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Abstract. We prove that the Lyapunov exponents of periodic orbits are a total
family of invariants for C00 conjugation of families of diffeomorphisms to a
two-dimensional toral automorphism. In case of families of canonical dif-
feomorphisms, the corresponding conjugating diffeomorphisms are also
canonical.

During the last few years there has been a considerable advance in perturbation
theory of Anosov hamiltonian systems (see [GK, CEG, LMM]). In this paper we
start the study of the corresponding C00 conjugation problem for general (not
necessarily hamiltonian) systems. We prove in some particular situations that the
simplest conjugation invariants, the Lyapunov exponents of periodic orbits, are a
total family of invariants for C00 conjugation.

We also show that Lyapunov exponents are relevant to perturbation theory of
hamiltonian Anosov systems. We prove that for hamiltonian systems of the class
under consideration, the constancy of the Lyapunov exponents implies the
constancy of the action invariants, which are known to be a complete family of
invariants for canonical conjugation. This in turn implies that the Lyapunov
exponents are (in our situation) a complete family of invariants for locally
hamiltonian, as well as for hamiltonian, conjugation. We find this interesting since
it is shown in [CEG] [see the comments following (1.9) and the example in
Appendix E] that Lyapunov exponents are not a complete family of invariants for
conjugation of locally hamiltonian perturbations of geodesic flows with negative
curvature in space dimension 2 under globally canonical maps, and no positive
result in this direction was known up to now. It is tempting to conjecture that our
results can be extended to cover perturbations of suitable flows, at least in
dimension 3.

We work in the context of one-parameter families of diffeomorphisms of the
two-dimensional torus T2 = R2/^2. Such a one-parameter family fε, a < ε < b, will
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be called an isotopy if the map (ε, x) \->fε(x) is C00. The generator of the isotopy is
the (parameter depending) vector field Xε determined by

If each generator is locally hamiltonian (respectively hamiltonian) with respect to
the usual symplectic form ω = dx Λ dy we shall say that fε is a locally hamiltonian
isotopy (LHI) [respectively a globally hamiltonian isotopy (GHI)]. The hamil-
tonian Fε of Xε with vanishing average over T2 is called the hamiltonian of the
isotopy. Obviously, LHΓs are just isotopies made up of canonical maps (area
preserving maps in our case).

We shall use the basic theory of Anosov diffeomorphisms, as developed for
example in [A] (where they are called C-cascades) or in [S], without any special
mention of it.

Before stating our main result, we define the invariants. Assume / : M-+M is a
diffeomorphism of M, x e M , and fN(x)~x. The Lyapunov exponents of / at the
orbit of x are the logarithms of the positive Nxh roots of the absolute values of the
eigenvalues of the linear map Txf

N. They measure the rate at which points near x
separate from the orbit of x under iteration. Obviously, if g = φ °f° φ~1 with a
smooth φ, the Lyapunov exponents of g at the orbit of φ(x) are the same as those of
/ at the orbit of x, so the Lyapunov exponents of periodic orbits are smooth
conjugation invariants. Let us point out that Lyapunov exponents can be defined
for almost any x with respect to an invariant measure (see [P])5 and they are still
invariant under conjugation. For transitive Anosov systems, which have a dense
set of periodic orbits, one expects the invariants of these orbits to contain all the
relevant information for smooth conjugation. The theorem below is a specific fact
in this direction.

If/ε is an isotopy and the periodic point x 0 of/0 is hyperbolic, we can follow x0

a]ong the isotopy for small values of the parameter. If/0 is uniformly hyperbolic
(i.e. an Anosov system) all the periodic orbits can be followed along the same
interval — ε 0 < ε < ε θ 5 since such systems are persistent under perturbations. Thus,
Lyapunov exponents are defined for — εo<ε<εo and xε corresponding to a
periodic point x0 of /0.

Theorem. Assume /ε, — l<ε<l,isan isoίopy (respectively an LHI) (respectively a
GHI) on T 2, and f0 is defined by a 2 x 2 hyperbolic integer matrix. Then there exists
another isotopy (respectively an LHI), (respectively a GHI) φε satisfying
fo = φε°fε°φε~

1, ~ £ o < ε < ε o > if and only if for any periodic point x0 of /0, the
Lyapunov exponents of the corresponding xε have a value independent of ε.
Moreover, ψo — L

Remark ϊ. If we assume that each f is Anosov, then we can make εo = 1.

Remark 2. This theorem has the flavour of Arnold's theorem on the conjugacy of
diffeomorphisms of the circle to well behaved rotations (see [A, 12.A]). Its
extension to more general systems, like arbitrary Anosov diffeomorphisms or
flows and higher dimensions is an interesting problem. Soon after a first version of
this paper was available, R. de la Llave has been able to substitute the isotopies f
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in our result by two single diffeomorphisms, f0 and fu close enough, without any
linearity assumption on them. His result appears in a subsequent paper, Invariants
for Smooth Conjugacy of Hyperbolic Systems, II. Further extensions to flows and
higher dimensions, some of them without closeness assumptions, will be the
subject of successive papers in this series.

Remark 3. There are very strong conjugacy results for geodesic flows on manifolds
of negative curvature, mainly related to the length spectrum instead of the
Lyapunov exponents. See [BK, Sects. 3 and 10], for a recent survey on the subject.

The nontrivial part of the proof of the theorem is showing that the
independence of the Lyapunov exponents on ε implies that all the /ε's are
conjugate to /0. This is proved with the help of the following three Lemmas:

Lemma 1. // fε, — ε o < ε < ε o , is an ίsotopy of orientation preserving Anosov
diffeomorphisms on T2, f0 is area preserving, and the Lyapunov exponents of
corresponding periodic points xε are independent of ε, there exists an isotopy ψε,
— ε o < ε < ε o , with ψo = I, such that ψε°fε°ψε~

ί is an LHI.

Lemma 2. // gε, — ε0 < ε < ε0, is an LHI on T2, and g0 is defined bya2x2 hyperbolic
integer matrix, then there exists an LHI ηε, — ε o < ε < ε o , with rjo^I, such that
1 ε °g ε °n^ ι is a GHL

Lemma 3. // hε, — ε0 < ε < ε0, is a GHI of Anosov diffeomorphisms on T2 with
hamiltonian Hε, h0 is defined by a 2 x 2 hyperbolic integer matrix, and the Lyapunov
exponents of corresponding periodic points xε do not depend on ε, then for any
periodic point xε of period N

NΣHε(hiω)=o. (i)
ί = 0

The theorem is a consequence of Lemmas 1-3, and Theorem 1.3 in [LMM],
which states that if (1) is satisfied, all the hεs are conjugated to h0 by a GHI. We give
now the proofs of the lemmas.

Proof of Lemma i. As a consequence of the independency of the Lyapunov
exponents with respect to ε, the determinant of TXεfε

N is independent of ε. (JV
denotes the period of xε.) Since f0 preserves area, and orientation, the determinant
is 1. If we call Dε(x) = \ogdQtTxfε, we see that as a consequence of the chain rule,
given xε, N as above,

Each fε is a transitive diffeomorphism, since it is conjugated to the area
preserving map /0. Thus, according to Theorems 2.1 and 2.2 in [LMM], there
exists a C00 family of C00 functions ξε, — ε o < ε < ε o , such that ξo = 0 and
Dε = ξε — ξεof. This implies that

fε%(eξε dx A dy) = eξε dx A dy.

If we consider ηε = ξε + Kε for a one-parameter family of constants Kε,
— ε0 < ε < ε0, that will be fixed in a moment, we also have

fε*{en* dx A dy) = eηε dxAdy. (2)
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Moreover,

4- ί eη*dxΛdy= f ^
dε τ2 ^2 dε

— eKε[ — [ eξLdx A dy H——- f eξεdx A dy .
\dεJ2 dε ^ J J

So if we fix Kε with Ko = 0, and

then the measure dμε = eηε dx A dy is invariant under f and has total volume
independent of ε.

By a well known theorem of Moser, [Mo], for each ε there exists a C00

diffeomorphism φ ε such that ψ^ dμE = dx A dy, and ψ0 = /. Since φ ε depends on ε in
a C00 way, so it is an isotopy. Then,

and this shows that ψε°fε°ψε~
ι is an LHI. The proof of the lemma is finished.

Remark. The above proof can immediately be extended to the higher dimensional
case: if f is an isotopy of Anosov diffeomorphisms on an π-dimensional manifold
M, ω0 E ΛnM is a volume form, invariant under /0, and the Lyapunov exponents of
corresponding periodic points xε of fε are independent of ε, then there exists an
isotopy ψε with ψo = I, such that ω 0 is invariant under ψε°fε°ψε~

ι for any ε.

Proof of Lemma 2. It is a direct consequence of Theorem 1.2 in [LMM], which
says that whenever Id —g 0 # is an isomorphism on HX(T2), and gfc is an LHI of
Anosov diffeomorphisms, they can be conjugated by an LHI to a GHI.

Remark. Lemma 2 is true in any dimension without the assumption on g0 since by
[M], each gε is topologically conjugate to a diffeomorphism defined by a
hyperbolic matrix.

The proof of Lemma 3 is based on the following lemma:

Lemma 4. There exist one-parameter families of closed one-forms a% α",
— ε o < ε < ε θ 9 of class C1+δ as functions of (ε,x)e( — ε0,ε0) x T 2, such that

(a) h*a?ε = λs0Ls

ε,

where the constants λ\ λu are the eigenvalues of the matrix that defines h0, 0 < |λs|
< 1 < \λu\. Moreover,

(b) α'Λα" = ώ Λ dy,

and [a*], [α"] eHι(T2,ΊR) are independent of ε.

Lemma 4 is very natural, since in the case ε = 0 it is a trivial consequence of our
assumption regarding h0. It actually gives a lot of information about the dynamics
of each hε, except for the regularity of the stable and unstable foliations.



Invariants for Smooth Conjugacy 685

We shall assume Lemma 4 for the moment, and we will see now how Lemma 3
can be deduced from it. The main idea is that differentiating (a) with respect to ε
gives an expression for Hε from which (1) can be proved explicitly. One of the main
points of the proof is that we never perform more derivatives on a% oζ than is
allowed, namely either one derivative along the parameter or along the space
variable.

Proof of Lemma 3. Let Vε, Vε be the dual basis of α*, cζ. For any C ι function G on
T2 we have

(3)

By (b), if hε is generated by the hamiltonian vector field Xε with hamiltonian Hε,

so by (3) we get

Vε

uHε = α P Q , Vε

sHε = - *«{Xε). (4)

Differentiating in (a) with respect to ε we have

.. docs

F\ _ doίί

and similarly for α". If we evaluate the previous expression on Vε we are led to

This gives by (4)

VΎUH = —-(Vs oh'1)-—(Vs) (5)
yε y ε l λ ε i \yε nε ) i \yε)' W)

This formula looks close to what we need, since the right-hand side is of the
form ηε °h~1 — ηε. If we knew how to solve the equations Vsfjε = ηε and Vεηε = ηε we
would have Vε

sVε

u(HE — ήεoh~ί+ήε) = 0, and then Hε = ήεofε — fjε, and (1) would
follow immediately. In the particular case ε = 0 both equations can be solved
explicitly (up to constants) by Fourier Analysis, since they are first order PDE's
with constant coefficients, but for arbitrary ε, Lemma 4 does not give us enough
regularity on as

ε, cζ (hence on Vs, Vε) as to solve them. However, we can still use the
remaining information in Lemma 4, in order to prove that Hε has the desired form
as follows.

Since [o£], [α"] e i ϊ ^ M , IR) are independent of ε, there exist functions G% Gu

ε of
class C1+δ on T2 for each fixed ε such that

and similarly for α" and G", and we shall have

αε aε aε dε
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Since [αε], [αε] are a basis of H1(M,JR), by adding suitable constants to Gε, G" we
can achieve that Gεαε — Gεαε is exact. Then there exists a function Gε of class C2 + δ

for fixed ε, such that

GX-GuX = dGe.
By (3) this gives

Vε

sGε=-Gu

ε, Vε

uGε = Gs

ε. (7)

Substituting (6) and (7) into (5) we obtain

VεΎ»Hε = (Ve

sVε

uGt) o Kl ~ Vε*VE

uGe, (8)

but

f VS=λSVS f VU=:?UVU

and, since ΛΛ1"=1, we have that

ίF sFMG )oΛ~1 = FsFM('G oft"1)

Substituting this in (8) we are led to

G εoft;i) = 0. (9)

Since the integral curves of Vε are the stable manifolds of ftε, which are dense in T2

by Anosov's structural stability theorem, from (9) we get that

for some constant C ε . Evaluating at a maximum of the function between
parenthesis, we see that C\ = 0, so

for a new constant Cε. Since we have assumed that j Hε dx A dy = 0, we have
τ2

Cε = 0. From this we get that for any xεeT2 with h^xε = xε,

This proves (1), and the proof of Lemma 3 is finished.

Remark. Notice that we do not need / 0 to be C°-conjugate to a linear
automorphism, but it suffices if the Lyapunov exponents of periodic points of f0

are independent of the point. Since Lemma 2 also holds in general, the part of the
theorem dealing with LHΓs or GHΓs remains true under these apparently weaker
assumptions.

Proof of Lemma 4. We take ε0 > 0 sufficiently small so that each ftε, — ε0 < ε < ε0, is
an Anosov diffeomorphism with stable and unstable vector subbundles E% Eu

ε. We
shall need the fact that Es

ε and Eu

ε are C1 +δ functions defined on [ —εo,εo] x T 2 .
This is a consequence of the C-section Theorem 3.2 of [HPS], taking into account
the remark on p. 36, as well as Remarks 1 and 2 on p. 38. The mechanism needed to
obtain the C1+δ regularity of Es

ε and Eu

ε from this theorem is very standard and we
only sketch it. We consider the manifold with boundary X= [ —εo,εo] x T 2 , two
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vector subbundles E% Eu

ε of TT2 that are C°° as functions oϊ(ε,x)eX and close
to E%Eu

ε, and the vector bundle L(EU,ES) over X with fiber over (ε,x) equal
to L(Eu

εx,E
s

εx). Now we consider the maps h'.X^X, h(ε,x) = (ε,hε(x)) and
F:L(EU,ES)1^L(EU,ES) induced by the graph transform of Thε, that is,
T/zε(graph(L)) = graph (F(L)). Here L(EU,ES)1 denotes the bundle of unit balls of
L(£", Es) in some convenient metric that will be specified later. The situation is
expressed in the diagram

L{E\ Es)γ - > L(E\ Es)

X * • X

We endow T 2 with a metric < , >ε adapted to hε and we fix on X the metric

where πx ' X^>[ — εo>
εo}> n2\X^Ύ2 are the projections and μ>0 is some small

number. Now it is easy to check that, if E% Es

ε are sufficiently close to £", Es

ε and
μ > 0 sufficiently small, F takes values on L(EU, Es)1 and it is a fiber contraction with
Lipschitz constant fc(ε x ) in the fiber over (ε,x) uniformly close to

and that ^ε,x) = \(T{ε^x)h)~1\ is unformely close to

Maχd(ΓΛ)-1 mi(ΓA)"1 m i ) =
If we take <i>>0 small, k{εtX)cclε*x* is close to

Since Es

ε has dimension one, this is equal to

and, since \(Txhε)~1\Eu\<λ<l, for some (5>0 we obtain

s u p fc(aiΛ)α(V
+*)<l.

(ε,x)eX

The theorem referred to in [HPS] allows us to conclude that F has a C1+δ

invariant section. Obviously this section is obtained from Eu

ε in the natural way
and we can conclude that Eu

ε is a C1+δ function defined on X.
Now take two 1-forms d%oίu

ε on T 2 such that £ ε '
M = ker(α5'u). We can assume

they are of class Cι+δ as functions defined on X = \_ — ε0, ε0] x T 2 . We have

where λs

ε

u are some C 1 + 5 real functions of (ε, x)eX and XQU = λs'u. We adjust αo'" so
that #o Λ du

0 = dx A dy. The hypothesis of constancy of the Lyapunov exponents
implies that for an JV-periodic point xε of hε we have

JSI j=ι
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and by Livsic theorem [L], we can take a Holder solution Φs

ε

>u of

Φs

ε

u{hε) - Φs

ε

u = log{λs>u/Xs

ε>
u).

The proofs of Theorems 2.1 and 2.2 of [LMM] show that ΦJ "is C 1 +δ as a function
defined on X. We also normalize Φo'" = 0. Now we define the 1-forms

of class C1+δ on X such that

hfocs

ε

u = λs'uocs

ε

u. (10)

We shall prove that α*'" are closed forms. Let F/'u be the dual basis of cζ'u. From
the last equality we have

and, since λsλu = \,

By hyperbolicity this implies [Vε\ 1̂ "] =0, and this immediately leads to docs

ε

u = O.
Since hε#=h0#:H1(T2,lR)^>H1(T2,lR) is constant and hyperbolic, we can

introduce some multiplicative factor in the definition of as

ε'
u so that the classes

[α*'"] are constant. To obtain (b) it suffices to observe that ots

εΛ α" is an invariant
volume element for hε, and then it is a constant times dx A dy. Since the class
[ α ε Λ α"] G H2(Έ2, ΊR) is constant, α* Λ α" is cohomologous to dx Λ dy, and we obtain
(b). This finishes the proof of Lemma 4.

Remark. The previous theorem is still true in the context of real analytic isotopies
of real analytic diffeomorphisms. The proof is the same, except for the application
of the lemmata, where one uses Theorem 1.4 from [LMM] instead of Theorem 1.3.

Remark. Notice that since each hε preserves area, δ can be taken as close to 1 as we
want in Lemma 4.
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