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Abstract. Classical and quantum statistical mechanics are compared in the
high temperature limit β = ί/kT^O. While this limit is rather trivial for spin
systems, we obtain some rigorous results which suggest (and sometimes prove)
different asymptotics for continuous systems, depending on the behaviour of
the two-body potential for small distances: the difference between suitable
classical and quantum variables vanishes as β2 for smooth potentials and as

for potentials with hard cores.

I. Introduction

Although nature is governed by quantum mechanics, there is still much interest in
classical statistical mechanics. This comes from the belief that for not too low
temperatures the structural differences between the two are small. In fact, several
deep similarities between classical and quantum lattice systems with regard to
phase transitions are apparent [1]. Rigorous results on the low temperature
behaviour of even the simplest quantum lattice systems from the point of view of
ground state properties, namely, ferromagnetic quantum spin systems, are as yet
incomplete [2]. For quantum continuous systems the situation is much worse, at
least concerning rigorous results: very little is known on phase transitions for
interacting systems, and low temperature properties are studied for just a few one-
dimensional models.

Another reason for interest in classical statistics is the fact that it is an
approximation to quantum statistics in a precise sense. There is an extensive
literature on the classical ft->0 limit of quantum statistics (see [3-5] and references
given there). It is a weakness of these studies that no correction terms are provided.
Then the limit ft->0 remains mathematical, because physically h cannot be varied.
A reasonable statement for continuous systems would be: the difference between
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quantum and classical quantities is small if the thermal wavelength
/ β\1/2

λ = 2πh2 — is small with respect to a characteristic length of the potential. The
\ m)

physical parameter which is then actually varied is the (inverse) temperature j8->0.
For this interpretation of the h-^0 limit it is, of course, essential that it commutes
with the thermodynamic limit. This causes difficulties, for example: the upper
bound for the difference of the quantum fQ(v, β) and classical fc\v, β) canonical
free energies (which we multiply by β for reasons explained shortly),

Δf{υ, β) = /?[/V β) - fa(v, ffl, (I.I a)

in [5] involves an attractive (temperature dependent) potential in the Bose case,
which simulates the statistical exchange attraction, and taking the thermodynamic
limit first requires, for reasons of stability, a singular repulsive (e.g. hard-core)
potential. For such potentials, however, the lower bound of [4, 5] is not applicable,
because it employs (plane-wave) eigenfunctions of the free Hamiltonian, which are
not in the domain of the full Hamiltonian. Hence, at least with present methods,
there is an essential gap in the classical h->0 limit for bosons. For a class of
bounded (and therefore, by stability, necessarily positive) potentials, the problem is
solved by Simon's microstability condition [4].

In this paper we are primarily concerned with the physical form of the classical
limit: /?->0, keeping h fixed. For lattice systems, the high-temperature behaviour of
Af, defined by (LI a), follows trivially from Lieb's paper [3] on the classical limit of
quantum spin systems (Appendix B). The corresponding result for continuous
systems has been obtained only on a heuristic level using the Zassenhaus formula
[14, Chap. 10.2]. A rigorous analysis shows that there is a marked difference in the
high temperature asymptotics between bounded positive and hard core potentials.
This can already be seen in the low-density region where the virial expansion is
applicable. In Sect. 1 we present some estimates on the difference,

Ab2(β) = b%β) - bf(β), (1.1 b)

between the quantum and classical (direct) second-order virial coefficients [14],
both for bounded positive and pure hard-core potentials. In the former case we
show that

"ϊβίcβ. (1.2)
^2 (P) β i 0

Throughout the paper, c denotes a strictly positive constant, which may vary from
inequality to inequality. The reason for considering —Ab2, rather than Ab2, in the
estimates above and below, will be explained shortly. The exchange part of Ab2 is
known to decay exponentially as β JO [16,17], and does not, therefore, affect the
leading behaviour above. For a pure hard-core potential we find (for β sufficiently
small),

~c]fβ^ —Ab2(β)S0 (1.3)

with

-Δb2{β)~Q-cγβ, v = l (1.4)
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in dimension v = l. Indeed, on the basis of [12,13], we expect

-Ab2{β)~o-cγβ (allv) (1.5)

in any dimension v, but the computations found in the literature (see, especially,
[13]) rely on summation of various series involving phase-shifts δ/k) over all
angular momenta (see also [14]). Indeed, for potentials with singularity of type
r"m, m>2 as r-»0 (r denoting the radial distance from the origin), it is found that
[15]

δ^-^Ak1 ~2/w, k-+ oo, t fixed.

As emphasized in [15], this conclusion leaves open the asymptotic behaviour of
δj(k) as both t and k diverge. This is the main difficulty in obtaining rigorous
estimates for Ab2(β) as ySĴO [which depend on the behaviour of all δ^(k) for fc->oo]
by the phase-shift method. Nevertheless, the results of [12,13] are believed to be
exact. As a matter of fact, the dimensionality should not play a significant role as
β J,0, affecting only the value of c in (1.5). Therefore, we have not studied the
problem for v > 1. Indeed, the computed value of c in (1.4) (Sect. II) is just one third
of the coefficient in [13] for v = 3.

The above results are consistent with the following asymptotic behaviour of
Δf(υ9β) defined by (I.I a),

^ cβ (positive bounded potential), (1.6 a)

^ ~c]fβ (hard-core system). (I.6b)

fc\vJ)

A nonrigorous, but probably asymptotically correct estimate suggests

in (1.6a), see Sect. II. We first explain the correspondence between (1.2) and (1.6a),
as well as (1.3) and (1.6 b).

Denoting by pQ(v, β) [respectively pcι(v, β)~\ the canonical pressure, we have

(I.7a)

(as is well known [19, 21], this formula holds for almost all υ>vc, where ve is the
close-packing specific volume). The virial expansion of the right-hand side of (1.7) is
[14,19]

β(p*(υ,β)-pcϊv,β))= Σ2^r, fl.7b)

where Δb^β) are differences between ith order quantum and classical virial
coefficients, defined as in (Lib). By (I.7b) we find
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with

and hence

AB2(β)=-2Ab2(β).

This explains the change of sign in the estimates (1.2), (1.3), and (1.4), to keep the
correspondence with (1.6), as well as multiplication by β in (I.I a).

A formal calculation using the Zassenhaus formula [14, Chap. 10.2] suggests
that

\Af(υ,β)/fc\υ,β)\ 7 cβ. (I.7c)

This behaviour agrees with (1.6 a) but not (1.6 b). If the nonrigorous asymptotic
estimate of Sect. II, Remark III, is true, the (1.7c) disagrees with the expected
behaviour of both types of potential.

One might expect more than (1.6), for instance an asymptotic series in powers of
]//? for hard core systems (in which case /C 1 is analytic in β in a neighbourhood of
β = 0 [18]), eventually Borel-summable. This does not follow from the estimates in
Ginibre's classic work (see [16] and references given there) and remains as the most
interesting, but probably hardest, open question.

In Sect. Ill we derive some estimates for Δf(v, β) for fixed finite, but arbitrary,
density (smaller than close-packing). In (III.l) the upper bound of [5] is
generalized to cover hard-core potentials, yielding the result that

Δf{v, β) S c exp( - α/jβ), c ̂  0, α > 0. (1.8)

For positive bounded pair potentials, it is easy to show by the methods of [5], that

\imAf(υ,β) = 0 (bounded positive potentials) (1.9)
n o

in two cases (Fermi-Dirac and Maxwell-Boltzmann statistics). No correction term
was obtained, so that (1.2) remains as the only precise indication of the validity of
(1.6 a). In III.2 we derive a lower bound for Af(v, β) holding for a class of hard-core
potentials. For a complete proof of (1.9) and correction terms, we need some
information on the classical pure hard-core free energy /αc(f), which is only
available for v = l and, in order not to clutter the argument with additional
assumptions, we restrict ourselves to this case. It should be emphasized, however,
that very similar, if not identical, arguments are expected to hold in higher
dimensions. Indeed, in Sect. IΠ.2.1 we provide, using methods of functional
integration [11], a lower bound on the partition function for a class of hard-core
systems which is useful in the thermodynamic limit and valid for all dimensions. As
a corollary, we prove in Sect. IΠ.2.2 that, if v = 1,

Af(v,β)^-cβ>-ε (1.10)

for sufficiently small β, and any ε > 0. The reader will easily recognize what general
properties oϊfcic'{v) are necessary for the validity of the proof of (ΠI.2.2). Finally,
we remark that even for pure hard cores and v = 1 our result is nontrivial, because
the one-dimensional quantum mechanical hard core problem is not solvable (for
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). In Sect. IΠ.2.3 we show that Baumgartner's method [5] using the Thirring
coherent states yield the weaker bound

Af(v,β)^-cβ^. (1.11)

The above holds, however, for a class of interactions larger than the one we treat in
(IΠ.2.1).

Finally, in Appendix C we study the (equivalent) highenergy limit of the
entropy, using the well-known method of Dirichlet-Neumann bracketing [10,
Chap. XIII-15]. Although only bounded external fields are analysed there, the
method is instructive, because, taking the thermodynamic limit first involves
estimates of a completely different nature than those of [10, Chap. XIII, 15] for
finite systems. It also yields correction terms of the expected type.

In Appendix A we collect some technical results used in the main text.

II. High Temperature Behaviour of the Second Virial Coefficient

In this section, we study the direct second order virial coefficient in two cases:
(A) for a positive infinitely differentiable potential of compact support
C ? ( R 3 ) ;

(B) for a pure hard-core potential

00 i f M ^
θ otherwise.

Since our aim is to obtain qualitative results, we did not try to determine the largest
class of potentials for which the results of this section are expected to hold. For
brevity, we refer to potentials of the above types as of class A and B, respectively.

Case (A). The classical second order virial coefficient b^\β) is analytic in β and

bf(β) = ̂ d3xll-e~βVix)2. (II.1)

The two-body quantum Hamiltonian is given on L2(R3) by

H = # o + F, (Π.2a)

H0=-\Δ (IL2b)

(/z = m* = l, where m* = m/2 is the "reduced mass"). Let

When A(β) is trace-class, we shall assume that the thermodynamic limit of the
direct quantum second-order virial coefficient per particle (see, e.g., [14] for the
definitions in finite volume) exists independently of the boundary conditions and
equals

where

λ = (2πβ)1/2
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is the thermal wave-length. In case (A), A(β) is trace-class by [11, Theorem 21.4,
p. 228], and for case (B) we shall comment later in the section. Let dvac;t denote the
probability measure formally associated to Wiener measure dμ0 by

PJla, c) ~1 δ(ω(0) - a) δ(ω(t) - c) dμ0 (II.6)

(see definition, p. 39 of [11]), where Pt(a,c) is defined below in (11.11); it
corresponds to restriction to brownian paths b( ) [with ω( ) = x + /?(•)], with
preassigned positions at time zero and time t. Let EOa.Uc denote expectation with
respect to dv and POa.tfC(A) = EOa.Uc{χ(A)}, where χ(A) denotes the characteristic
function of the event A.

Proposition ILL Let V belong to class (A). Then

Proof. Let

/(^^^Eo^^^jexpί-iSn^-exp^-μsnωί^Jj. (118)

Suppose x φ supp V. Then, the only Brownian paths b( ) which contribute in the
above expectation are those which start at x and intersect supp V at least once
before returning to x. As in [16], let

F'(β9ε,δ) = {b\3t and t' in [O,jB] such that | ί - ίΊ^<5,

and \b(t)-b(t')\>4ε}.

Clearly

F'(β, ε, β)2F"{β, ε) = {b | 3ί e [0, j8] such that

|fe(ί)-x|>4ε}. (IL9a)

Setting x = y in ((1.31) of [16, p. 343]), and taking into account the normalization in
(II.6), we obtain

P (F'(β ε β))<16l/2y(— β I (II.9b)

where

χ M ) = J Pδ(x,0)d3x, (11.10)
|x|>e

P^(x,j;) = (2πί5)-3/2exp(-|x-};|72(5). (11.11)

Hence, by (II.8), (II.9), (11.10) and the boundedness of V, there exist positive
constants c, d, and M such that

\f(x, β)\ ̂  c expOSM) P0,x;βJF"(β, d\x\))

ψj), (Π.12)
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which is exponentially decreasing in |x| in view of (11.10). Hence, / is integrable in x
for each β. Let {fn}neΈ+ be a sequence of functions in C^(R 3) increasing
monotonically to 1. Then

- J

[11, Theorem 6.6], and similarly

Let

Clearly,

(11.13)

(11.14)

(11.15)

(11.16)

Since F^O, [11, Theorem 21.4, p. 228] implies that tτ(e-pH-e~pHo)< oo. Hence,
by Lemma A.I of Appendix A,

and therefore, by (II.4), (11.13), and (11.14),

By (11.15) and (11.16),

(11.17)

(11.18)

By (11.12) the expectation occurring in (11.18) is uniformly bounded (in x) by an
integrable function. Hence, (11.18) and the Lebesgue dominated convergence
theorem yield (II.7). •

Proposition II.2. Let V belong to class (A). Then (1.2) holds.

Proof. The boundedness of V and (II.7) allow us to write

Σ (-Us(V(ω(s))-V(x))

j

Equation (11.19) may be justified in the same way as the steps leading to (11.18):

' β N

-]dsV(ω(s))-V(x)

n!
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for some positive constants cl9 du Mv Let, now, suppFg{|x |^α}. By (11.19)

Ab2(β) = I1+I2, (11.20)

where

f Σ (-Us(V(ω(s))-V(x))"
M — 2 J α Λ t ί ^0,*;/?,* 1

|jc|^2α L ft!

, (11.21 a)
and v ;

T = i. f /73v F <;1 pyn f//« 1/Y/ nfeYH > ίΊT 91 H^

By the argument of Proposition II. 1,

\JΛ<c f ^ 3 γ y ( ^ ( ί J - I /Π (W ??)

where χ is defined by (11.10). For β sufficiently small,

'd(M-α)
,β\ ίcβ-'expl-d^xl-afμβ-]. (11.23)

The estimate above is not optimal but suffices for our purposes. Inserting (11.23)
into (11.22) we see that

\I2\^cβ-1 J drr2e-d2{r-a)2l4β, (11.24)
r>2a

and therefore I2 is exponentially small in β" 1 , for β sufficiently small. Hence, by
(11.20), in order to establish (1.2), it suffices to prove that

(11.25)

Let

By the boundedness of V,

IΛI^qS 2. (11.26)

Now,

/ i = / i + / ;

2 > (Π 27a)

where

Γ2=-i j d3xe-W*%tX.βJϊds(V(co(s))-V(x))}. (Π.27b)
|x| g 2o (.0 J

We now use the explicit covariance formulae (see, e.g., [11, pp. 40,41])

(Π.28a)

(Π.28b)
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where ij = 1,2,3. In order to see the argument more clearly, consider the case v = 1.
Then

2 F ^ ^ m ^ m 2 N > (π 28c)
dnV(x)

where θe [0,1] depends on N and b(s) and V(n)(x) = n . In correspondence to

(11.28 c), let d x

J' J, f Λ 3 V o-βV{x)(r/ ( γ \ \ n ίγ\\ ΓΓT Oβrh
±2— 2 J u XV \p*γ\Λ,) T" ^2v**7/ > ^ll.ZOUJ

where

21V-1 J/(")Γχ;) fjϊ )

n=ί ΐl- (o J

and

By (11.28 a, b), the Gaussian nature of the process and Wick's theorem (see, e.g., [11,
Lemma 20.4, p. 217]),

if n = 2m

(11.29 a)
otherwise.

We have

β β2m + 1ml2

P (Π.29b)(2m+l) !

Let

GnΞsup|F ( M )(x)|. (11.29 c)
xsJR

Then, by (11.28 e) and (11.29)

for β sufficiently small. By the same procedure applied to (11.28 f),

(IL30b)

By (11.26), (11.27), (11.28d-f), (11.30a), and (IL30b), we obtain (11.25). •

Remark II. 1. Unfortunately, expansion of V(x + b(s)) — V(x) in each term of the
series in (11.19) leads to a divergent, possibly asymptotic, series. Since (1.2) and (1.4)
suffice to display the qualitative difference between potentials of classes (A) and
(B), we do not pursue this question further here, but remark that (11.19) yields the
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following formal result. The leading contribution to (11.19) stems from

iίd3xF

β 3 3 3 /fl2

+ 24 2J ,1-χW 48J .
Notice that this term is strictly negative, in contrast with the sign in case (B), see
below. If this result is asymptotically correct, and reflects the behaviour of Af(v, β\
then, according to (1.6 b), neither potentials of class (A) nor of class (B) agree with

Case (B). In this case (II.7) yields

(where χ is the characteristic function). The integrand above expresses the
probability that the brownian motion during time O^s^β starting at x (with
|x |>α) get into the ball of radius a. In the following, we present some results
pertaining to Ab2(β).

Proposition Π.3. Letv = l. Then

-Δb2[β)~o -oγβ, (11.31)

with c =
2]/ϊ'

Proof. In case (B), C1

by (II. 1) (if v = 1). Quantum-mechanically, the corresponding Poisson kernel may
be written down by the method of images

e 2β — e 2 β for x,j/>α,

e 2β — e

2 β for x,y<-α,

0 otherwise.
This yields

λtτ(e-βH-e-βH°)=\- f dx- J e 2«{ ' dx
(̂  — a a

7— J e 2β dx\ = —
— oo

and hence by (11.32), we obtain (11.31). •
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The three-dimensional result, believed to be exact, is [13]

Comparing with (11.31) and (11.32), we see that the correction to the classical result
is expected to be proportional to }//?, with a factor three times larger as the
corresponding one in one dimension. In three-dimensions, a rigorous lower bound
of the above form may be derived as follows. Let H = H£ = — \ A D, with (— A D) the
Dirichlet Laplacian for the region R 3 \S, where <S = {.x;eIR3 :|x|rgα}, that is, the
operator on L2(R3\S) which is the Friedrichs extension of ( — A) on CQ(JR.3\S). Let
(e~βHo-e~βHo)(χ,y) denote the kernel of the operator (e~βHo-e~βHo).

Proposition II.4.

-c\fβS-Ab2(β)^0 (11.33)

for β sufficiently small and c>0.

Proof. A nice and simple application of the functional method [11, Lemma 21.3,
p. 227] yields

(11.34)

if x, y e Ω, the unbounded component of R 3 \S. It is proved (although not formally
stated there) in Theorem 21.4, p. 228, of [11] that (e~

βHo-e~βH°) is trace class. We
have then

(11.35)

From (11.1),

b?(β) = %πa3. (11.36)

By (11.34), (11.35), and (11.36):

nβfl2\ f dMe-βH°)(x,x)

f d3x[e-βHo(x,x)-(e-βHS)(χ,χ

with cl9 c2, and c3 strictly positive constants. This implies (11.33). •

Notice that (11.31) and (11.33) are, respectively, (1.4) and (1.3) of the introduction.
As a final remark, it is an open problem to prove that the estimates in the

present section yield the corresponding estimates (1.6) for the free energy even for
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sufficiently small density by the methods of [16], except in case (A). In the latter
case, (1.6a) follows rigorously from Proposition II.2 or II.3 if the density is
sufficiently small [16]. We are, however, interested in fixed (but arbitrary) density
and β sufficiently small. This motivated our search for direct bounds on the free
energy in the next sections.

III. Upper and Lower Bounds for Af(v, β)

Πl.ί. Upper Bound for A f(v,β)

In this section we generalize the upper bound of [5] to hard-core systems. We
consider JV particles in a v-dimensional hypercube Λv and the corresponding
Hubert space 3ti?\N) = L2(ΛvN). To each particle is associated a momentum pb

ί = l, ...,iV, which acts as a differential operator on \N)

(Pjψ)(xu , xN) = ~ihVxψ(xu ..., xN), (III.l)

where D(PJ) = CQ(ΛVN). Define the free Dirichlet Hamiltonian (kinetic energy) as
the self-adjoint operator Ho Λ associated with the closure of the quadratic form

K(Ψ)= Σ \\Piψ\\\D(ho) = CS(ΛvN). (1112)
ί = l

The Hubert space Jf^2 for N particles with spherical hard cores of diameter a is a
closed subspace of J^\N) spanned by ψ e 3f\N) which vanish on the set

S[N) = {(xu...,xN);xielR.\\xi-xj\Sa for some iΦje{l,2,...,N}}. (III.3)

We now define the free energy for hard-core systems Ha

0Λ as the (positive, self-
adjoint) operator corresponding to the Friedrichs extension associated to the
positive quadratic form

K(Ψ)= Σ \\Ptψ\\\(K) = CS(Λ*N\SW). (IΠ.4)
ΐ = l

In order to extend the upper bound of [5] to hard-core systems, some problems
arise. The main proof in [5] is valid only on the whole Hubert space J-fjN). Let V be
an interparticle interaction, given as a multiplication by a real potential:

We assume that

Under the above assumption, the Friedrichs extension and the form sum extension
of (Ha

0 tΛ + V) are equal. Let, now, {Um}m^0 be a set of interactions on 34?\N) defined
by the potentials

m if (xl9...,xN)eSW

Under the above assumptions on V, it follows from Lemma A.2 of Appendix A that
HOfΛ + Um + Fis self-adjoint on D(HQ Λ) and converges to the Friedrichs extension
Ha

Λ of HQtΛ + V in the strong resolvent sense as m->oo.
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Explicitly,

Λ + Um + V + E)-i-(H«Λ + EΓ'lψ\\ =O,i/>e^j»\ (IΠ.8a)

lim IKί/ô  + ^+F+^-^INCψeJfW 1 , (IΠ.8b)
m->- oo

for all E > 0 (if F ^ 0 — otherwise add a constant to V). We are now able to state the
main result of this section. Let ZΛtB(β), ZAY(β\ and ZΛJΛB(β) denote the canonical
partition functions for Bose-Einstein, Fermi-Dirac, and Maxwell-Boltzmann
statistics, defined in the usual way [19] for hard-core systems satisfying the
assumptions stated above.

TheoremIII.l. a) ZΛiB(β)^Z%(β),

b) Z

c) z

where

with

HΊKp,X) = Σ Pf + v(xu-,x») (ΠI.10)
ί=l

is the classical partition function, and ZQ} is the classical partition function
corresponding to the Hamiltonian

Hc2{p, x) = Hc2{p, x) + vB(Xί,..., xN), (IILl 1)

vB(xu...,xN)= X v^\Xi-Xj\)9 (III. 12)

~ , ι n

 1 ( X

(Note a sign misprint in (30) of [5].) As in [5], we took 2m = 1 for simplicity).

Proof Let Tβ be defined on ̂ fjiV) by

- ^ V if V
( m i 4 )

if Ψjezi\(β>oy ( Π L 1 4 )

By (III.8), (III. 14), and Lemma A.3 of Appendix A,

e x p [ - β ( H O ι Λ + Um + Vy]ψ-^Tβψ VφeXf>. (III.l5)

By (III. 15) and Proposition A.I of Appendix A:

= lim tr χ ( W ) P B exp[-^(H O j / 1 + Um + F)] . (111.16)
tn—> on Ίm-> oo
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As in [5], PB denotes the projector onto the symmetric (Boson) subspace. We may
now follow the proof of [5, p. 33], based on the Golden-Thompson inequality, to
find:

Um +

dNvxdNvυ Γ / N

(111.17)

Taking now the limit of the right-hand side of (III. 17), as m-»oo, and using the
monotone convergence theorem, we finally obtain a). The proofs of b) and c) are
similar. •

In order to prove (1.8), let VΛ be the volume of A and define the "free energies":

^ (111.18a)

with similar definitions for /£F(/?) and /£MB(/0>

^ β ) . (ΠI.18b)

We also denote the thermodynamic limit [19, 21] of fΛ(β) by f(v, β), as in Sect. I,
γ

where v = lim -j is the specific volume. Note that by (III. 18) our f(v, β) differs
( )

from the usual canonical free energy by a factor (— /?), conforming to the definition
(I.I) already discussed in that section.
Theorem III.2. Under the assumptions of this section for hard-core systems, (1.8)
holds.

Proof According to b) and c) of Theorem III.l, (1.8) holds for Fermi-Dirac and
Maxwell-Boltzmann statistics, with c = 0. We now concentrate on the Bose case.
We have, by (111.18), (111.12) and a) of Theorem III.l,

sup P ^ - - ^ l , (111.19)

where ρ = - is the density. Now, by [21, Appendix A], and (III. 13),

sup \βvB(xu ..., xN)\ £ βBN, (ΠL20a)
l R i V
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where

βB= Σ sup \βvB(x)\, (ΠL20b)
(ΦO xeΔ{t)

and the sum is over all cubic cells A(t) centered at the points t = nd, with d = — and
neZ\ Let Vv

/ = 1,2,3,.... (111.21)

Then, by (ΠL20b) and (111.21), and setting v = 3:

/SB 5Ξ 3.2 Σ /(/) + 3.4 ( £ /(<θY + 8 ( Σ /V)Y (IΠ.22)Σ
=i

Above, we considered separately the cells centered at points on the three
coordinate axes, as well as those centered at points on the three coordinate planes,
and disregarded double or multiple countings. A similar estimate holds for general
v. Equation (1.8) follows immediately from [(ΠL19)-(IIL22)] and the Euler
summation formula (see, e.g., [22, Appendix]) applied to the function /. •

Remark Hl.ί. The constant α in (1.8) may be evaluated

8ft/ \8j/3ft/ "

The thermal wavelength is λ=γπβh. Hence the right-hand side of (1.8) is
exponentially small in the ratio a/λ, a precise version of the condition v1/3( >a)ρλ
[14, Chap. 10.2]. •

111.2. Lower Bound for Hard-Core System

III.2.1. Lower Bound for the Partition Function. In this section we derive a lower
bound for the partition function, using methods of functional integration [11,16].
We assume a positive bounded potential v in (III.5) in addition to a hard core of
diameter a, satisfying

V\Xί9 '->XN)~

v(\x\) = 0

0^v(\x\

For some ε > 0 and

0<Z)<oo,ϋ(|x|)^/

v(λ\x\)<ΰ(\x\

<ίj<Nΰ"Xi~Xj"'

if |x |<α,

) VxeRv.

)/(l + |x|)v + ε VxeRv,

)λ^\ VxelRv.

(111.23)

(111.24)

(111.25)

(111.26)

(111.27)

Condition (111.26) suffices for stability [21]. Assumption (111.27) of monotone
decrease is, as we shall see, essential. We first approximate the full Hamiltonian by
(HOtΛ + Um+V) on jfΛ(N) as in Sect. III.l.
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We choose Um of the form:

tn\ 1 ? * * 5 N/ — ,Z_/ τn\\ i / / ? IXxX.Z/O α i

where

u m ( | x | ) = i m l f W < f l

< (IΠ.28b)

10 otherwise

Although ί/w is not of the form (III.7), a modification of Lemma A.3 and the proof
in Sect. III.l applies to yield (in this section we consider for simplicity Maxwell
Boltzmann statistics only)

ZΛ.Uβ)= Um Z5r>(/0, (ΠI.29a)

We write

ZSt)(j?)= ^-tΐ^me-m° ^ υ " +V). (IΠ.29b)
N\ Λ

Um+V= Σ wJ\Xi-Xj\), (ΠL30a)
1 ^ i < j - ^ ΛΓ

where

wm(M) = um(|x|) + ί5(|x|), (ΠI.30b)

and choose m so large such that vvm also satisfies (111.27). Let dx denote as usual
Lebesgue measure on R v and let (B, β, Db) be the measure space for v-dimensional
Brownian motion [11, p. 38]. We follow the same notation of [11] except for
denoting vectors by a special (bold-faced) symbol. As in [11, p. 38], define Wiener
measure as the measure dμ0 on R v x B given by dx®Db, and let ω(ή = x + b(t). As
in [11, p. 39], let dμOac(ω) denote conditional Wiener measure [which corre-
sponds formally, to setting ω(0) = α, and ω(t) = c\. Let

l if ω(t)eΛ for all ίe[O,jff]

10 otherwise.

Then [23, Theorem 6.3.9] (conditional) Wiener measure corresponding to Dirich-
let boundary conditions on A is obtained from the free measure dμOac;t by
multiplication with the characteristic function χΛ of A. In particular, let
{Φ)}o^s^i denote Brownian bridge [11, p. 40], related to ω by ω(t)
= x + i/βaι(t/β). Then the Feynman-Kac formula, together with (4.13) of [11,
Chap. II.4], yields the following representation for Z{^\β) in (IIL29a):

Z%Xβ)=±-(2πβΓ^2 f

(111.31)
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Above, Doci (i=l,...,JV) is a copy of the measure corresponding to Brownian
bridge. Notice that the trace corresponds to setting a — c in (4.13) of [11].

Let

\Xi - Xj + Qi(t) - Qj(t)\ ^ (1 - δ) \Xι ~ Xj\,

and by the monotone-decrease property of wm:

wm(|xj - xy + Qi(t) - Qj(t)\) ί w m [(l - δ) \xt - xj\] . (111.32)

Notice that if A, B, C denote the events

A=\ sup |α f(s)-α.{s^
yβ

Vi = l,...,W, Vs6[O,l]j,

=\ sup | α j * ) ( s ) - α W ( s ) | g - l — | χ . - χ . | ; Vi,j=ί9...9N;

j , Vi = l,...,iV, Vs6[O,l]J,

sup sup |αjk)(s)|^———\xi-xj\;\/ίJ=l,...,NJφj;
ie[l,JV] 0 < s < l 21/V ]/β

then ^ 2 ^ 2 C . Now, by (111.31) and (111.32):

z5r>os)
i ^ ί-iS Σ wm[(l - δ^x^XjUh EN(A),

j
(2πj8) j ^ . . .

iV! ^JVV { ^ j ^ j

(111.33)

where EN( ) denotes expectation with respect to the measure Doc1... DocN. Taking
now the limit m-> oo on (111.33) and using the monotone convergence theorem, we
obtain by (ΠL29a) and A2C:

1 _ v f

ZΛ,MB(β)^T77(2πβ) J dx1...dxNQXp\-β

(ΠL34a)

where
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Now, given that (x1,...,xN)φS(

a

N

ί\ then C2D, where

D=\ sup \af\s)\^ δ"* Vi = l , . . . , N , V/c = l , . . . ,v ;
loίsgi 2yv]/β

x,+ \/βφ)eΛ\ Vi = l,...,JV, Vsε[O,l] | .

Let

(IΠ.35)

where Λv = [-*f,/]v. Then xeΛ' v and |a w (s) |^ ^ Vse[O,l], imply
2Vβ

Therefore, given that xe(Λ'yN\S%\ it follows that D2F, where

F=\ sup \af\s)\^-~^~, Vi = l JV, V/c = l,..., vl. (IΠ.36)
(.ossgi 2|/vl/j? J

Hence, we finally get

Z W / ^ Ί C ^ π / r ^ 2 J dXl...dxN

• exp {- J8 Σ 0(1* ~ *;l)j * £iv(ί) (IΠ.37)

Now, the components of α[fe) are independent, for ί = 1,..., N and fc = 1,..., v.
If ί e [1, JV] and fc e [1, v] are fixed and

F | k ) = j s u p |αjk)(s)|^αj, (111.38)

then [24, Chap. 13.7, p. 29]:

E{F\)=\-e-2«\ Vie[l,N], Vfce[l,v], (111.39)

where E denotes expectation with respect to one-dimensional Brownian bridge.
Inserting (111.39) into (111.37), we obtain

Z / Q\ -*• /r\ ry\ — vN 12 C J Λ

Λ,MB\P) = lΰTv Pi J (*X\ uX]γ

/ _ 2δ2aj\vN

exp[-iS Σ *K\Xi-Xj\)\'V-e 4βv J ( I I L 4 0 )

Write, now

(111.41 a)

r Λ Λ — — (ΠL41b)
J dxγ...dxN
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By (IΠ.41b), (111.26) and Fisher's method [21, Appendix A], already used in the
proof of Theorem III.2, it is easy to obtain the bound

-^logl^-βQDpiaJ, (IIL42)
VA

where D is the constant in (111.26) and p( ) is a function of the hard-core diameter a,
regular in the neighbourhood of any αφO; in particular:

^ ^ ( I I L 4 3 )

Equations (111.40), (111.41), and (111.42) yield, together with definition (III. 18):

(111.44)
In (111.44),

where Z^\aι(β) is the classical partition function of pure hard cores in region Λv,
without the kinetic term, which we separated out as the last term in (111.44).
Performing the same splitting of (111.41) for the classical partition function, using
the positivity of v and again separating out the kinetic term, we find:

fϊι{β) ^ f%\ + -i- log(2πβ), (111.45)
2

where f%]a denotes the classical free energy of pure hard cores of diameter a. By
(111.44) and (111.45) we find in the thermodynamic limit [noticing that by (111.35)
f^ai has the same thermodynamic limit f^ as f^aJ

:

(111.46)

III.2.2. The Bound (1.10) forv = l. Let now 0 < s< \, β e [0, j80], for some fixed β0

sufficiently small, and
δ = δβ = β>-£ (111.47)

/A 1-28

more properly, < 5 = l - l , where λ = hγβ is the thermalin (111.46)

wavelength Then the first term in (111.46) is still O(exp(-β2ε)), for β sufficiently

small. Since aί=aί(β)= -—— by (IΠ.34b), then (111.43) implies that the term
1-όβ

( — βρDp(a1)) in (111.46) is of order O(β). To see what happens with

^fC\β)^fa%-faCl, (ΠI.48)

consider v = l, where [25]

c l α)3. (IΠ.49)
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We shall assume that

v^ξa^β), Vj8e[0,j30] (111.50)

for some fixed ξ satisfying

l<ξ<l (III.51)

Clearly v>a^)= -—— is necessary for f^ι(β) to be defined, j On δβ we impose

δβ^2(ξ-l) for all jSe[0,j80]. (111.52)

Then, by (111.48) and (111.49):

with

δna

(i-δβ)(υ-a)=(ξ-ί) + δp

=3'

Using now the inequality

log(l — x)^ — ax if x^l , (α>l)
α

with α = 3, we obtain

if, by (111.50) and (111.52):

^3^α (IIL54)

Clearly, by (111.54), we may choose v arbitrarily close to a (from above) by choosing
ξ arbitrarily close to one, but the interval of variation of β shrinks in
correspondence, as (111.52) shows. We have thus proved

Proposition IIL1. Given ξ satisfying (111.51) and 0 < ε < \, then (1.10) holds forv = \
2 2

if (β,v) is such that j8e[0,jff0], where βo^2^-2^(ξ-ψ-2ε\ and v satisfies
(IIL54). •

Notice that (111.47) shows that an integrable potential outside the hard core
provides a contribution to the free energy of order O(β1/2) with respect to the hard
core term. This agrees with the intuition that for /JJ,0 only the behaviour of the
potential near the origin plays a role - see also the introduction.

III.2.3. Lower Bound for Λf(v, β) Using Coherent States. Assumption (111.27) of
monotone decrease of the potential excludes several interesting cases, for instance,
potentials which are negative (attractive) at large distances. In this section we
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sketch a derivation of the weaker bound (1.11), which is valid, however, for any
stable hard-core potential, based on inequalities due to Baumgartner [5, Sect. 2 c].
The latter involve an ingenious form of the coherent states which was introduced
by Thirring [26]. Since there is no novelty in method, we shall be rather cursory in
exposition, referring the reader to [5] for details. The present application reveals,
however, the flexibility of the Thirring coherent states, when the wave-function is
appropriately chosen.

We assume a two-body interaction (for clarity in this section we use a vector
notation):

V(xl9...9xN)= Σ Φ*-X/l),

with

«N)={" * If0* (ΠI-55)
U(|x|) if |x |>α

where v is such that V is thermodynamically stable. As in Sect. (III.2) ΰ will not play
any significant role for small β. Let v = 3 (just to agree with [5]). Then [5, (25) et
seq.] lZΛ(β) stands for ZΛtB(β) or ZAtJ

* - M * (2πft) 3 ^ e X P [ " ^ ( P ? X ) ] ' ( Π L 5 6 )

where
N

+ ^ Σ tf(lχi-χjl)> (iπ.57)

and

" l o o ,
Above, φ is a C00 function of compact support suppφ satisfying

a) J|(/)(x)|2rf3x = l (normalization)
b) supp0g{x6lR 3; |x |<α}

and „ ^

9, (111.60)

where $ denotes the Fourier transform of φ. We choose the hard-core diameter
(Ύ" in [5]) equal to the hard-core diameter a of the original potential. We were also
rather informal in definitions such as (111.55) and (111.58), but mathematical details
(involving suitable limiting procedures) may be filled in as in Sect. III.l. We now
choose φ as follows. Let h(x) be a C00-function of one real variable, such that

00 a
supp/zg[ —1,1], f dxh(x) = l, and define for 0 < α < —=,

1/3

a \oί
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00

Then ha e C00, supp ha Q [ — α, α] and J dx hj^x) = 1. Let, now
— 00

T

We also assume that \/h is C00. This is satisfied, for instance, by the standard
example of a C00 function of compact support

h(x) =
\

0 otherwise

I with c such that J h(x) dx = l .

(111.62)

a
Condition a) is clearly satisfied, and b) follows from α < ^ ^ assumed above.

1/3
Further, since φ is C00, both quantities (111.59) and (111.60) are finite. Since φ is real-
valued, (111.60) shows that

0. (ΠI.63)

With the choices above, the function ψ defined by

V*y)= μ3z\φ(τ-y)\2\φ(-z)\2 (111.64)

is of compact support, and

suppφς{ye]R 3 ; |y |^2 |/3α}. (111.65)

Hence, by (IΠ.55), (IΠ.58), and (111.65),

ί5(|x|) = ίJ(|x|) if | x | > α ! = α + 2|/3α. (111.66)

By (111.56), (111.63), (111.66), and definition (III. 18) [where fjβ) stands for either

L.M or fAiIW]:

(2πhf

(111.67)
Let, now

Sx(x)=\/hjx).

Then, by (111.61)

^ 1 (IΠ.68)
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where

00 00

S » = J dxeipx]/hjx) = \/^ J dxeipax]/Mx).
— oo — oo

Upon substituting this expression for Sa(p) into (111.68) one obtains

and hence

<Φ\V2Φ>SCOL~2. (111.69)

We may now handle the third term in (111.67) exactly as in Sect. (III.2). The
leading term in β will be due to the difference Afcι in classical free energies
corresponding to hard core diameters a1 and a. Assuming that the classical free
energy for v = 3 behaves as the one-dimensional case, i.e., like the right-hand side of
(111.49); (for a discussion of this assumption in the context of mean-field models, see
[25, p. 93])

/a

cl = ρ [ l + l o g ( ^ 3 - α ) ] (111.70)

(with Q = ί/v the three-dimensional density and a the hard core radius as before),
we have

ΔfCi = ρ[l + log(ϋ1/3 - β l ) ] - ρ [ l + log(t>1/3 - α)]

if ( α 1 - α ) / ( ί ; 1 / 3 - α ) < | , as in Sect. IΠ.2.2. Now, ax-a = 2|/3α by (111.66). Take

α =<χ-2βh2 ^<x = (βh2)l

i / 3 _

Then

3'vll3-a V v1/3-a 3'

which may be written in terms of the thermal wave-length λ = γπβh:

or λ< —*-=— (y1/3 — a). Under this condition
(31/3)3'2

^ ^ (vl/3_β)2/3

which is of the form (I.I 1).
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Appendix A

In this appendix, we collect some lemmas used in the main text.

Lemma A.l.

^-e-^)fn)^^tτ{e-^-e-^). (A.I)

Proof. It suffices to show the following general result. If A is a trace-class operator
and {Bn} a uniformly bounded sequence of operators converging weakly to B, then

limtr[4(B n -B)]=0.
n

Let {ep} denote a complete orthonormal set of eigenvectors of A*A with
eigenvalues {λp}, λp^0, and let fp = λ;1/2Aep for λp + 0. Then Σλp2 = Mlltr< °o
and

tr [^(Bn - B)] = Σ Aί/2(βp, (*„ - B)fp).
p

By the uniform boundedness of Bn, the sum over p>p0 is bounded by

(sup | |£ n -5 | | \ Σ ^ / 2 ,

which can be made arbitrarily small for a suitable choice of p0. The finite sum over
pSPo f° r a nY fi^d p 0 tends to zero by the weak convergence Bn — B^O. •

Lemma A.2. Let v eL°°(ΛγN) and {Um}m^obe the set of interactions on MAP defined
in (III.7). Then (HOfΛ+ Um+ V) is self-adjoint on D(H0 Λ) and converges to the
Friedrichs extension of {Ha

0Λ-\- V) in the strong resolvent sense, i.e., (III.8) holds.

Proof. The proof is almost identical to the proof of Theorem 1.6, p. 224, of [17].
Slight alterations due to the extra Dirichlet condition on dΛ are straightforward.
Assumption v φ 2 of [27] is not required because under our assumption on v the
Friedrichs extension and the form sum extension are equal. •

Lemma A.3. Assume (III.8). Then (111.15) holds, i.e.,

expl-t(Hθ9Λ + Um+V)-]ψ1^Ttφ \fψe^N\ (A.2)

uniformly in any finite interval of ί^O (in the main text we use β for t).

Proof. By the assumption (III. 5) et seq. both (H0Λ + Um+V) and Ha

Λ = Friedrichs
extension of (HQΛ + V) belong to ̂ (M, β) for some fixed M, β (independent of m), in
the notation of [28, p. 485]. Hence Theorem 2.16, p. 502 of [28] applies to yield
(A.2). D

Proposition A.l.

tr^ )(F J ίexp[- )β(HO i / 1 + C/m + F ) ] ) 1 ^ ^ t r ^ ) ( F B e x p - ^ H ^ ) , (β>0)

(A3)

(see Sect. III.1).
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Proof. By a variation of Theorem 6.6 of [11] (the variation being for the
restriction to a finite volume A with the Dirichlet condition), the operator
exp [ — β(H0tΛ + Um + V)~] has a continuous positive kernel which we denote by
Km(x, y\ where x = (x γ,..., xN), Xj e Rv, and similarly for y. Hence

ί Λ + Um+V)~] has the kernel

By the Feynman-Kac formula (in the proof of Theorem 6.6 of [11]) Km(x,y)
and hence Km(x, y) are monotone decreasing functions of m for each fixed x, y.
Therefore we have the following limits

lim
m->oo

Since, by (III. 15), exp[ — β(H0Λ+ Um + V)~\ converges strongly to Tβ, as m-^oo,
K^fay) is the kernel of Tβ and K^x^y) that of PBTβ. If we establish the fact that
Qxp[ — β(H0Λ + Um+ V)] and exp(— Tβ) are in the trace class, then we can use the
lemma, p. 65 of [20] to obtain

Λ + Um+V)]=SKm(x9x)dx9

trPBexp(-Tβ)=SKo0(x,x)dx,

and therefore

Jlim trPB exp [-β(HOtA + Um + F)] = trPB exp(- Tp),

which is (A.3). In order to prove that the above operators are trace class, we may
use a variant of Theorem 21.4 of [11] and reduce the problem to the case without
potential and without hard core. For a cube A, exp( — βHOtΛ) is trace class by exact
computation. •

Appendix B

In this appendix we show that Δf(β) ~ β, where Af(β) is, for purposes of
β i o

comparison, the same quantity defined in (I.I a), in the case of quantum spin
systems. This follows from a trivial application of Lieb's inequalities [3]:

A W/ = Λ\ ) — A \~ ' ) V /

(with the same notation as [3]). In order to avoid unnecessary notational
complications, assume that

H^= Σ J(x-y)Sx-Sy9 (B.2)
x,yeA

with

|J(x)|<oo (stability)
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and S spin operators corresponding to spin quantum number S. Then (B.I) and
(B.2) together imply

ύffiβ,S + \)-f?{βΛ), (B.3)

where /J?(β, S) [respectively f%Xβ, S)~\ is the quantum (respectively classical) free
energy per particle, defined as in (III. 18). The latter corresponds to the classical
Hamiltonian

H%= Σ J(χ-y)(stx-sty),
x,yeΛ

where tx are three-dimensional unit vectors. From (B.3) we obtain immediately, in
the thermodynamic limit

- cβ\S2 -11 ^ Af(β) S cβί(S +1)2 - 1 ] , (B.4)

where c= £ \J(x)\.
xeZv

Appendix C

In this appendix we show that the high energy limit of the microcanonical entropy
of an infinite system of particles in a bounded external potential is classical, by
using the technique of Dirichlet-Neumann bracketing [10, Chap. XIII. 15].
However, by performing the thermodynamic limit before the high-energy limit, we
shall see that the corresponding estimates are quite different in character from
those of [10, Chap. XIII. 15]. We assume that

HD

Λ= Σ K (Cla)

, (C.lb)

\v(x)\ ^ α for some α < oo, (C.2)

where ΔD is the Laplacian with Dirichlet boundary conditions on a cube
Λ = [-a,ά]3 with volume V = (2ά)3. We let

μ(E, V, N) = ^ - (# eigenvalues of H°^E), (C.3)

J (C.4)

where τ3N is the volume of the unit sphere in 3iV-dimensions, and

θ 7 <x)= Σ ifrd (C.5)
i = l

Let, also

ρ = N/V, (C.6)

v+>T(N)= supvτ(x) = Nvmax, (C.7a)
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and
υ-tΊ{N)= inf vτ(x) = Nvmin, (C.7b)

where, by (C.2)
*W^> (C.7c)

^min^-α. (C.7d)

Let

Z±(E>V>N)={2πψ
NNNl JvT<Ed3Nx(E-v±,τ(N))3N'2, (C.8)

S(£,F,iV)^ilog/i(£,F,iV), (C9)

1
SC1 +(£, F,JV) = τ7logg+(jB, F,JV), (ClOa)

Scl(£,F,N)=ilogg(£,F,JV), (C.lOb)

μ+(£, F iV) = — (# eigenvalues of £Γ^ ̂  £), (C. 11 a)

μ.(E, V, N) = -̂ y (# eigenvalues of flΐί£), (C.I 1 b)

where

H^ = -zJ f l + ί;+ r(JV); - / 1 B Ξ Σ (~^f), (C.12a)
1 = 1

/i^ = -zlN + i;_,T(iV);-zlw= Σ ( - z l f ) , (C.12b)

and Δf (respectively Δ?) are the Laplacians with Dirichlet (respectively Neumann)
boundary conditions (defined as in [10, Chap. XIII. 15]). Finally, let

S±(E,V,N)=ylogμ±(E,V,N). (C.13)

Proposition C.I.

lim lim sup [(Fε, F, N) - Sa(Vε, V, iV)]
ε-* oo iV-^ oo

= lim lim inf [S(7ε, V, N) - Scl(Fε, V, N)] = 0. (C.14)
ε - * oo N~> oo

N/V = ρ

Proof. We have, by Dirichlet-Neumann bracketing [10, Chap. XIII.15] and
(Cll):

[E,V,N). (C.I 5)
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Let ε > ρα. We have
_ 3iV _ 3iV

Γ ' . (C.17)
1))

Γ|f+1

|/3πiV(l

We may therefore write, by (C.7):

σ(e, F, JV) ̂ g + ( £ , F, JV)^g(£, F, ΛΓ)^g_(£, F, JV)^τ(e, F, N), (C.I8)

where

1 Γ V Ύ
)=inL

1 Γ V Ύ Γ3JV / 2 F \ Ί

>V>N ) =inL(WJ e x p b l o s ( w j j ( ε - ρ α ) 2 c- (C19a)

By(C.15)and(C18)

S, F, JV) μ(£, F, JV) μ_(£, F, JV)

g_(£, F, JV) = g(£, F, JV) = g + (£, 7,JV)

Now

Ϊ,K,ΛO μ+(£,F,JV)/g+(£,F,JV)

g_(£, F, JV)

^V .̂̂ v/̂

(C.21)

and hence, by (C.lOa), (C.13), and (C.21) with £ = Vε:

By (C.8) and (C.2)

OSg-(E,V,N)-g+(E,V,N)^^-

and therefore

ε
(ε - ρα) - J . (C.22)
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Hence, for sufficiently large N

ε-ρα/

By (C.20)-(C23),

S(E, V,N)-Sa(E, V,N)^S+(E, V,N)-SCh +(E, V,N)

-^logl6ρaN(ε-ρa)-^-(^ρ-^jlog{^j. (C.24)

Similarly, from (C.20),

S(E, V,N)-Sa(E, V,N)SS-(E, V,N)-SCU _(£, V,N)

^ j z ^ ψ ^ (C.25)

by (C.18) and (C.19).
By (C.24) and (C.25) we shall have proven Proposition C.I if we can establish

that

i * ™ (C.26,
N^OO V g±{Vε,V,N)

N/V~ρ e arbitrary.

Proof of (C.26). a) Dirichlet-case ( + ):

N\μ+ is the number of unit cubes with "right upper" corner inside the sphere
Sn r = r0N

5/β ("Dirichlet-cubes").
Nlg+ is the volume of Sr:

h3N '

Let d0 = ]/ΪN be the diagonal of a unit cube, then the sphere Sr _ do is completely
filled with Dirichlet-cubes. Therefore
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with a suitable constant a. This implies

NIV = ρ

b) Neumann-case ( —):
Nlμ-is the number of unit cubes with "left lower" corner inside the sphere Sr.

As above

1 < ^ < f 1 + M3Λ'<e^/3 D
σ \ /
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