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Abstract. We study the asymptotic behaviour, as the retarded time u tends to
infinity, of the solutions of Einstein's equations in the spherically symmetric
case with a massless scalar field as the material model. We prove that when the
final Bondi mass Mx is different from zero, as H-> oo, a black hole forms of mass
Mί surrounded by vacuum. We find the rate of decay of the metric functions
and the behaviour of the scalar field on the horizon.

0. Introduction

In [1] we began the study of the global initial value problem for Einstein's
equations Rμv = %πdμφdvφ in the spherically symmetric case with a massless scalar
field φ as the material model. Using a retarded time coordinate r, the spacetime
metric can be put in the form

ds2 = -e2vdu2 -2ev + λdudr + r2dΣ2,

where dΣ2 is the metric of the standard 2-sphere. The problem is formulated most
simply in terms of the function h: = d(rφ)/dr. We define

and

m : = n 1 " A ξ:=2rDE>
where, if / is a function of u and r, we denote by / the mean value function of /:

f(μ9ή:=- ]f(u,r')dr'.
r o
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We showed in [1] that the spherically symmetric Einstein-scalar equations are
then equivalent to the equations

h), and Dm= ξ2,
g

through the identification ev + λ: = g, ev ~λ : — g and φ\ — \ι. The function m(u, r) is the
mass which at retarded time u is enclosed within the sphere of radius r and
M(u): = lim m(u, r) is the total (Bondi) mass at retarded time u. The integral curves

of D, which we call characteristics, are the incoming light rays. The initial data of
the problem is the specification of the function h at w = 0. In [1] we proved that if
the initial data is sufficiently small there exists a global classical solution which
disperses in the infinite future and the final Bondi Mass Mi vanishes (Theorem 3 of
[1]). In [2] we studied the problem in the large. We introduced there the concept of
a generalized solution and we proved, without any restriction on the size of the
initial data, the global existence of generalized solutions (Theorem 1 of [2]). In [3]
we studied the regularity properties of generalized solutions and we proved a
uniqueness theorem which shows that a generalized solution is an extension of a
classical solution (Theorem 1 of [3]).

In the present paper we study the asymptotic behaviour of the generalized
solutions as the retarted time u tends to infinity. In the generic case for large initial
data the final Bondi mass Mί is different from zero. When M1 = 0, as for the small
solutions described by Theorem 3 of [1], the scalar field disperses and the
spacetime tends to the Minkowski spacetime as w->oo. In the present paper we
show that when Mι φO, as w-^oo, a black hole forms of mass M1 surrounded by
vacuum.

We shall assume, as in the previous papers, that the initial data which is given at
u = 0, satisfies the falloff conditions

/i(0, r) = O(r~3) and dh/dr(0, r) = O(r~4') as r->oo, h: = d(rφ)/dr.

These conditions are not necessary. All the results of the present paper can be
derived by the same methods under the weaker falloff conditions

h(0, r) = O(r~ι~ε) and dh/dr(O, r) = O(r~2~ε\ ε>0 as r->oo. (*)

However, assuming only that the initial Bondi mass M o is finite is not sufficient to
derive the results. The conditions (*) are needed to ensure that the function
N: = lim (rφ) is well defined.

r~* oo

The plan of the present paper is the following: In Sect. 1 we prove that in the
region exterior to the Schwarzschild sphere r = 2Mι corresponding to the final
Bondi mass M 1 ? the solutions tend to stationarity in the sense that dh/du tends to
zero as u tends to infinity. The method of this section is not particular to the
problem at hand and should apply also to other problems involving nonlinear
evolution equations of the hyperbolic type (describing radiating physical systems).
In Sect. 2 we prove that the mass remaining outside the sphere r = 2M1 tends to
zero as u tends to infinity. The main part of this proof is the demonstration of the
fact that N -»0 as u -> oo. In Sect. 3 we prove that an event horizon forms in the limit
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w-κx); the event horizon is the part of the limiting hypersurface u= oo interior to
the sphere r = 2M1. We derive the rate of decay of the metric functions and the
asymptotic behaviour of the incoming light rays. The method of this section is
based on an identity related to the scaling group covariance of the problem. In
Sect. 4 we study the behaviour of the scalar field on the horizon and we derive some
additional results about the global properties of the solutions.

I. Asymptotic Stationarity Outside the Schwarzschild Radius

The aim of this and the next section is the proof of:

Theorem 1. For r>2Mu M(u) — m(u,r)^0 as u-+co.

In this section we shall show that at each r >2MU dh/du^O as w->oo. We start
by deriving uniform bounds for h, h and dh/δr in the region r > r0, where r0 is a
constant greater than 2Mγ. Let us recall the function N defined in Sect. 2 of [3]:

N:= J hdr.
o

Lemma 1. For each r0 > 2Mί there are constants C and C (independent of u) such
that

sup r2\h(u, r)|rgC, and sup r3

Also, N is uniformly bounded: \N\^B.

Proof We first note that in the region r^r0, g has a positive lower bound (see
Proposition 1 of [1]): according to (2.4) of [3],

2M 1 °°
g = \ + - j (l-g)rfr, (1.1)

r r r

therefore

Since M(u) is a monotonically nonincreasing function of u tending to M1 as u-+ oo,
and we have r o >2M l 5 there exists a u1 such that for all u^.uu

and therefore
/ 2M 1

On the other hand at each r > 0, g(u, r), being a positive continuous function of u,
has a positive minimum in the compact interval [0, wj. Hence g(u,r0) has a
positive infimum k, and therefore for all r^r0 and all u^O we have

g(u,r)^k>0. (1.2)
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This implies that in any region r^r 0 , r o >2M 1 ? the slope-du/dr of the character-
istics has an upper bound, a fact which will be used repeatedly in the sequel.

Let us recall the fact that for any function /eC^O, oo[ such that / and r df/dr
belong to L2(0, oo) and

lim rf2(ή = 0,
r-+ oo

it holds

Applying this to the function h at each u, we obtain, in view of the positive lower
bound for g, that for all r ^ r o > 2 M l 5

GO _ 1 co a

S ί {h-hfdr^- J ^{h-
r K r g

]\4

Therefore, in the region r^r 0 ,

i<
M \ 1/2 1

(1.3)
κ2πkJ r1'2'

Integration of the nonlinear evolution equation along the characteristics χ
gives:

r «i \ (σ — <

where χ or χUι{ \rx) denotes the characteristic through r = r1 at u = uί. Since

g-g m^M0

2r
(1.5)

taking r1^r0>2Mί and changing the variable integration along χ from u to r, we
can estimate:

r k A r2 k r1

using the upper bound 2/fe for the slope of the characteristics in the region

1. Taking into account (1.3) we can also estimate:

7 ϊ^-
Z u , ( 0 ; r i ) tlV'ύ*L

J r5/2
n r

<3
2πJ \ k

72 !

,-3/2 ' (1.7)
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Setting then

{r3|/zo(r)|}, (1.8)

we obtain from (1.4), in view of (1.6) and (1.7), that for all uί ^ 0 and all r1 ^ r 0 ,
r o > 2 M 1 ,

holds. Therefore, for each r 0 > 2M1 there exists a constant C o such that for all u ̂  0
and r^r0,

r^2. (1.9)

Since

JV = ro/i(ro) + J ή d r ,
ro

and by (1.3),

\h(r

(1.9) implies that \N\^B, where

(M r \ 1 / 2 ΎC

Since tor r^r 0 ,

(1.9) also implies that in the region r^r0,

\h\SB/r. (1.10)

Using (1.10) instead of (1.13) we now estimate

(1.11)
We then obtain from (1.4) that for all uγ 2:0 and all rί 2:r0:

holds. Therefore, for each r 0 > 2MX there exists a constant C such that for all u ̂  0
and r^r0,

\h(u,r)\^C/r2. (1.12)

The evolution law of δfc/3r, derived from the nonlinear evolution equation, is
given by:

(f) ilf j *)a)(Λ-JS). (1.13)
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Integrating this along the characteristics we obtain

exp _ f μ*-J>M du\dή.

By (1.5), (1.10), and (1.12), in the region r^ (1.14)

2r2

L

r 4

holds, where

Taking rλ ^ r 0 we can then estimate:

1 Γ 1
o I 2r2

=

du

du

dr < 2 L 1

Defining

dx : = sup
or

(1.15)

(1.16)

we obtain from (1.14), in view of (1.6) and (1.15), that for all ux ^ 0 and rλ ^ r ϋ 9

r o > 2 M b

1 2L

or

holds. Therefore, for each r0 > 2M 1 there exists a constant C; such that for all u ̂  0
and r ^ r0,

\dh/dr(u,r)\^C/r3. Π

Let us recall the total radiative amplitude Ξ defined in Sect. 2 of [3]:

The function Ξ(u) is defined for almost all values oΐu and we have Ξ e L2(0, oo). Let

us set

η(uo):= j Ξ2(u)du. (1.17)

Then 77(wo)-»0 as w0-»oo. The quantity πη(u0) represents the total energy radiated
after the retarded time w0. The proof of asymptotic stationarity outside the final
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Schwarzschild radius uses the fact that the total energy radiated after the retarded
time u0 tends to zero as u0 tends to infinity.

Lemma 2. For each ro>2Mί and £>0,

dh/

sup < r
,3-ε

du
>0 as >oo.

Proof. We consider the evolution law of δ/z/dw along the characteristics:

dg ^ _̂_ J_ /'δg _ 5g^ r/7 - Pi -μ A. Γα - α̂l ̂  - ^
du du

(1.18)

This law is obtained by differentiating the nonlinear evolution equation with
respect to u. The idea now is to express the functions dh/du, dg/du and dg/du, which
appear in the right-hand side of (1.18), at each point (u,r) in terms of the total
radiative amplitude Ξ and the function dh/du at that value of u from r to oo. Since

and, according to (2.10) of [3],

N
r

dN

~du

1
r

1

~2

we have

Since

dh _ Ξ l * f f i

du 2r r I du

A In ΓMdr d A o r / /

r r du r

dh d K \ d r

du du r

and since g = e 4πA, dg/du = — 4πg dA/du. Also, according to (2.4) of [3],

and according to (2.12) of [3],

2M 1 °°
+ - S(ί-g)dr,

r r r

dM

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

Therefore
2πΞ2

du i Ψr r du

(1.24)

(1.25)

Let now χUι( • ;r0) denote the characteristic through r = r 0 at u = uu where r 0 is
fixed and greater than 2M1. For each ue[0,«,] we set:

j8 a i(«):= sup
dh

(1.26)
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where βUι is a continuous function on [0,MJ. By (1.21), for each ue[0,u{\ and
r^χUι(u;r0), we have

δh( Ξ(«)| 1

\Ξ(u)\ , 1
(1.27)

By Lemma 1, in the region r^r0, \h — h\ζ C/r holds. Here and in the following C
shall denote various positive constants depending only on r0. Considering the
above we obtain from (1.22) that for ue[0,u{] and r^χUl(u;r0),

δA
-T- {u, r)
δu

and therefore

£2 J \h-h\
r

oo

<2 f C

dh dh\ dr

du du\ r

(u,r)
r r

It then follows, in view of (1.25), that for each ue\S),u{] and r^χU i(w;r 0),

<2π^-^+(

(1.28)

(1.29)

Taking into account (1.27), (1.28), and (1.29) as well as Lemma 1 and (1.5), we
conclude, in view of (1.18), that in the region {(w,r)|0^wgu1; r^χU i(tι;r o)},

(1.30)

holds, where C is a constant depending on r0 but not on uv

Let χMl( ; r i ) denote the characteristic through r = r1 at u = u1, where Γ ^ Γ Q .
Integrating inequality (1.30) along such a characteristic we obtain:

{u,χUί(
u>ri))\

u. (1.31)

We shall multiply inequality (1.31) by (χUι(u; rj)2, and we shall bound the right side
by a quantity which is independent oϊrv Since χUι(u;rί)^χUί(u0;rί), we have

dh

d u 0 ? Ml 0 ? x

where

/ ( M 1 9 M 0 ) = sup

(1.32)

(1.33)
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Also,

621

Using the Schwarz inequality we estimate:

du'

"' \Ξ(U')

^ ί 7
Now,

' έ ί Ξ2(u')du' J

2 Xui(uo;ro) fo' 2

l / 2

I r'2-kr0

Hence (see (1.17)):

(χU l(ti

We also estimate

u

(1.35)

(1.36)

uoχUl(u';r0)

Considering (1.33), (1.34), (1.36), and (1.37), we conclude from (1.31) that for all
ue[0,u1']:

βUl{u)= sup

J (1.38)

We have thus derived a linear integral inequality for βUl. We conclude that

C J — - ^ —

Therefore, in view of (1.35),

dh
sup < r

du
(uί9r) (1.39)

where C is a constant depending on r 0 but independent of uγ and u0.
Lemma 1 implies through the nonlinear evolution equation that there exists a

constant C" depending only on r0 such that for all u ̂  0 and r ^ r0,

dh
<

C"
(1.40)
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The upper bound of the slope of the characteristics in the region r^.r0 implies that

k
f-(Ul-«0).

As a consequence of (1.40) and (1.41) [see (1.33)]:

C"

(1.41)

(1.42)

Given now any <5>0, we first choose u0 large enough so that

We then choose u2 large enough so that

k, 2CC"

Then by (1.39), in view of (1.42), for all ux >u2 we have:

dh
sup < r

dh

ou

Therefore

sup <j r (u9r) >0 as u-^co.

Finally, let ε be any positive real number. By (1.40), for rί ^ r 0 ,

sup <r
.3-ε dh, J

ou

C"

Given any δ>0, we first choose r1 such that

(1.43)

(1.44)

(1.45)

Then, according to (1.43), we can choose u1 such that for all u>u1 we have

sup
dh,

(1.46)

As a consequence of (1.46) together with (1.44) and (1.45), for all u>ui9

sup

holds. We conclude that

sup < r,3-ε

ou
->0 as u-^oc. Π
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II. Asymptotic Tendency to Vacuum Outside the Schwarzschild Radius

The proof of Theorem 1 relies on establishing first that N(u)-±0 as M-> OO. The proof
of this, in turn, uses the following lemma:

Lemma 3. //, at a certain value of u, JV(w) + 0, and for some r1>0,

dh
s u p <jr

,5/2

du
(u,r)

then at that value of u,

πN2(u)

Proof The nonlinear evolution equation can be written in the form

(2.1)

Since at each u rg(h — h)^>—N as r->oo, integrating (2.1) at the given value of w
from r to oo, we obtain

_ 00 βL

rg(h-h) + N=-2 J r — dr.
r OU

Since N(u) + 0, we can define

(2.2)

(2.3)

For r^.r1 we have

,dh/

s sup <j r
5/2 dh,

T u ^ ^ί 73/2 ^372 SUP
.5/2 (u,r)

and therefore, by the assumption of the lemma,

V d u K '

It then follows from (2.3) that

(2.4)

(2.5)

Thus at the given value of u we can define in the interval [r l 5 oo[ the function θ:

θ:=ihjj^-. (2.6)

According to (2.2) and (2.3),

'-I. (27)
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Differentiating this equation with respect to r we obtain:

~dr=rψ = lvθ '

On the other hand,

Consequently,

dl=

 1

 r

dA (2 8)
dr 4πf2N dr' K '

Since 6>—>0 for r—>cc, integrating (2.8) from r to oo, we obtain that in the interval

0 1 ; c o [ ,

(2.9)
4πf2N I dr

Taking into account (2.5) and the fact that

j r — dr^ j r~^dr— \ (l~g)dr-

we conclude from (2.9) that in the interval [r l 5 oo[:

,., 2 M

Equation (2.7) then implies that for all r^r^

We are now ready to demonstrate

Lemma 4. N(u)-+0 as u-^oo.

Proof. The proof will be by contradiction. Let us suppose that N does not tend to
zero as u tends to infinity. Then there is an ε > 0 and a sequence {un}, wn—>oo for n
~>oo, such that \N(un)\^2ε. In view of the fact that dN/du = (l/2)Ξ, for each n and
each u ̂  un, we then have

Thus if we define u!n by

u'n-un = 4ε2/η(un) (2.10)

[see (1.17)] we have a sequence of intervals [un,u'^\ of increasing length,

u'n — un->GO for n - > o o , (2.11)
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and in each interval

inf \N(
ue[un,Un]

We now define for each ί, ί = 0,1,2,..., a sequence of bands Aim

The rt are defined recursively by:

ri+i=rie πε l M χ r \

starting from some r o > 2 M 1 . We may, in fact, choose r 0 so that

625

(2.12)

(2.13)

(2.14)

(2.15)

Then, starting from uOn: = un, the uUn are defined recursively by requiring that for
each n the points (ui+ίtn,ri + ί) and {uimr^} lie on the same characteristic curve:

(2.16)

We shall show in the following that, for each ί, u'n — uitn-+co for n—>-oo.
For any given ί, let P be the following proposition:

2) There are constants: Bb Cb C , such that for all n large enough

dh
sup {r|Λ|} ^ B f , sup {r2|/ι|} ̂  C f, sup < r

3) sup <| r 5 / 2 >0 for n->co.

Since r o > 2 M l 5 according to Lemma 1, for all u,

s\iV{r2\h(u,ή\}SC,

sup <| r (u,r)

holds, and by Lemma 2,

sup <r
,5/2

dh,
>0 as u-^co.

It follows, in view of (2.11), that the proposition P o is true. We shall now
demonstrate that the proposition Pt implies the proposition Pi+ί. The proposition
Pt would then be true, by induction, for each i.

Let proposition P( hold for some i. Then by part 3) there exists a Nt such that for

sup
.5/2



626 D. Christodoulou

As we can choose Nt to satisfy also

Lemma 3 implies that for all n^Nf.

πε2 1
inϊ g(u9r^-—.-. (2.17)

[ u u ' i 4M r

As a consequence of the fact that dg/δr^ ί/r, we have

. (2.18)

Hence (2.14) together with (2.17), imply that for n^Nb

KF2 1

inf I ( « , r i + 1 ) | — - : = fc,. (2.19)
ue[uί)n,u'n] 8 M 1 Ti

By (2.19) in the regions [uiw wJJ x [ri+ι, oo[ the slope - du/dr of the
characteristics has for n^iNi&n upper bound 2/kt independent of n. Hence for all

[see (2.16)]. It follows that part 1) of proposition Pi + 1 holds.

From (2.19) we deduce in each [ui „, ŵ ] x [rf +1, oo [, n ̂  iVf (see proof of Lemma

1):
co 1 co σ M λ/T A

rϊ?< J (h-h)2dr<~ J ?(/z-β)^ r^ J ί L < ί i l ?~ ί ~ fef i g 2πki ~ nkt

and by part 2) of proposition P t there exists a constant Bt such that for all n large

enough, \h\ ^ — in [M^Π, W ]̂ X [ri3 oo [. We conclude that there exists a constant B{ + i

such that for all n large enough:

sup {r\K\}SBi+ι. (2.20)
[Ui,n,Un]X[rι+ 1, CO [

Consider the regions

^ + i 1 « - { ( ^ * έ L ι + 1 , > ; ^ i l w ί , J ^ i i i + M } u A i + l ! r (2.21)

We evidently have:

4ί + i,«CΛί+i,πC[MitΛX]x[ri + 1,oo[. (2.22)

For every (M'? r') e y4 + 1 „, the segment of the characteristic χ through (uf, r') between
uin and u' is contained in τ4;

ί + 1 n\

{{u^u'{u;r'))\ue[uUn,u^}tA'i+Un. (2.23)

Integrating the nonlinear evolution equation along χ gives:
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where χ or χu{ r') denotes the characteristic through («', r'). Taking into account
the fact that for u^uin, n large enough,

2r ~ r2 ~ r2

we obtain, in view of (2.19),

u

^ , (2.25,

and, in view of (2.20),

< 4MBi+ι **y> * ^ 2^4^ ^

S i n c e for al l (u\ r')eAi + 1 >n:

χu{uUn\f)^ri9 (2.27)

part 2) of proposition Pt implies that

c c
\h{uUmχu{uUn,r'))\ύ , \/))2 ύ ^ (2.28)

(if rc is large enough). In view of (2.25), (2.26), and (2.28) we conclude from (2.24) that
for all n large enough and all (u',r')eAf

i+ltn:

r

Therefore, there exists a constant Ci+1 such that for all n large enough

sup {r2\h\}^Ci+ί. (2.29)
A'i+ί.n

Taking again (u',r')eA'i + ltn9 and integrating (1.13) along the characteristic
χu{ - r'\ we obtain

(2.30)

By (2.29) and (2.20) in A'i+ln for all n large enough we have
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Therefore, considering (2.23), we can estimate

1 . _
ί -h\j du

- i + I

du 2Li+1 **ιy> dr 2Li+1

considering (2.27), part 2) of proposition P; implies that:

c.
' (Xu'(HnlrΊ)

(2.32)

(if n is large enough). In view of (2.25), (2.31), and (2.32), we conclude from (2.30) that
for all n large enough and all (u'9r

t)eA'i+ίfn:

or
<e°

-,, , 2L i +Λ 1

Therefore there exists a constant C- + 1 such that for all n large enough:

~drsup <j r (2.33)

Considering (2.22), (2.20) together with (2.29) and (2.33) imply that part 2) of
proposition Pt f t holds.

Now, for each u' e [wi + 1>π, MJ,] let χM.( r ί + x) denote the characteristics through
(w;, rf). Then for every M e [MίtΠ, M'] the half-line {(w, r)\r ̂ χu,(w; ri+1)} is contained in
Af

i + 1)tι. For each ue[ui>n,u''] we set:

ΌU\U) : = sup
ou

(2.34)

Then for each ue[ut mu'~\ and r^χU'(u;ri + 1) we have (see proof of Lemma 2):

ou

\Ξ{u)\
<
= ?r

(2.35)

and using (2.20) and (2.29) we can deduce, as in the proof of Lemma 2, that

w- («> )̂ gC - ^ - + -

and

f(u,r)
OU

^2πΞ>) + c

2 ~̂" 1 I •

(2.36)

(2.37)
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Here and in the following, C shall denote various positive constants depending on i
but independent of n. Taking into account (2.35), (2.36), and (2.37) together with
(2.20), (2.29), and (2.33), we conclude from (1.18) that in each region

(n large enough),

W 2

^ 7

— {u,χu,(u;r'))
δh

" βu,(v)dv - lg(»?)| + S2(i>)

Since i > ; O ^ L ' K » ' r ' ) a n d ZuKn^')^^ w e h a v e

^W. W /« 'W.., '

where

/ i > π : = sup

Also [see (1.34), (1.36), (1.37)]:

δu{Ui n''

xΛu r'))2 ί
\Ξ(v)\ 1/2

^(J S 2 (^) ( f

•,1/2

and

«;'"'))2 ί
' ί + l

η(uun).

(2.38)

holds.
Let χu{ r') denote the characteristic through (u\r'\ where r'^ri + 1. Integrat-

ing inequality (2.38) along such a characteristic we obtain:

(2.39)

(2.40)

(2.41)

(2.42)

1/2

(2.43)

(2.44)

Multiplying then inequality (2.39) by (χu{u; r'))2 and taking into account (2.40),
(2.42), (2.43), and (2.44), we deduce the linear integral inequality

βu{u)= sup <(xu(u;r')) (u,χu,{u;r'))

-dι>, (2.45)
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which holds for all n large enough and for all u'e [ui + l n , uJJ and ue [u,,„, u']. We
conclude that:

C J
di;

Therefore, considering that

we obtain that for all u'e[ui+ltn,u
r

n], n large enough,

dus u p <J r' (2.46)

Now, since wίjn->oo for n->oo, we have η{uUn)-^0 for π->oo. Also, by part 3) of
proposition Pb /f>π-^0 for n-^oo. It thus follows from (2.46) that

sup >0 for n-»oo,

which together with part 3) of proposition Pt implies part 3) of proposition Pi + 1.
We conclude that proposition Pt implies proposition Pί+1, and therefore
proposition Pt is true for each i.

It then follows from Lemma 3 [see (2.17)] that for each i and n^Ni'.

πε2 1
(2.47)

Now since [see (2.14)],

πε

there is a first / such that

Then according to (2.47) inAln for each n^N^c must have g ^ 1: a contradiction.
The contradiction is avoided only if N->0 as u->oo. •

l=4M,'

Lemma 5. For each r o > 2 M 1 ,

and for each ε > 0,

sup {r\h(u,r)\}-*0 as u->oo,
r>ro

sup {r2 ε\h(u,

Proof. Let us set

ε{u0): = sup | JV(u)|. (2.48)
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According to Lemma 4, ε(w0)—•() as w0—XX). Let χUί( r0) denote the characteristic
through (uu r0), where r 0 is fixed and greater than 2Mί. For each u e [0, u{], we set

« » : = sup {r3'2|ft(«,r)|}, (2.49)
r^ cû w ro)

ocUι is a continuous function on [0, wj . By (1.19), for each we[0, u{] and
r^χM l(w;r0), we have

-ψ^. (2.50,

In view of (2.50), (2.49), and (1.5), we conclude from the nonlinear evolution
equation that in the region {(w,r)|0^M<wl5 r^χUί(u;ro)},

(2.51)

holds.
Let r1 ^ r 0 and let χUι( rx) denote the characteristic through (uu r j . Integrat-

ing inequality (2.51) along such a characteristic we obtain:

( Z 5 2 )

Now, since χUl{u;r1)^χUί(u0;r1), we have

(XMl(
w; ri))3/2\Huo, XUι(

uol ri))\ ^ d(ul9 u0), (2.53)

where

φ^Moί.^^sup^ {r^2\h(u0,r)\}. (2.54)

Also,

(2.55)
and

^ ί
"o \Xuι\U ' ' θW

2 Zmfwo Γo) df' 4

% * o ) ί ^TΓ^ΐΠTϊΦo) (2-56)
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[see (1.2)]. Multiplying then (2.52) by {χ^u r^))312 and taking into account (2.53)
and (2.56), we deduce the linear integral inequality

αUl(M)= sup {(χ^u r^^h^χ^u rj)]}
r^r0

AM M (Ύ (W)

^d(Ul,u0)+ °C(M0) + 3 M 0 I j-fh^ψdu>- ( 2 5 7 )
Kr0 "o \/.Ul\

U ' rθ))

We conclude that

« » * (φ,,«o) + ̂ 4 Φo))

Therefore [see (1.35)]:
/ Λ Λ4 \

} 6 M l k ( £ ) (2.58)

According to Lemma 1, for all u^O and r ^ r 0 ,

\h{u,r)\^~ (2.59)

holds. This together with (1.41) implies that

C
d{uu u0) ^ 7 ^ ^ y . (2.60)

ro+-{u1-uo)

Given now any δ>0, we first choose u0 large enough so that

We then choose u2 large enough so that

Then by (2.58), in view of (2.60), for all u1 >u2, we have

sup{r3/2 |Λ(M l5r)|}<c).

Therefore,

sup {r3/2|/z(u,r)|}-^0 as M~>OO. (2.61)

Since

/V 1
Γ = - - i J Λdr,r r ί

(2.61) together with the fact that N->0 as w-^oo implies that

sup {r\h(u, r)\ ->0 as w-^oo.
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Finally, the uniform estimate (2.59) together with (2.61) imply (as in the last
paragraph of the proof of Lemma 2) that for each ε > 0,

sup {r2~ε\h(u,r)|}-*0 as M->OO. •

Lemma 5 implies that at each r>2Ml9

M(u)-m(u,r) = 2π S ~(h-h)2dr-+0 as u-»oo.

The proof of Theorem 1 is therefore complete.

Corollary 1. At each r φ 2 M l 3

(1 for r>2M,

for r<2Mx

 ω ^ ° °

pointwise, uniformly in each [0,r ju[r 2 , oo[, r1 <2M1, r2>2Mi. Also,

(l-2M1/r for r>2Mγ

for rί2Ml "S ^ ° ° '

uniformly in r.

Proof Tt follows directly from Lemma 5 that at each r 2 > 2 M l 9

- 4 π j (h-h)2 — ->0
r2 ^ J

as U-+GO.

Therefore, in view of the fact that g is a montonically nondecreasing function of r at
each u, g -• 1 as w ~> oo uniformly in [r2, oo [. Now, Lemma 1 implies that there exists
a constant K such that for all w^O and r ^ 4 M l 5

l - g ( κ , r ) ^ . (2.62)

Therefore in ]2M l 5 oo[, 1 — g(w, ) is bounded by a function of r which belongs to
L1(2M1, oo) and converges point wise to 0 for u-^oo. By the dominated conver-
gence theorem we conclude that

f (ί-g(u,r))dr-+0 as u^oo. (2.63)
2Mi

Since g is expressed as

2M(u) 1 °°
g(u, r) = 1 ^ + - J (1 -g(u, r'))dr',

r r r

and M(u)^Mγ as w-+oo, it follows from (2.63) that in the interval [2M l 5 oo[, g
converges uniformly to \—2MJr as w->oo. In particular, g(u,2MΛ)->{) as w-^oo.
Then, in view of the fact that g is a monotonically nondecreasing function of r at
each M, in the interval [0 ,2MJ g^O uniformly as u-± oo. We shall finally show that
at each rx <2M X g ^ r ^ ^ O as w->oo. For if there is an r1<2M1 such that g(tt,r)
does not tend to 0 as u—>oo, then there is an ε > 0 and a sequence {wn}, un^co for n
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->oo, such that g(un,rj^ε. But then, since g is the mean value function of g, we
must have g(un, 2MX) ^ε(2M ί — r1)/2Mι, which contradicts the fact that g(w, 2Mλ)
->0 as M-»OO. Hence gO^rJ-^O as w->oo for every rί<2Mί and, since g is a
monotonically nondecreasing function of r at each u, g ->0 as w-»oo uniformly in
[ 0 ? r J . Π

According to the above corollary, in the region exterior to the Schwarzschild
sphere r = 2M1 corresponding to the final total mass M l 5 the spacetime metric
tends to the Schwarzschild metric

ds2 = - I 1 - --- 1 - i du2 - 2dudr + r2dΣ2,

as the retarded time u tends to infinity.

III. The Formation of the Event Horizon

In Proposition 1 of [1] it was shown that the part of the limiting hypersurface
u = oo for which r > 2Mγ represents future timelike infinity. In the present section it
will be shown that the part of the limiting hypersurface u= oo for which r<2M1

represents the future event horizon. This will be so as we shall demonstrate that the
timelike lines r = r1 for r1 <2Mι are incomplete, that is, they have finite proper
length. To prove this we shall estimate the rate at which g(u, r{) tends to 0 as u^oo.
The results of this section are contained in:

Theorem 2. In the interval [0,2Mι[_ there is a continuous increasing function uo(r)
such that in the region

{(u, r)|w^M0(r), re[0,

we have

For each r 1 e [ 0 , 2 M 1 [ the timelike lines r = rί are incomplete, and their proper
length T ^ J is a continuous increasing function in [ O ^ M ^ . Also for each
r1 e]0,2M γ\_there is a unique characteristic χrι asymptotic to the liner— rλ asu->co.

Proof For any generalized solution we can show that the quantity

J rh2dr
o

is a continously differentiable function of u and

4 π ^ ( J rh2dr) = Λ ί - ] glog(i/g)dr. (3.1)
ou \o / o

We call (3.1) the "scaling identity" as it arises from the covariance of the nonlinear
evolution equation under the scaling group (u,r)-+(u/a,r/a), α > 0 (see Sect. 4 of
[1]). In fact, the nonlinear evolution equation arises from the variational principle
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corresponding to the action:

(3.2)

where the quantities g, g, and h are to be varied independently. Variation with
respect to g gives the definition of g, variation with respect to g gives the definition
of g and variation with respect to h gives the nonlinear evolution equation. The
action (3.2) is covariant under the scaling group in the sense that g'(u,r)
= g(u/a, r/a\ g'(u, r) = g(u/a, r/a), h\u, r) = h(u/a, r/a\ then S(g\ g', E ύ)
= a2S(g,g,h;u/a). The identity (3.1) arises through Noether's theorem from this
covariance as the identity

dM

du
= -πΞ2

arises from the in variance of S under the group of time translations u
By Corollary 1, at each r + 2M l 5 glog(l/g)^g1log(l/g1) as ι*-κx). But

gil°g(l/gi) = 0, since if /(x): = xlog(l/x), then /(0) = /(l) = 0. We have
g log(l/g) ^e'1, since the maximum value of/ in the interval [0,1] is equal to e~1.
Also, (2.62) implies that there is a constant K' such that at all u and re [4M1? oo[:

Thus g(u, ) log(l/g(w, )) is dominated as an integrable function of r and converges
to 0 pointwise for almost all r as u -• oo. By the dominated convergence theorem we
conclude that

? glog(l/g)dr^0 as w-^oo. (3.3)
o

Therefore there is a uι such that for all u^uu

f
o
f ^
o I

The scaling identity (3.3) then implies that if w^ wl3

M
ό oπ

The proof of Theorem 2 is based on the local form of the scaling identity, that is,
the evolution law of the function

J rh2dr
r

along the characteristics. We have

D(rh2)+X-g~{rh2)\dr+λ~grh2

Λdr.

oo £) I oo

D f f rh2dr I = ί —- (rh2) + - grh2 = ί

= ί D(rh2)-1-r^)rh2\dr. (3.5)
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From the nonlinear evolution equation we obtain

D(rh2)- A ^ rh2 = - ~ gh2 +1-(g-g)(h-h)2-~(g~g)P. (3.6)

Now, since d(rh2)/dr = 2hh — h2, we have:

] gh2dr=] g(h-h)2dr+] gf-(rP)dr=] g(h-h)2dr-rgP~] (g-g)Pdr.

We therefore obtain from (3.6):

J ΪD(rh2)- X- ί^\ rh2] dr=1- rgP+^ J g(h-h)2dr- j g(h-h)2dr. (3.7)

We can express:

Jg(fc-fi)»dr=-^Jrl(l-g)dr=^(l-g)+l{(l-g)A-, (3.8)

and

GO _ 1 °° 5 I θ 2 ? Γ 1 oo

J g(h-h)2dr=— J rg—^dr=— glog(l/g)+— j glog(l/g)dr. (3.9)

In view of (3.5), (3.7), (3.8), and (3.9) we conclude that:

(i g)+ j (1 g)rfr

- ^ jglog(l/g)dr. (3.10)

This is what we call the "local scaling identity."
We shall now show that the local scaling identity together with Corollary 1

imply that in the interval [0,2M1 [, there is a continuous increasing function ux(r)
such that in the region

[_0,2M\Q, (3.11)

we have

(j^^±. (3.12)

indeed, since, according to Corollary 1, g(w, •) tends to 0 as u—•oo pointwise in
[0,2MX\_ and g is a continuous increasing function of r at each u, we can find in
[0,2Mγ[ a continuous increasing function u2(r) such that for each re[0,2Mί[_,
u^u2(r) implies

g(u,r)^ 1/6

and

(glog(l/g)) («,/•) ̂
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Also, by (3.3) there is a positive real number u3 such that u^u3 implies

o o

We set

u^r): = max{u2(r\ u3} .

Then, considering the fact that

r(ί-g)+ μί-g)dr>2M-rg, I M = - J (1 -g)dr I,

(3.10) implies that at each (w,r) such that 0 ^ r < 2 M 1 and w^w^r), (3.12) holds.
We shall now show that there is a constant y such that for all u ̂  0 and r £Ξ 4M l 5

we have
Γ T7- oc ~1

(3.13)

Indeed, since

4 Mi 4Mi 4Mi P 4Mi

J (h — h)2dr= j h2dr— J ~-(rP)dr= J /z2dr

we have by Lemma 1:
4Mi __ 4Mi D2

Therefore:

4Mi J r 1 4Mi _ 1 4Mi

On the other hand, again by Lemma 1,

4Mi oo oo oo oo

j r/;2ί/r= J rh2dr- J r/i2dr^ j r ^ 2 * - J
4 M l r i 4-Λί! r 3

 r

J, 32M 2 '

(3.15)

Consequently, defining

we obtain from (3.14) and (3.15) that
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Then, since g = e~Ar7lA, inequality (3.13) follows.
Given now rί E J O ^ M ^ , let r 0 be the arithmetic mean of r1 and

, (3.17)

and let {u'ή\n = 1,2,...} be an increasing sequence of positive real numbers such that
u'ή -» oo for n-> oo. Consider the sequence of points (u'ή, r j on the line r = rv Let u'n be
the value of u at which the characteristic through (u'ή, Γj) intersects the line r = r0.
Then the sequence {u'n\n = 1,2,...} is increasing. For each n, let us denote by χn the
segment of the characteristic through ( ιC r i ) between that point and the point
(u'n, r0). We shall show that the sequence {u'n} has an upper bound. For, either

Case 1) u^KUγ^o) for all n,

or,

Case 2) U'^U^TQ) from some n onward,

In case 1) the sequence {u'n} has obviously an upper bound. In case 2) for all large
enough n the segment χn is contained in the region defined by (3.11). Therefore
(3.12) holds along χn which implies that, along χn,

oo Ί M

\rh2dr\ {u)>-±{u-u'n). (3.18)

This in turn implies by (3.13) that along χn:

and, a fortiori,

z (3.19)

Let us set

θ(u):= sup giu'^M,). (3.20)
u'e[u, oo[

Then θ is a continuous decreasing function of u and, according to Corollary 1, θ(u)
->0 for w^oo. Since [ g j ^ ^ g ί w ^ M J , we have:

). (3.21)

We conclude that along χn, g is bounded by the geometric mean of the right-hand
sides of (3.21) and (3.19):

χ ( 3 . 2 2 )

According to the definition of u'm we have

1 u'A

Therefore, by (3.22):

1M — r 1 X ;

— ^ -1 = ^ 0 - ^ ^ - eyl2(θ(u'n))112 J ^ ( M ~ M "
λ
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Hence

Since 0(w)->O for u->oo, (3.23) implies that for each rί e]0,2M X [ the sequence {u'n}
has, in case 2), an upper bound ft(rt) which increases with rv b may be chosen to
depend continously on rv

We conclude from the above that for each rί e]0,2M 1 [ ,

u'n^u\ri):= sup {wj,} as n—•GO,

and

M'ίrJ ^ u'0{r J : - max {Ml(r0), ftίrj}. (3.24)

Then the characteristic through (w^rj, r0), extended into the future, is asymptotic
to the line r = rx as u^co. Let χri denote this characteristic. Then the part of χrι to
the future of the line u = wό(^i)n e s in the region (3.11). Therefore for u ̂  wΌίrJ, (3.12)
holds along χri, which implies that:

2 Ί M l

This in turn implies by (3.13):

Consequently, setting

(3.25)

i s a continuous increasing function of rιe\_0,2M1\_, and along χΓl for

χ (3.26)

holds. Therefore, a fortiori,

( ( ) ) / 3 (3.27)

holds for all r^l^lM^ and all u^uo{rγ).
The proper time element along the line r = r1 is ev{u'rι)du, and βv = (gg)1/2 (see

part I). By (3.27), (gg)1/2( , r j eLx(0, oo) for each r ^ C O ^ M ^ . Therefore the
proper length of the lines r = r l5

T(r1)=](ggyi2(u,r1)duSu0(rι) + 32Mι, (3.28)
0

is finite for each rx e [0,2MX[. The fact that the function (gg)1/2 is continuous and
monotone with respect to r implies by the monotone convergence theorem that if
{rn} is an increasing or decreasing sequence in [0,2MX[ such that rn-»r e [0,
then
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Therefore the function T is continuous in [0,2Mj[.
We shall finally demonstrate that for each r1 e ]0,2M 1 [ the characteristic χri

constructed above is the only characteristic asymptotic to the line r = r t as M->OO.
For, let χr and χ" be two characteristics which are both asymptotic to the line r = rί

as w->oo. Their equations are r = χ'(u) and r = χ"(u) respectively, and χ'(M)->rl5 χ"
-^riϊoτu^ co. We can assume that χ'(u) < χ"(u) at some, and therefore all, u. Then if
r o : = (r 1 +2M 1 )/2, there exists a ux such that /'(wi) = r0. Consider the character-
istics through any point r = s on the line u = ux such that χ ' ( w i ) < s < x " ( w i ) Such a
characteristic, the equation of which we denote by r = χUi(u;s), must also be
asymptotic to the line r = rί as w-*oo. According to Sect. 5 of [1] (the convergence
factor) for any u2>u1 we have:

l u 2 Γi

x mean value <jexp —-- J ~(g — g) | (w, χUί(u;s))du |[>. (3.29)

Taking into account (3.27) we obtain that for each 5

"2 Γ i .
. (3.30)

J >Ί 0 ^

Therefore, by (3.29)

Letting u2->oc in (3.31), we obtain χ"(ur) — z'(w1) = 0. Therefore, χ"(w) = χ'(w) for all

The proof of Theorem 2 is now complete. •

We note that as rx ->2M l 5 WQ^J) and T(rx) tend to infinity. The point r = 2M1

on the ideal line u = co represents the point at infinity on the future event horizon.

IV. The Behaviour of the Scalar Field on the Horizon

The following theorem describes the behaviour of the scalar field on the future
event horizon:

Theorem 3. At each r e ] 0 , 2 M t [ ,

pointwise, uniformly in each compact subinterval of the interval ]0,2M t [ . h1 is a
continuously differentiable function on the interval ]0,2M t [ and hx eL2(0,rA) for
each r{ <2MV Also, hγ is the mean value function of hλ.

Proof For each ΓjEJO, 2 M t [ , consider the mass-flux relation (Eq. 5.43 of [2])

along the characteristic χri asymptotic to the line r = rί:

χtχ
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Since m is nonnegative and a monotonically nonincreasing function of u along χri,
m(u,χri(u)) tends to a limit m^r^ as u-^co,

lim m(w,χr iw)):^™^). (4.2)
M-> 00

Then, letting t^-xx) in (4.1), we obtain that

4/2 d G L 2 ( ° > °°)

and

(w)d«= Um(0,χri(0))-mi(ri))' ( 4 3 )

Integrating the evolution law of h (Dh = ξ/2r) along χrι, we obtain

_ "2

Therefore

,1/21 / ίΊ
lr\ \«i L^ JZ r i / \«i x / (4.4)

Now, by (4.3),

while by (3.26) for Mj ^Mo(ri)» w e n a v e

χ i . (4.5)
" 1

Hence

|T(«2, Uu2))-h(Uγ, Xri(Ul))\ S 1 6 Λ ί θ ^ i eMn)/32M1(e-Ul/32M1 _e-u2/32M1)

π r i

->0 for u2>uuu1^oo. (4.6)

We conclude that /Z(M, χri(u)) tends to a limit h^r^) as M-> OO. Letting rj range over a
compact subinterval [a, fe]C]0,2M^ and taking into account the fact that
«o(ri) i s a n increasing function of r l 5 we obtain

We conclude that the convergence is uniform in any compact subinterval of
]0,2M t[, and therefore hί is a continuous function on ]0,2MX[.

By the above on the interval 3 0 , 2 M ! [ there is a continuous function c0 such
that

^ ) (4.7)



642 D. Christodouloυ

for all u ̂  0 and rι e ]0,2Mί [. We now integrate the nonlinear evolution equation
along χri, obtaining

(u')du' du- J I
(«)exp l -

By (3.26) we have:

r1 1
(4.8)

Taking into account (4.8) and (4.7) we conclude that for all u1 2; 0 and r1 e ]0,2M1 [,

IWM^/.ίM.^l^c^f ]), (4.9)

^ i ) ( M o ( r 1 ) + 32M1) . (4.10)

where,

Ci is a continuous function on the interval ]0,2Mj[. Let us now take u2>uί

^M0(
ri) B y (4 9), (4.7), and (4.5), we then have

Φi^r^i))!^ ί

where

{u)du

(4.11)

(4.12)

Since k is a continuous function on ]0,2MX[, (4.11) implies that in any compact
subinterval [α,b] of the interval ]0,2M 1[, |^(w2,Zf 1(w2))~^(wi ?Zr 1(wi))H0 a s

?

w2 > M15 «! -* oo, uniformly in rλ e [α, 6]. Therefore in ]0,2Mί [, Λ(M, Z ^ ^ ) ) - ^ ^ ! ^ ! ) as
u->co.hί is a continuous function on ]0,2M t [ and the convergence is uniform in
compact subintervals.

Integrating (1.13) along χri gives:

dh "1 Γfe-^ (u)du
/.r,

2''
(u)expΓ- J

o

(g-ί

Taking then into account (4.7), (4.8), and (4.9), we obtain that for all uγ 2:0 and
fΊe]0,2M,[,

"5-(«I» &,(«)) (4.13)
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where

643

(0,χri(0))

(4.14)

c\ is a continuous function in the interval ]0,2M 1 [. Then if u2 > u1 ^ wo(r), taking
into account (4.13), (4.9), (4.7), and (4.5), we obtain, in view of (1.13), that:

dh dh
{u)du

(4.15)

where

Co(rjn
(4.16)

Since k' is a continuous function on j O ^ M ^ , (4.15) implies that in ~\
dhldr(u,χrι{ιί))-+h\{r^ as M-»OO, ΛΊ is a continuous function on j O ^ M ^ , and the
convergence is uniform in compact subintervals. It follows easily that h\=dhjdr.

By (3.26) for each rx e ]0 ,2M 1 [ and each u1 ^uo(rλ\ we have

ίg]Xr (w)^g

It follows that the convergence of χrι(u) to rx as w->oo is uniform in any compact
subinterval of ]0,2MX[. This fact together with the above implies that at each
rx E]0,2Mγ[, h(u, rj-^h^ri), h(u, r^-^h^r^, dh/dr(u, r^-^dh^/dr^^) as u^co, and
the convergence is uniform in any compact subinterval of the interval ]0,2MX[.

According to Proposition 3 of [3], for any generalized solution the quantity

f h2(u,r)dr
o

is an absolutely continuous function of u and

l ° °
- f [ ( g -
2 o

dr
-

r

1
—

Here
(4.17)

where, according to Proposition 2 of [3], the limit is defined for almost all u, and we
have / G L 2 ( 0 , W 0 ) , U0 arbitrary. On the other hand, the function

J h2dr
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is continuously differentiable in the complement of the central line, and from the
nonlinear evolution equation we deduce that

1 °° _ dr 1
--$ i(g-g)P + g(h-h)^-- + —(\-g). (4.18)

Therefore, the function

]h2dr
o

is weakly differentiable in the complement of the central line and, by (4.17) and
(4.18),

D (] h2dr) = - 1 } [(g-£)Λ2 + g(ft-Jϊ)2] - - \f2(u)+ l-{g(w,r)-g(«,0)).

Vo J 2o r 2 8π ^

Integrating (4.19) along a characteristic χri, i\ eJO^M^, we obtain:

/ Γ f l ) Λ 2 (« l 9 r)dr+^ if [(g-g)P + g(/i~/2)2]-ώ
0 ^ Q ( χ r i ;« i) r

1 MI 1 MI /r.(0)

+ - J f2(u)du+ ~~ j g(M,0)rf«= j h2(0,r)dr
2 o oπ o o

+ ~J[g] Λ i (M)d«, (4.20)

where

Q(Xri " i ) : = {("5 010 <M < u 1 ; 0 < r < χrι(u)}. (4.21)

Considering (4.8) we conclude from (4.20) that for all u ̂

Xrχ (M)

o

and therefore, a fortiori,

(4.22)
o

Here

Xrt(0) \

C(rι):= j / i 2 ( 0 , r ) d r + - > 0 ( r 1 ) + 32M1). (4.23)
o oπ

Since h(u,r) converges pointwise in ] 0 , r j to h^r) as w->oo, (4.22) implies by
Fatou's lemma that hγ eL2(0,r t), and

j" h\(r)dr^ lim inf f h2(u,r)dr.
0 M-OC o
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We shall finally show that hί is indeed the mean value function of hx. By the
above for each δ and r such that 0<δ<r<2Mu we have on one hand,

r r

j h(u,r')dr'-> J h^r^dr' as w—>oo,
δ δ

and, on the other hand,

r

J h(u, r')dr' = rh(u, r) — δh(μ, δ)-^rhλ{r) — δhλ{δ) as u-^co .
δ

Hence,

rhγ{r) = δh^δ) + J h^dr'. (4.24)

From (4.22) we obtain:

δ iδ \l/2

δ\h(u9δ)\^ f \h(u,r)\dr^δ1/2 j /z2(w,r),
o \o

Therefore

(5|/i'1((5)|^^1/2(C((5))1/2-^O as ^-^0

[since C ^ ) is an increasing function of r j . Consequently letting δ->0 in (4.24), we
obtain [in view of the fact that hγ is integrable on (0, r)]:

1 r

r o

and the proof of Theorem 3 is complete. •

We note that hx φL2{β,2M^).
Letting uγ^co in (4.20), we deduce

Corollary 2. /eL 2(0,oo).

We also deduce

Corollary 3. At each r1e~\Qi2M1[_,

(g/g)(u,r1)->e-2λΛn) as u-+oo,

where

1 r i Γ r i _ drf~\

e-2λ1(r1).= — f e χ p _ 4 π f ίn _ n \2(r'\ J r

r1 b L ί r' J
the convergence is uniform in any compact subinterval of ]0,2MX[. Also,

Proo/ Let r^JO^M^. We have

(tt Γ l ) = - Jf exp Γ - 4 π J (/z-β)2(w,r') ^ Ί dr.r o L r J
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Consider the integral
r* _ dr'

φ,r):=ί(h-h)2(u,r<) — .
r y

By Theorem 3, for each ε > 0 oc(u,rj-xx^r) as u->co uniformly in [ε,r{\, where:

Thus for every ε, δ > 0 there exists a u2(ε, δ) such that u > u2(ε, (5) implies

|α(w, r) — α ^ r ) ! ^ for all re[ε, r t ] .

Given now any η > 0, let us set

Then u>u2(η) implies:

Ψi/2

and, since

ψi/2

0

u>u2(η) implies in fact that:

1
\e2λ(u,rί)_e-2λι(r1)ι

Thus g 2λ(u,n)^^ 2λ!(n) a s ^ ^ Q Q y^g f a ct t ^ t ^he convergence is uniform in any

compact subinterval of ]0,2M t [ follows easily. Now

and by (4.2) m(u,rί)-+mί(rί) as u-^oo. Hence

For each r t e J O ^ M ^ , let us denote:

We finally have

Corollary 4. ^ ^ G L ^ O ^ , ) and g 1 / 2ξ/gr 1 / 2eL2(β(χK l)), α̂c/z r 1 < 2 M 1 .

Proof. The first conclusion is in fact equivalent to the conclusion of Theorem 3 that
hι e L2(0, r j for each rx < 2M l 5 but we shall deduce it here directly from the main
integral identity which yields also the second conclusion. Along the characteristic
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χri the main integral identity reads

χriΓ e2λ{Uur)dr + 2π if ^f- drdu+ - ? g(u,0)du= ^f e2λ{0>r)dr. (4.25)
0 Qίz^ wi) ^ r ^ 0 0

Hence, for all u ̂  0,

Zrj (0)
2λιo r )dr,

and Corollary 2 implies that ^ 2 A ( M ' r ) converges pointwise in jO,^] to e2λl{r) as u

-•oo. We conclude by Fatou's lemma that e 2 A l eL 1 (0,r 1 ) and

Ί e2λl(r)drS lim inf"/ e2λ(u>r)dr.

o """^ o

Letting Wi^oo in (4.25), we deduce also that

We note that as rί-^2Mί, χΓl(0)->oo. The behaviour of the scalar field at the

point at infinity on the horizon needs further investigation.
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