τ ldsUA(s;s\P)]I7j(s;s\P)|s,=s.

Equations (1.3) give, (formally),

lHA(s, P) ~ H(s) - ί/τF(s)-]P(s) = 0, lHA{s, P) - H(s) - i/τβ'(s)]Q{s) = 0. (1.4)

Using P(s) + Q(s) = l and P2(s) = P(s), one checks that (1.4) implies formally
Eq. (1.0). From now on we shall use Eq. (1.0) as the definition of HJ^s.P).
Furthermore, UA(s,P)=UA(s;s' = 0,P) is, by definition, the solution of the
corresponding initial value problem. In the next section we shall prove that
HA(s, P) indeed generates an intertwining unitary evolution.

2. Adiabatic Theorems

We consider time dependent Schrόdinger Hamiltonians, H(s\ sel, with / a
bounded open interval of the real axis, containing the origin. 5 = t/τ is the scaled
time of Sect. 1. H(s) is assumed to satisfy conditions (iHiϋ) below, (i) and (ii) are
technical conditions that guarantee the existence and regularity of a unitary time
evolution operator, (iii) is a gap condition. The conditions are not optimal in order
to make the proofs simple [19].

(i) H(s\ sel, is a family of self-adjoint linear operators on a Hubert space X,
bounded from below, with an s-independent domain D, closed with respect to the
graph norm of H(0).

(ii) The function H(s), sel with values in the Banach space of linear operators
L(D, X) is k times continuously differentiable (k will be specified).

(iii) H(s) has gaps in the spectrum and P(s) is the spectral projection on a finite
band bordered by gaps, i.e. there are two real valued, continuous functions g+(s),
g_(s), and ε>0 such that

dist [(g+(s), g_(s)); σ(H(sm >e, (sel).

[σ(H) is the spectrum of H.~\
It can be shown that (i) and (ii) imply that the resolvent of H(s) is fc-times

continuously differentiable. Furthermore for all fe^l,

H'(s) lH(s) + i] " 1 = lH(s) + ί]dJ[H(s) + i] " ' ,
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and is norm continuous. Hence the theorem of Kato and Yoshida about the
existence and uniqueness of the solution to the time dependent Schrodinger
equation is applicable [26, 17, 22].

Theorem 2.1. Let k> 1, τ > 0 , and suppose H(s) satisfies (i) and (ii). Then the initial
value problem

idsUτ(s)x = τH(s)Uτ(s)x, L/τ(0)x = x9 sel,

has a unique solution with the properties: Uτ(s) is unitary, strongly continuous in s and
Uτ(s)x is continuously differentiable for all xeD.

The condition (iii) that P(s) is a projection on a finite energy band is not a
restriction, since H(s) is bounded below so either P(s) or Q(s) projects on a finite
energy interval.

Let Γ denote a contour around the piece of the spectrum associated to P(s),
traversed in the clockwise sense. Then

P(s) = ί/2πilR(s9z)dz. (2.1)
r

The integral here and in the following is the Riemann integral in the strong sense.
R(s, z) is the resolvent: l/[_H(s) — z]. (i)-(iii) guarantee the existence and unitarity of
UA(s9P), and norm differentiability of R(s,z) and P(s):

Lemma 2.2. Let HA(s, P) be given by (1.0) and H(s) satisfying (i)~{iii) with k > 2, then
the adiabatic evolution UA(s9 P) given by

idsUA(s, P)x = τHA(s, P)UA(s, P)x, (xeD)

with initial condition UA(0, P) = 1 exists and is unitary for all s in I. It maps D into
itself is strongly continuous and UA(s, P)x is continuously differ entiable for all xeD.

Proof HA(s,P) satisfies the conditions in Theorem 2.1 since H(s) does, and since

P'(s) = - l/2πi J R(s9 z)H'(s)R(s, z)dz (2.2)
r

is bounded and differentiable by (i)—(iii).
HA(s, P) was chosen so that the adiabatic evolution decouples P(s) and Q(s).

This is intertwining property of Sect. 1:

Lemma 2.3. Under the condition (i)—(iii), one has

UΛ(s, P)P(0) = P(s)UA(s9 P)9 sel. (2.3)

Proof We use a technique due to Kato [8]: Show that both sides solve the same
initial value problem. Since UA(0,P) = l, (2.3) is an identity for 5 = 0. For the left-
hand side,

d,UA(s9 P)P(O) = - iτHA(s9 P) (UΛ(s9 P)P(0)).
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For the right-hand side,

(P(s)UA(s, P))f = - hP(s)HA(s, P)UΛ{s, P) + F(s)UΛ(s9 P)

= - iτH(s)P(s)UA(s, P) + P(s) [F(s), P(s)] UA(s, P)

+ (F(s)P(s) + P(s)F(s))UA(s,P)

= - iίτH(s) + iίPU P(s)J]P(s)UA(s, P)

= -iτHΛ(s9P)(P(s)UΛ(s,P)). (2.4)

We have used the identities

P(s)F(s)P(s) = 0,

F(s) = P(s)F(s) + F(s)P(s).

We now turn to comparing the adiabatic evolution with the physical evolution.
The standard way to compare dynamics is to construct and examine the analog of
the wave operators of scattering theory [7], Ω(s):

Ω(s)=U%{s9P)Uτ{s), sel. (2.6)

Ω(s) is unitary and should be close to the identity for large τ.
We introduce the following kernel

Kτ(s, P) = U*(s, P) ίPU Pis)'] UA(s, P), (2.7)

and an expansion for Ω(s): Let

Ω0(s)=U Ωj(s)=-^Kτ(t,P)Ωj_1(t)dt for

We can now state Theorem (2.4) which compares the two evolutions.

Theorem 2.4. Suppose H(s), SEI satisfies (i-iii) above then:
(a) Ω(s) satisfies the Volterra integral equation

(b)

Ω(s)-Σ Ωj(s) = O(l/τN), (2.8)

and

sup/||Ω/s)||=O(l/τ>-1) for JZ2. (2.9)

Remarks, (a) The expansion is not in inverse powers of τ: Ωj(s) contains terms
proportional to (l/τy~1 + m for m>0. However, with the integration by parts
identity given below, (2.8) can be made into a systematic 1/τ expansion. In fact,

Ω1(5)= -i/τU*A(s)P'(s)UA(s) + O(l/τ2), (2.10a)

Ω2(s) = - i/τ | j U*Λ(t)P'\t)UΛ(t)dtj (P-Q) + O(l/τ2). (2.10b)
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The integrand in (2.10b) is a positive operator and so the 1/τ term in Ω2 vanishes
only if (P(s)-Q(s))F(s)(P(s)-Q(s)) vanished identically.

(b) The even terms in the expansion map P on P and Q on Q, while the odd
terms map P o n g and vice versa.

(c) Ω2(s) + Ωf(s) = ^ i( s ) by an explicit calculation.
The proof of the theorem depends on an integration by parts identity,

Lemma 2.5, which is the main technical tool of this section. We defer the proof of
the theorem and first prove the lemma.

To simplify the expressions below let us introduce the shorthand:

2) UA(s) = UA(s, P); HA(s) = HA(s9 P); Kτ(s) = Kτ(s, P).

Lemma 2.5. Let H(s) satisfy (i)-(m)a n^ Y(s\ X(s) be bounded operators, continuously
differentiate in the strong sense. Let

X~(s) = - l/2πΐ J R(s, z)X(s)R(s9 z)dz. (2.11)

Then, Γ

\<2U*(s)X(s)UA(s)PY(s)ds
o

= i/τQtU%s)r(s)UA(s)PY(s)\Ό- ί U%s)X~'(s)UA(s)PY(s)ds
0

- J U%s»r(s)UA(s)PY'(s)ds- J C7J(5) ίF(slJΓ(s)-]UA(s)PY(s)ds^ .
0 ° (2.12)

Remarks, (d) The mechanism that makes the integral small (i.e. of order 1/τ) is the
same as in the Riemann-Lebesgue lemma: for large τ, UA(s) rotates rapidly and
may be thought of as expzτE(s), with E(s) the energy. Because P and Q flank UA and
C75 the phases do not cancel. This makes the integrand rapidly oscillating, roughly,
of order expiτEg with Eg the energy gap, and so the integral is small.

(e) The same formula, up to an overall minus sign, holds with P and Q
interchanged.

(f) The twiddle operation in (2.11) is a special case of Friedrich's Gamma
operation [5].

An immediate corollary is:

Corollary 2.6. Suppose that in addition R(s, z), 7(5), X(s) are C00 and that X(s) or Y(s)
is supported in the interior of [0, t] C /. Then

) QUΛ(s)X(s)UA(s)PY(s)ds = O(ί/n. (2.13)
0

Proof The boundary terms vanish by assumptions. Since X~ is also supported in
[0, t] if X(s) is, repeated applications of the lemma yields (2.13).

We now prove (2.12). First note the operator identity:

Q(s)X(s)P(s) = - Q(s) (IHM X~(sf] + i/<P'(s), JΓ(s)])P{s), (2.14)

which follows from

), X~(s)2 = - l/2πi J dzl(H(s)-z), R(s, z)X(s)R(s, z)] = [P(s), X(sjβ .
Γ
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Now, from (1.0),

[X(s), Pis)] = - IHM TO] + iKίns\ P(s)l JΓ(s)], (2.15)

which proves (2.14). From the intertwining property and the equation of motion,

= i/τQ(U'jΐ(s)X~(s)UA(s)+U*(s)X~(s)U'A(s)

-U*A(s)lP'(s),X~(s)lUA(s))P

= i/τQ[_(U*A(s)X~(s)UA(s))'

- UA(s) [X~'(s) + [P'(s), X~(s)]] UA(s)-]P. (2.16)

Integrating gives (2.12).
We now return to the proof of Theorem 2.4. (a) is easy since Ω(0) = 1 and

Ω'(s) = iτU*A(s, P) (HA(s, P) - H(s))Uτ(s)

= - U*A(s, P) ίP'(s), P(s)-] Uτ(s) = - Kτ(s, P)Ω(s).

Integration gives (2.8). To prove (b) note that by Lemma (2.5):

]QKt{t)PY{t)dt

\QUA(t)P'(t)UA(ήPY(t)dt <const/τ|||F(s)|||,

where

N sup
0<s<r

and the constant is τ independent. Since there is a similar inequality with Q and P
interchanged we get

^Kτ(t)Y(t)dt < const/τ||| Y(s)|||. (2.17)

It follows from (2.17) that

| |β i + 1(s)| | <Const/τ|||Ω/5)|||.

But, since £2}(s)= — K^sjΩj-^s) and Kτ is bounded, we learn

||O i+1(ί)||<Const/τ Sup (WΩ^UΩ^Ml)'
0<s<t

Since Ω0 = ί and ||Ω1|| =O(l/τ), we get (2.9).
Equation (2.8) is shown by noting that the remainder, RN(s% satisfies

RN(s)=-}κτ(t,P)RN_1(t)dt.
0

This can be shown along the same lines.
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The content of Theorem (2.4) is that the adiabatic dynamics approximates the
physical dynamics and that it can be used to generate an expansion in powers of
1/τ. If H(s) is smooth one can say more:

Lemma 2.7. Suppose H(s) satisfies (i)-(iii) for all k>l and that Pf(s) is supported in
[0,1] and is C™, then for s outside [0,1],

ββ(s)P = 0 ( 1 / 0

Proof Iterating the Volterra integral equation for Ω gives

QΩ(t)P =-Q] Kτ(s)dsP +]ds] ds'Kτ{s)Kτ{s')QΩ{s')P. (2.18)
0 0 0

Suppose t is outside the support of P(s). By Corollary (2.6), Lemma (2.5) and the
boundedness of K,

||βί2(0P||<O(l/τ°°) + Const/τ Sup \\QΩ(s)P\\,
0<s<t

from which the result follows.

Remark, (g) This says that the odd terms in the expansion for Ω(s) are smaller than
any power of 1/τ for times outside the support of P'. The even terms we expect not
to be small. The bound given in Theorem 2.4 is optimal for j = 2. See Remark (a).

We can now formulate and prove the adiabatic theorem. The physical
evolution takes P into Pτ{t\ where

Pτ(t)=Uτ(ήPUΪ(t), (2.19)

whereas for the adiabatic evolution, by intertwining,

P(t)=UA(t)PU*A(t). (2.20)

The adiabatic theorem says that Pτ(t) is close to P(ή:

Theorem 2.8. Let k>2 and suppose H(s) satisfies (iHiϋ) Then:
a) Pτ(t)-P(t) = O(l/τlteL

b) // furthermore k=cc, then

Pτ(t) - P(t) = O(l/τ°°), t e //Supp F.

Proof (a) is a consequence of Theorem 2.4. For (b) we first note the identity
Pit) - P(t) = UA(t) LΩ(t% P] U*(t), (2.21)

from which we get

β(t) (Pt(ί) - P{t)) = UA(t) (QΩ(t)P)U*(t),

P(t) (Pτ(t) - P{t)) = - UAit) iPΩit)Q)U*it).

This shows that Pτiή-Piή is of the order of PΩiήQ. Lemma 2.7 completes the
proof.
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3. Corrections to Quantised Transport

We start by defining what we mean by Hall Hamiltonians. Then, we shall define
charge transport and adiabatic charge transport and prove that in the adiabatic
limit, the charge transport, suitably averaged, is an integer.

A Hall Hamiltonian is a one parameter family of time dependent Hamiltonians
related to the two parameter family of Hamiltonians,

IΓ(Φ)= f (V2(υi-Φ1a1(xi)-Φ2a2(xi))2+V(xi))+ £ ί/\Xi-Xj\9 (3.1)
ί=1 i<j

where xteΛ and A is a finite domain in R3 with smooth boundary dA and two
handles. See Fig. 1.2. V(x) is a real background (Coulombic) potential generated by
fixed nuclei which make the sample A. N is the number of electrons in A, and the
last term in (3.1) describes the electron-electron interaction. υ~ — idj—A(Xj)9

where A(x) is a smooth vector potential associated with a magnetic field B(x) acting
on A. aίt2(x) are two smooth vector potentials on A associated with two flux tubes
that thread the two handles with fluxes Φ = (Φl9Φ2)eR2. The magnetic fields
associated to a1 2 vanish on A.aίt2 are normalized so that their contour integral
around the appropriate loop is one. Φ1 is related to the emf acting on loop # 1 and
Φ2 to measuring the current in loop # 2.

We impose Dirichlet boundary conditions1 on dA and consider (3.1) on the
space of antisymmetric (fermionic) wave functions. The following is well known
about the properties of such Hamiltonians:

(i) H~(Φ) is essentially self-adjoint on the antisymmetric wave functions which
are infinitely differentiable and have compact support.

(ii) H~(Φ) has a Φ independent domain of self-adjointness D.
(iii) H~(Φ) is real analytic in Φ as a map from D to the Hubert space X.
(iv) H~(Φ) has compact resolvent and is bounded from below for all Φ in R2.
(v) ίΓ(Φ) is unitarily equivalent to /Γ(Φ + 2π) in either variable, Φι or Φ2.

We shall assume that for all Φ e R2, H~(Φ) has a non-degenerate ground state,
and we write F~(Φ) for the associated projection. Given that, it is a standard fact of
perturbation theory that:

(vi) P~(Φ) and the ground state energy E(Φ) are real analytic in Φ at points of
non degeneracy.

In the theory of the Hall effect one considers time dependent Hamiltonians
related to H~(Φ) in the following way: Let F be a real valued, smooth and non-
decreasing function of the scaled time, s = ί/τ, vanishing for all s < 0. The dynamics
of the ΛΓ-particle system is given by the time dependent Hamiltonian τH,

τH(s,φ)==τIΓ(Φ1=F(s\Φ2 = φ),

with projector valued function

P(s9φ) = Γ(F(s)9φ).

The emf acting on the first handle (loop) is —Ff(s)/τ (Faraday-Lenz law) and is
proportional to ί/τ: Large time scales correspond to weak emf.
1 A more realistic model would be to take L2 boundary conditions. For the bound states of this
system, the wave function decays exponentially away from A9 and so it is a good approximation to
impose Dirichlet boundary conditions on dA
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The emf on loop # 1 generates the Hall current / around the loop # 2. It is a
function of the scaled time s and the flux φ, and is given by

I = ΎrPτdφH. (3.2)

Pτ denotes the projector onto the physical state Ψτ defined below. This equation is
the precise meaning of the statement made above that φ = Φ2 is related to
measuring the Hall current.

Pτ is defined in terms of the propagator Uτ for the initial value problem:

idsUτ(s, φ) = τH{s, φ)Uτ(s, φ), (7τ(0, φ) = 1, (3.3)

Pτ(s, φ) = Uτ(s, φ)Γ(09 φ)U*(s9 φ). (3.4)

It is convenient to relate the restriction of P~ to the Φ2-axis to P(0,0). For that
we define an adiabatic parallel transport IΓA along that axis:

idφϊΓΛ(φ) = τiΓAΦWAΦ), C^(0) = 1,

H~A(φ) = H\0, φ)Ψ + i/τ idφFXO, φ)9 P~(0,0)].

According to Lemma 2.3, UA possesses the intertwining property,

r (o, φ)=ιrΛ(φ)no, o)υ?(Φ). (3.6)
The physical state is defined by:

Ψτ(s,φ)^Uτ(s,φ)UA(φ)Ψ0, (3.7)

where Ψo is a normalized vector in the range of F~(0,0).

The physical state will be compared with the adiabatic state ΨA, defined
analogously: Let UA be the adiabatic propagator defined by the initial value
problem:

idsUA(s9 φ) = τHA(s, φ)UA{s9 φ), UA(0, φ) = ί9 HA = H + ί/τ[dsP, P] . (3.8)

Now define the adiabatic state ΨA by:

ΨA(s9φ)=UA(s9φ)lΓA{φ)Ψ0. (3.9)

In the analysis of the total charge transport it will be necessary to control the φ
dependence of the physical time evolution Uτ. This can be done along the lines used
in the theory of ordinary differential equations [10]. The key role is played by the
formula (3.10) below (Duhamels principle).

Lemma 3.1. The propagator Uτ defined by (3.3) is differentiable in φ in the following
sense: There exists an operator valued function dφUτ from D to X such that for all
τ > 0 and(s,φ)eR2,

Uτ(s, φf) = L7τ(5, φ) + (φ' - φ)dφUτ(s, φ) + o(φ' - φ).

The differential dφUτ is explicitly given by the integral

U?(s,φ)dφUτ(s,φ)=-iτ] U*(t,φ)δφH(t,φ)Uτ(t,φ)dt. (3.10)
0
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An analogous statement holds for the propagator UA and the generator HA.

The proof of this technical lemma is based on a formula for the difference
zl(s, φ')=Uτ{s, φ')-Uτ(s, φ) which holds on D:

A(s9 φ') = - iτ I ds' Uτ(s\ φ')Uί(s\ Φ) \β{s\ φ') - H(s\ 0)] Uτ(s\ φ).
o

It is a consequence of the differential equation (3.3) which holds for every term in Δ.
For details of the argument we refer to [10,19].

Lemma 3.1 has two useful consequences: The first is an alternative expression
for the Hall current (3.2),

I = i/τds(Ψτ,dφΨτ}. (3.11)

To prove this formula let us start from the right-hand side of (3.11):

i<3s< Ψτ(s, φ\ dφUτ(s, φ)Ψτ(0, </>)> = ids(Ψτ(s, φ), (dφUτ(s, φ))Ψτ(0, </>)>.

Notice that if dφ hits Ψτ(0, φ) we get a scalar product which is independent of the
first variable s. Inserting Duhamels formula (3.10) for UfdφUτf one gets (3.2).

There is of course a formal derivation of (3.11) too. It is useful for mnemonic
purposes:

The second consequence of Lemma 3.1 concerns the control of the φ derivative
of Ω=U%Uτ. Notice first that according to the results in the second chapter
Ω = l+O(l/τ). This estimate holds pointwise in (s,φ)eR2. However, it can be
readily shown to hold uniformly on any compact in R2. Now we consider the
restriction of Ω to D. Due to Lemma 3.1 the φ derivative exists and will be denoted
by d2Ω. It is given by:

dφΩ(s) = iτ ] ds'\U*A{s') (dφHA(s'))UA(s')Ω(s)- Ω(s)Uf(s') (dφH(s')Uτ(s'K .
o

To make the formula more transparent we did not write the second variable φ
explicitly. Replacing on the right-hand side of (3.12) the physical time evolution Uτ

by UAΩ, one gets

dφΩ(s) = iτ ] ds'[_U%s') (dφHA(s'))UA(s')Ω(s) - Ω(s)
o

From this and the estimate Ω = l +O(l/τ) mentioned above one gets:

(3.13)

We stress that dφΩ denotes an operator from D to X and that the norm is
understood accordingly. The estimate holds, again, uniformly on compacts in R2.
Equation (3.11) and the existence of d2Ω (3.12) are the technically important
consequences of Lemma 3.1 mentioned before.
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Remarks, (a) Formula (3.11) for the Hall current is naturally interpreted as the time
derivative of the transported charge, see Eqs. (3.14, 3.15) below.

(b) The same formula (3.11) proves the periodicity of the current in φ: 7(5, φ)

(c) The bound (3.13) on dφΩ is actually not used in the proof of the main result,
Theorem 3.3. Existence and continuity in the two variables is all that is ever
needed.

In the following we concentrate on the total charge transported Q(φ\ and its
adiabatic counterpart QA(φ). Suppose that the switch function F is infinitely
differentiate and F is supported in (0,1). Define the total charge transport by

= τ]dsl(s,φ) (3.14)
o

φ ) ) . (3.15)

In the last step we used the equation

which follows from the adiabatic transport along the Φ2-axis given by Eq. (3.5).
The total charge transported adiabatically is defined analogously:

Both charges are periodic in φ (Remark b). Because of the geometric significance of
the adiabatric evolution the adiabatic charge is related to a topological invariant:

Theorem 3.2. Suppose that the switch function F is infinitely differentiate,
increasing from 0 to 2π with derivative F' supported in the open interval (0,1).
Suppose furthermore that the Hall Hamiltonian FΓ(Φ) introduced at the beginning of
this section, has a nondegenerate ground state for all Φ e R2. Then, the average ofQA,

is a first Chern character associated to the line bundle of the ground state over the
two dimensional torus R2/Γ, Γ = \^Φ1 = 2πk, Φ2 = 2πl k, 1 integers]. So (QAy is an
integer.

Remark, (d) This result was originally shown in [1, 16, 23]. We give here an
alternate derivation.

Proof The argument resembles the one used to get from (3.14) to (3.15) but this
time it runs in the opposite direction. Due to Lemma 3.1 everything in sight is
continuously differentiable in s and φ, so we may proceed by formal computations.
To make the equations more transparent we do not write the variables of the
operator valued functions explicitly. By definition and the argument used to go
from 3.14 to 3.15, we get

QA = i]dsds(ΨA,dφΨΛ).
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Analysing the integrand one finds:

id.<ΨΛ, dφΨΛ> = KdsΨA, δφΨA} + τ(ΨA, δφHAΨA)

= Kds ΨA,dφΨA} + τdφ(ΨA,HAΨAy-τ(dφΨA,HAΨA)

= iKdsΨA,dφΨA)~<dφΨA,ds

The last term can be computed:

by the adiabatic transport (use PdsPP = 0). E is periodic in both variables (s, φ) due
to (v) above. Hence, it does not contribute to the average (QA). We are left with

The integration is over [0,1] x [0,2π]. dΨ is a one form wave function, i.e.
dΨ = dφΨdφ + dsΨds, and ds and dφ are elements of a Grassmann algebra. The
right-hand side is quantised being the first Chern character of the line bundle
defined by the ground state over the torus [see e.g. (1) for a sketch of proof].

Remark, (e) Notice that one can not say anything about quantisation of QA for a
fixed value of Φ2l the average only is quantized. It is, however known that in
certain cases QA is Φ2 independent in the thermodynamic limit [16].

We come now to the central question of this section which is to what extent Q is
approximated by QA. We shall see that the two are in general not close, their
averages however are.

Theorem 3.3. Under the conditions of the previous theorem one gets

Q(Φ) - QA(Φ) =-dφ Tr P(0, φ)Ω{\, φ) + O(l/τ), (3.16)

uniformly in φ.

Because the TrP(0, φ)Ω(l,φ) is periodic in φ, we get

Corollary.

Proof of the Theorem. In the first step we derive an appropriate expression, (3.17)
for the difference A = — i(Q — QA). To make the formulas more transparent we do
not write the variable φ explicitly. The first variable 5 is always taken at the point
5 = 1 unless otherwise stated.

By definition we get

A =ΎτlP(0)U*dφUτ-P(0)UϊdφUΛ.

Substituting Uτ for UAΩ, one finds

A =Tr[Pτ(δψt7i4ί2)β [/5-P(δψl/i4)l75].

Differentiation in the first term on the right-hand side yields:

φΩ). (3.17)
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In this form A can be estimated as follows: The first term is smaller than any power

of 1/τ. In fact by (2.22),

Both terms can be estimated separately. Consider the first one:

Ίτ(QΩPUfdφUA) = Ίτ(QΩP) τv(PUfdφUA).

The first factor is smaller than any power of 1/τ, by Lemma 2.7. The second is

bounded uniformly in φ by Lemma 3.1.

We are left with the second term on the right-hand side of (3.17). From

Lemma 2.7 one gets:

The first term on the right-hand side can again be factorized:

TrP(0)Ω*P(0)dφΩ = Tr(P(0)ί2*P(0)) Tr (P(0)dφΩ) (3.18)

= Tr(P(O)ί2*P(O)<3φ Tr(P(0)β) + O(l/τ°°). (3.19)

In the last step we used the equation

Every term is smaller than any power of 1/τ, by Lemma 2.7. Since the first factor on

the right-hand side of (3.19) is 1 + O(l/τ), the second term on the right-hand side of

(3.17) produces the right-hand side of (3.16).
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