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Abstract. We study the asymptotic behaviour, as the retarded time u tends to
infinity, of the solutions of Einstein’s equations in the spherically symmetric
case with a massless scalar field as the material model. We prove that when the
final Bondi mass M is different from zero, as u— oo, a black hole forms of mass
M, surrounded by vacuum. We find the rate of decay of the metric functions
and the behaviour of the scalar field on the horizon.

0. Introduction

In [1] we began the study of the global initial value problem for Einstein’s
equations R, =870,¢0,¢ in the spherically symmetric case with a massless scalar
field ¢ as the material model. Using a retarded time coordinate r, the spacetime
metric can be put in the form

ds®= —e**du® —2e* **dudr +r?d>?,

where d2? is the metric of the standard 2-sphere. The problem is formulated most
simply in terms of the function h:=0d(r¢)/0r. We define

dr 0 1_0
g.=exp[ f(h h)? ] D-=E—§g5,

. (1—§>, £:=2rDh,
2 g

where, if f is a function of u and r, we denote by f the mean value function of f:

and

flu,r):=

\'|>—\

if(ur
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We showed in [1] that the spherically symmetric Einstein-scalar equations are
then equivalent to the equations

1 _ ~ T,
Dh—g(g—g)(h—h), and Dm——gg,

through the identificatione” " *:=g,e"~’ :=gand ¢ : = h. The function m(u, r) is the
mass which at retarded time u is enclosed within the sphere of radius » and
M(u):= lim m(u,r)is the total (Bondi) mass at retarded time u. The integral curves

of D, which we call characteristics, are the incoming light rays. The initial data of
the problem is the specification of the function 4 at u=0. In [1] we proved that if
the initial data is sufficiently small there exists a global classical solution which
disperses in the infinite future and the final Bondi Mass M | vanishes (Theorem 3 of
[1]). In [2] we studied the problem in the large. We introduced there the concept of
a generalized solution and we proved, without any restriction on the size of the
initial data, the global existence of generalized solutions (Theorem 1 of [2]). In [3]
we studied the regularity properties of generalized solutions and we proved a
uniqueness theorem which shows that a generalized solution is an extension of a
classical solution (Theorem 1 of [3]).

In the present paper we study the asymptotic behaviour of the generalized
solutions as the retarted time « tends to infinity. In the generic case for large initial
data the final Bondi mass M, is different from zero. When M, =0, as for the small
solutions described by Theorem 3 of [1], the scalar field disperses and the
spacctime tends to the Minkowski spacetime as u—oo. In the present paper we
show that when M, £0, as u— o0, a black hole forms of mass M, surrounded by
vacuum.

We shall assume, as in the previous papers, that the initial data which is given at
u =0, satisfies the falloff conditions

h(0,r)=0("2) and 0h/or(0,r)=0(""% as r—oc, h:=0(rd)/or.

These conditions are not necessary. All the results of the present paper can be
derived by the same methods under the weaker falloff conditions

h0,7)=0("""% and 0h/or(0,r)=0(r"27%,6>0 as r—oow. (%)

However, assuming only that the initial Bondi mass M, is finite is not sufficient to
derive the results. The conditions (*) are needed to ensure that the function
N:= lim (r¢) is well defined.

lmdiee]

The plan of the present paper is the following: In Sect. 1 we prove that in the
region exterior to the Schwarzschild sphere »=2M corresponding to the final
Bondi mass M ,, the solutions tend to stationarity in the sense that dh/du tends to
zero as u tends to infinity. The method of this section is not particular to the
problem at hand and should apply also to other problems involving nonlinear
evolution equations of the hyperbolic type (describing radiating physical systems).
In Sect. 2 we prove that the mass remaining outside the sphere r=2M, tends to
zero as u tends to infinity. The main part of this proof is the demonstration of the
fact that N—0 as u— co. In Sect. 3 we prove that an event horizon forms in the limit
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u— o0; the event horizon is the part of the limiting hypersurface u= co interior to
the sphere r=2M . We derive the rate of decay of the metric functions and the
asymptotic behaviour of the incoming light rays. The method of this section is
based on an identity related to the scaling group covariance of the problem. In
Sect. 4 we study the behaviour of the scalar field on the horizon and we derive some
additional results about the global properties of the solutions.

I. Asymptotic Stationarity Outside the Schwarzschild Radius
The aim of this and the next section is the proof of:
Theorem 1. For r>2M,, M(u)—m(u,7)—0 as u— co.

In this section we shall show that at cach r>2M, 0h/ou—0 as u—co. We start
by deriving uniform bounds for h, h and 0h/dr in the region r>r,, where r is a
constant greater than 2M,. Let us recall the function N defined in Sect. 2 of [3]:

N:= { hdr.

o= 8

Lemma 1. For eachry>2M, there are constants C and C' (independent of u) such
that

=C.

oh
5 (ua r)

sup r’|h(u,r)| £C, and supr?

rzro rZro

Also, N is uniformly bounded: |N| < B.

Proof. We first note that in the region r=r,, g has a positive lower bound (see
Proposition 1 of [1]): according to (2.4) of [3],

2M 1@
g=1-""+— | (1—gydr, (1.1)
r r oy
therefore
g r)z1- MW

Since M(u) is a monotonically nonincreasing function of u tending to M, as u— oo,
and we have r,>2M , there exists a u,; such that for all u=u,,

1/r
M(U)§§ <5° +M1>,

1 2
@u&iiG—ZM» >0.

Fo

and thereforc

On the other hand at each r> 0, g(u, r), being a positive continuous function of u,
has a positive minimum in the compact interval [0,u,]. Hence g(u,r,) has a
positive infimum k, and therefore for all r=r, and all u=0 we have

gu,r)zk>0. (1.2)
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This implies that in any region r=r, r,>2M ,, the slope-du/dr of the character-
istics has an upper bound, a fact which will be used repeatedly in the sequel.
Let us recall the fact that for any function fe C*']0, oo[ such that f and r of /or
belong to L*0, o) and
Jim 1) =

< r (f>

Applying this to the function h at each u, we obtain, in view of the positive lower
bound for g, that for all r=zr,>2M,,

it holds

s 1=g M
r< — =2 — <
{ drs [ g(h hydrs 5 .

H/\

Therefore, in the region r=r,,

_ MO 1/2 1
< C—s 1.
UE (m) e (13)

Integration of the nonlinear evolution equation along the characteristics y

gives: )
R I e ] R
0 Foy

g—28) ‘(&2
“f[ ] oo [ aaf.as

where y or y,, (-;r,) denotes the characteristic through r=r, at u=u;. Since

g—g_m <M9 1
o pE=ET (1.5)

taking r, = r,>2M, and changing the variable integration along y from u to r, we
can estimate:
~1 (g~g‘)] w du
2l dusMy [ ———
! { =M G

0y Osr) 111 dr 2M0 Zuy (0571) 2M0 1
j < — < R
x

=2M, (1.6)

Tk norr T koo

using the upper bound 2/k for the slope of the characteristics in the region
r=ry>2M . Taking into account (1.3) we can also estimate:

€—2) Mg? w du
= P94 et | G
2 1/2 39 K@ [ dr INY2 S N\32 1, (051D gy
| = /2 i B el o -
<nk) L 2 (e
1 1/2 MO 3/2 1
() (%) 7

ri

IIA
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Setting then
do:= sup {(rlho(r)]} (1.8)

we obtain from (1.4), in view of (1.6) and (1.7), that for all u, =0 and all r, =7,

ro>2My,
N 112 (Mo\*2 1
e a3 () ()

holds. Therefore, for each r,>2M ; there exists a constant C, such that forallu=0
and r=r,,

h(u, 1) < Co/r™2. (1.9)
Since
N=roh(ro)+ | hdr,
and by (1.3),

h(ro)l < (Mo/2mkro)' /2,
(1.9) implies that |[N|< B, where

Moo |2 | 2C
0

2nk

Since tor r=ry,

3‘1

() ="2 hir, + jhdr
r Fr

(1.9) also implies that in the region r=r,
|h| < BJr. (1.10)

Using (1.10) instead of (1.13) we now estimate

uy (g_g) du 2M B % (0sr1) Jp MOB 1
= | <M,B
g [ 2r I I d 0 j (Xul(u "1)) k rjl r3 = k 71
i (1.11)
We then obtain from (1.4) that for all u; =20 and all r, 2r:
r 1 MyB 1
h(uy, ry)| < e2Molkrs <d0 = n l: E)

holds. Therefore, for each r,>2M, there exists a constant C such that for all u=0
and r=r,,

h(u, 1) < C/r*. (1.12)

The evolution law of dh/dr, derived from the nonlinear evolution equation, is
given by:

oh\ (g—g) oh L
D<5;>=(grg)5+;r—z(—3(g—g)+4ng(h—h)2)(h—h). (1.13)
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Integrating this along the characteristics we obtain

oh 43 (g-g) chy .
67" (ub’l)_exp [(j} l:/ r Zdug 0; (lul(oarl))

+ 1 ate g amen—0-n| o]~ § 2] afaf.

y (1.5), (1.10), and (].12), in the region r=r,, (1.14)

L
,,,,, |—3(g 3)+dng(h—h)?| |h—h < a

2n [ C 2 )
o (€ )] (C va)
Fo \Fo 1 \Fo

Taking r, =1, we can then estimatc:

holds, where

| oh - 3te—g+antn - i i | du

X
uy L O dy 2L 1
<2 - < 5. 1.15
SLY Lo Ea (-
Defining
Ch
d, = sup {;‘4 Mo (r)}}, (1.16)
120 or
we obtain from (1.14), in view of (1.6) and (1.15), that for all u; =0 and r, =1,
ro>2M,,
oh T 2L 1
v < pAMokry [ gt e
or (1)) € ( ' rf+3k ;f)

holds. Therefore, for each ¥, >2M , there exists a constant C' such that forall u =0
and r=r,,

[0h/or(u, = C'r* . O
Let us recall the total radiative amplitude = defined in Sect. 2 of [3]:
o dr
m | -

et
Qe

oQ
—_
=

!

=
=

The function Z(u) is defined for almost all values of u and we have Z e L*(0, o0). Let
us set

n(up):= | Z*u)du. (1.17)

R w

)

Then n(uy)—0 as u,— oo. The quantity nn(u,) represents the total energy radiated
after the retarded time uo. The proof of asymptotic stationarity outside the final
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Schwarzschild radius uses the fact that the total energy radiated after the retarded
time u, tends to zero as u, tends to infinity.

Lemma 2. For each ry>2M, and £¢>0,

sup 13
rZro

Proof. We consider the evolution law of dh/cu along the characteristics:

Ohy_1dgon 1 (0g 08 oh oh
D<3u>_23u0r+ <a >(h W+ ( g)<au BD. (1.18)

This law is obtained by differentiating the nonlinear evolution equation with
respect to u. The idea now is to express the functions 0h/du, dg/0u and 0g/0u, which
appear in the right-hand side of (1.18), at cach point (u,r) in terms of the total
radiative amplitude = and the function 0h/du at that value of u from r to co. Since

_|on
%(”77’)

}—»0 as u—oo.

_ N ©
11—7*; ghdr (1.19)
and, according to (2.10) of [3],
ON 1 _
PREE (1.20)
we have
oh  E 1% 0h
Since
o _dr 0A o Oh  oh dr
- et Yt oot
A= !(h h)* —, o Zi(h h)<6u ) (1.22)
and since g=e~ 4™, 0g/0u= —4ng 0A/ou. Also, according to (2.4) of [3],
2M 1=
g=1*T+;f(1—g)dr, (1.23)
and according to (2.12) of [3],
oM .
El* = —TTZ". (124)
Therefore
s e
og _2n= __j@gd (1.25)

ou

Let now yx,,(-;7o) denote the characteristic through r=r, at u=u,, where r is
fixed and greater than 2M,. For each ue[0,u,] we set:

ch (u,r) } (1.26)

ou

B, (w):= sup {rz

P Z Yuy (4370)
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where f3,, is a continuous function on [0,u,]. By (1.21), for each ue[0,u,] and
2 yu,(u; 7o), we have

oh |E(u)l 1
@(“) r) é ; ‘E '
[d( ) 1 [E )] 5,‘1(“)
=S T bt Sy = 4 el (1.27)

By Lemma 1, in the region r=r, |h—h| < C/r holds. Here and in the following C
shall denote various positive constants depending only on r,. Considering the
above we obtain from (1.22) that for ue[0,u;] and r=y, (u;r),

04 @ — |0h  Oh| dr
) < A i
‘614 () =2 [ h=hlz, aJ r
© L (IEW@ | 2B,,w) IE(u)I 4B, ()
< 1 — 1
:2£C<2r’3 + ré dr 2r? + 3 )
and therefore
g E) ﬁu (u)
_ = < 1
E» (u, r)\ =C < (1.28)
It then follows, in view of (1.25), that for each ue[0,u,] and r=y, (u;r,),
g E2(u) IE@) | B,
el <=\ o[ = 1
W (u,r)| £2n . +C p + - (1.29)

Taking into account (1.27), (1.28), and (1.29) as well as Lemma 1 and (1.5), we
conclude, in view of (1.18), that in the region {(u,r)0=<u=<u,, r=y, (u;r,)},

1 <gz> <c<ﬁ“1 +l I+ r3> (1.30)

holds, where C is a constant depending on r, but not on u;.
Let x,(-;r,) denote the characteristic through r=r, at u=u,, where r, >r,.
Integrating inequality (1.30) along such a characteristic we obtain:

(u T (W371))| =

Oh
l U (uO’ Xul(u07 rl))

+C f(xul( : 1))4d +Cf (Xul( 1))3 ) . (1.31)

We shall multiply inequality (1.31) by (¢, (u; 7)), and we shall bound the right side
by a quantity which is independent of r,. Since y, (u;r,) <y, (1o;7,), We have

oh
(L (w5 71))? ,5; (Uos Yy (ug3 )| Sluy,up), (1.32)
where
, |oh
l(uy,ug)= sup re = (ug, )| . (1.33)
r 2 Xu, (403 o) ou
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Also,

. 2 p ﬁu1(u/) ’ " ﬂul(u/) ’ “ ﬁul(u/) ’
Ul L G = Gtarsr? = & G Y

Using the Schwarz inequality we estimate:

o2 b 1EW) v lZW)
(s (571) uj;) (xul(u’;rl))3 uJ;) Lo, (U5 rl)du
w B L (g /< du >”2
= i) é(i“(”)d”) L Girr)
Now,
uy du’ 2 xu;(uosro) Jp’ 2
St Sk L iy (133
Hence (see (1.17)):
tuluir)? § ﬁ("L» du = Clnug) ™ (1.36)
We also estimate
RCIE L a L R Way S C RO R ST )
FasltE T i) uoxul(u,ro) rp O '

Considering (1.33), (1.34), (1.36), and (1.37), we conclude from (1.31) that for all
uel0,u]:

<luyq, 1)+ C(' (o) +n(ug)) + C } Wﬁ(%du/. (1.38)

We have thus derived a linear integral inequality for f§, . We conclude that

put= sup Lz i s

r12ro

A
B () Z [y, uo) + Cn' P (ug) + n(ug))] exp [C ) mjl

Therefore, in view of (1.35),

sup {r?
rzro

where C is a constant depending on r, but independent of u; and u,,.
Lemma 1 implies through the nonlinear evolution equation that there exists a

constant C” depending only on r, such that for all u=0 and r2r,,

oh o

ou P

Oh
% (ul’r)

} = B (1) = CUuy, o)+ *(uo) + (1)), (1.39)

(1) < (1.40)
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The upper bound of the slope of the characteristics in the region r 2 r, implies that
Xu,(U;ro)é"o"'g(W—uo)- (1.41)
As a consequence of (1.40) and (1.41) [see (1.33)]:
luyg, up) = *L— (1.42)

Fot ) (g —uo)

Given now any 6 >0, we first choose u, large enough so that

n'*(1o) +n(uo) <6/2C.

We then choose u, large enough so that

k
ro+ 3 (Uy—up) = —=—.

Then by (1.39), in view of (1.42), for all u, >u, we have:

oh .
rsgg {rz a—u(u,r)} <.
Therefore
, |0k
sup §r %(u,r) -0 as u—-oo. (1.43)

Finally, let ¢ be any positive real number. By (1.40), for r, =r,,
A (us r)

C//
rsgg {r*‘ % }< ) (1.44)

"
Given any 6 >0, we first choose r; such that

i
ry>(C"/6)eE. (1.45)

Then, according to (1.43), we can choose u; such that for all u>u, we have

sup <r?
rZro

As a consequence of (1.46) together with (1.44) and (1.45), for all u>u,,

o (u, 7)

ou

b
} < (1.46)

1

holds. We conclude that

oh
3—e
sup {I 3

A (ua r)
u

}——)0 as u—oc. [J



Mathematical Theory of Gravitational Collapse 623

II. Asymptotic Tendency to Vacuum Qutside the Schwarzschild Radius

The proof of Theorem 1 relies on establishing first that N(u)—0 as u— co0. The proof
of this, in turn, uses the following lemma:

Lemma 3. If; at a certain value of u, N(u)=*0, and for some r, >0,

sup §r>/?
r=ry

then at that value of u,

oh
%ww}gaMWAR

n N*(u) 1
2 M) r,’

(’1)_

Proof. The nonlinear evolution equation can be written in the form
~ Oh

a ., _
5, (rg(h—h)=2r . 2.1)

Since at each u rg(h—h)— — N as r— oo, integrating (2.1) at the given value of u
from r to oo, we obtain

0

r§(h—ﬁ)+N=-2]r%dr. 2.2)

Since N(u)+0, we can define

flur):= N( K jr h(u rdr' . (2.3)

For rZr1 we have

© ,|0h o dr 2 h
i (u,¥)dr'| < rsllg { :9;(”’ r)} { ETE = riﬁ rSl;g {r5/2 u(u,r)},
and therefore, by the assumption of the lemma,
j ¥ —(u r)dr| <4IN()|. (2.9
It then follows from (2.3) that
inf f(u,r)=%. (2.5)

rzry

Thus at the given value of u we can define in the interval [r,, o[ the function 6:
g:= =) (2.6)
According to (2.2) and (2.3),

o=_N 2.7



624 D. Christodoulou

Differentiating this equation with respect to r we obtain:

0 _Ng _ 84
or r*g> N
On the other hand,
T = g
Consequently,
00 1 0g

o " anf?N o @8

Since 00 for r—»oc, integrating (2.8) from r to oo, we obtain that in the interval
[7'1, OO[’

0= — ‘; j r 57 di‘ . (29)
Taking into account (2.5) and the fact that

r

<8
D
SUPS
.
=
IIA
Ot &
~
D
SHIN
=
Il
O &
—
=
|
oQ
o
=
~
Il
<

we conclude from (2.9) that in the interval [, co[:

2 M
]Glégmw

Equation (2.7) then implies that for all r=r,

We are now ready to demonstrate
Lemma 4. N(u)—0 as u— oo.

Proof. The proof will be by contradiction. Let us suppose that N does not tend to
zero as u tends to infinity. Then there is an ¢ >0 and a sequence {u,,}, u,— oo for n
— 00, such that [N(u,)| = 2¢. In view of the fact that dN/du=(1/2)Z, for each n and
each u=u,, we then have

1w 1 o 172
IN(w)| = 2¢— 5 P12 du =2e— 3 (u—u,)'? <§ Ez(u’)du’> .
Thus if we define u, by
u;hun:4gz/’/](un) (210)
[see (1.17)] we have a sequence of intervals [u,,u,] of increasing length,

u,—u,—oo for n-oow, (2.11)
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and in each interval
inf |N(u)|=¢. (2.12)

u€lun, un]

We now define for each i, i=0,1,2,..., a sequence of bands 4; ,,

Ai = [, uy] X [, [ (2.13)
The r; are defined recursively by:
Fipg=re M (2.14)

starting from some r,>2M ;. We may, in fact, choose r, so that
2ry+ry)=2M,. (2.15)

Then, starting from u,_,:=u,, the u; , are defined recursively by requiring that for
each n the points (4;4 ,,7;+1) and (u; ,, ;) lic on the same characteristic curve:

Xui+1,,.(ui,n;ri+1):ri- (2.16)

We shall show in the following that, for each i, u, —u; ,— o0 for n— co.
For any given i, let P; be the following proposition:
1) u,—u; ,— oo for n—co.
2) There are constants: B,, C;, C}, such that for all n large enough

oh
——| > <!
8r'} =G

sup (rI} <B,  sup (P} <C,,  sup {ﬂ
Ain Ain

Ain

3) sup {rs/z —2—2,} -0 for n—oo.

Ai,n
Since r,>2M, according to Lemma 1, for all u,
sup {rlh(u,r)|} <B,

rZro

sup {r*lh(u,n|} =C,

r= 2ro
l<c.

sup {r3
holds, and by Lemma 2,
} -0 as u—0.

sup {rs/z
r2rg
1t follows, in view of (2.11), that the proposition P, is true. We shall now
demonstrate that the proposition P; implies the proposition P, , ;. The proposition
P; would then be true, by induction, for each i.
Let proposition P; hold for some i. Then by part 3) there exists a N; such that for
alln=N;:

or
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As we can choose N, to satisfy also
Mluy)<2M, .

Lemma 3 implies that for all n=N,:
2

. e
inf uwr
uefu;, n, unl g( ’ 1)_ 4M1

i —_—

2.17)

>

13

As a consequence of the fact that dg/or <1/r, we have

ﬂmn+aggmxo—MgC¥L>. 218

i+1
Hence (2.14) together with (2.17), imply that for n= N,

ne? 1

i o . > c— =K. .
ue[ull-l:lnt:u;,] g(“a Fit 1): 8M1 r kz (2 19)

By (2.19) in the regions [u; ,,u,]x[r;,, o[ the slope — du/dr of the
characteristics has for n= N, an upper bound 2/k; independent of n. Hence for all
n=N,

Uis 1 n—Upn S E(ri—riﬁ-l)

1

[see (2.16)]. It follows that part 1) of proposition P;,; holds.

From (2.19) we deduce in each [u; ,, u,] % [r; 1, o[, n = N, (see proof of Lemma
1):
1
ki

M M1
— < < -—
(h—Rdr< —— ke S i

and by part 2) of proposition P, there exists a constant B; such that for all n large

rh*< [ (h—h)?dr<

<8
~e— 8
0Q |09

— _B;. .
enough, |h| < 7’ in [u; ,, u,] x [r;, co[. We conclude that there exists a constant B; .

such that for all n large enough:

sup UL (2.20)
[ui, s tn] X [ro+ 1, OQ[
Consider the regions
A;+1n {(u r Ir——/(u +1n(u’r1+1)7uznsu<uz+ln}UAH—ln (221)
We evidently have:
Aipy wCAiy n Clug up] X 14y, 0L (2.22)

Forevery (u,r')e A, ,, the segment of the characteristic y through (v, ') between
u; , and u' is contained in Aj,, ,:

{ o (s Nue [u; w1} CALLy (2.23)

Integrating the nonlinear evolution equation along y gives:

h(u', F')=exp L}n [(EE;QJ ] {h(ul w (Ui 3 7'))
“5 [(g“g R epr:— i [(g g)} du}du}, (2.24)
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where y or y,(- ;1) denotes the characteristic through («',7'). Taking into account
the fact that for u=u; ,, n large enough,

(g—g)sﬂgzj\’h
r T 2T oy

we obtain, in view of (2.19),

“ (g—g’)} uw du Xur (Wi, 1) [1:' dr
=21 dus2M — = 4M Sl e
f[ [ PEMT Gy =M 1 gy

AM, retin) dr _4M 1

N

<— = 2.2
- ki r 7‘2 - ki r/ ’ ( 5)
and, in view of (2.20),
(-8 du
f [ |h| | du<2M B, j
Ui,n 2 X ! o1 Ui,n (Xu (u r))3
4M Bt+1 Z“(u'"r)dr 2M1Bi+1 1
< LTl il it bt 5.0 B
=T I s ol (2.26)
Since for all (u',r)e A;+q
2ty 3 7) 214, (2.27)
part 2) of proposition P; implies that
C, C;
|h(ui,m Xu’(ui,n; r/)) = : < . (2.28)

I— (Xu’(ui,n; r/))l = r_/Z_

(if nis large enough). In view of (2.25), (2.26), and (2.28) we conclude from (2.24) that
for all n large enough and all (w,r)e A;, ,:

., o 2M 1
lh(U,”)l§e4M1/k' ( i k E i+1>r_/2—'

i

Therefore, there exists a constant C;, , such that for all n large enough
sup (P2} <Ciy . (2.29)

¢
i+1,n

Taking again (v,r)eA;., and integrating (1.13) along the characteristic
2. ;7"), we obtain

Oh w -z 0
e A s K R
+ uj" |:212 —3(g—g)+4ng(h—h)? (h—l?)] exp [— “:j‘n l:(i}g)] du] du} .

(2.30)
By (2.29) and (2.20) in A}, , for all n large enough we have

3(g—g)+4ng(h—h)?

4

i
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2
L,.+1:=2[3M1+ ” <@+Bi>]<9—*—1+3i>.
Fivt \Ti+1 Pit1

Therefore, considering (2.23), we can estimate

where

?[gjr—ug—@+¢gw—mﬂm—deu

Ui,n X
uw du 2L, 2whonsr) dy o 2L 1
<L, <Z*l — <AL 2.31
st Gwrr =, L w2 e B
considering (2.27), part 2) of proposition P; implies that:
Oh C; f
— (o (u )< -t < T .
ar (ul‘n’ Ku (ul,n’ r )) = (Xu'(ui’n; r/))3 = r/3 (2 32)

(if nislarge enough). In view of (2.25), (2.31), and (2.32), we conclude from (2.30) that

for all n large enough and all (v, r)e 4}, ,:

(o 2L\
r =¢ Cit 5 ) s

Therefore there exists a constant C;, ; such that for all n large enough:

sup <{r3 oh
Al - F,, 8r

Considering (2.22), (2.20) together with (2.29) and (2.33) imply that part 2) of
proposition P;, ; holds.

Now, for each u' € [u; 4 ¢, ] let y,(-;r;4 ;) denote the characteristics through
(u',r;). Then for every ue [u; ,, u'] the half-line {(u,r)|r = y,(u;7;.,)} is contained in
Ai ., For each uelu; ,,u’] we set:

@, r)

)
[ECin (233)

A (ua 7")

ou

P2 Uy v )

pulu):=  sup {rz } (2.34)

Then for each uelu; ,,u'] and r=y,(u;r;. ) we have (see proof of Lemma 2):

=), Al (2.35)
2r r

h
M )
ou

=

and using (2.20) and (2.29) we can deduce, as in the proof of Lemma 2, that

0g IZw) | B
'% (u,r)| £C <—/P— + 3 ), (2.36)
and
% o, r)’ < E e <—'E G ﬂ—@) (2.37)
ou r r
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Here and in the following, C shall denote various positive constants depending on i
but independent of n. Taking into account (2.35), (2.36), and (2.37) together with
(2.20), (2.29), and (2.33), we conclude from (1.18) that in each region

{(u r)lu, n—u<u/argXu’(u;ri+ 1)}

oh B, |5 =
- < i - R
’D ( 6u>’ =c<r4 ot (2.38)

r

(n large enoughj,

holds.
Let x,(-;*') denote the characteristic through (', #’), where ¥’ =, ;. Integrat-

ing inequality (2.38) along such a characteristic we obtam

oh ]
a; (ui,na Xu’(ui,na r ))l

|
“  B.(v)dv “ |Z(v)|+E(v)

cj P IE@I+E7) ) ,
" j (s ) Cj (05 7)) v 239)

SinCC Xu'(u; V/)é Xu'(ui,n; r/) and Xu(ui n; ¥ )2 ru we haVe

oh
e (u:r))| <
au(u,xu(u,r)) <

o |OR
(Xu’(u; r ) (ul n Xu’ (ul b )) 1 ns (240)
where
oh
= 21— (u; . .
bni=SUP {r oy Yo r)} (2.41)

Also [see (1.34), (1.36), (1.37)]:

(a1 7))? I Pul?) Sf Pul®) (2.42)

uin (V3 r))4 B Usrz+1))2

n (L
wr § L s (§ sroa)’ (J )”2
(Xu (u’r)) uzj:n (Xu’(vgr)) - (U)dv Ui,n (Xu v; r1+ 1))2

1/2
<((u; ,)'"? <m—1> ) (2.43)
and
o b EW) 1
(Xuu37)) u,jn o) dvs — P (U, ) - (2.44)

Multiplying then inequality (2.39) by (y,(u;r'))* and taking into account (2.40),
(2.42), (2.43), and (2.44), we deduce the linear integral inequality

}

St CO o )+ +C § PO, as

oh ,
% (U, Xu’(u> r ))

fAu)=sup {()c,u(tt;r’))2

rzriv
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which holds for all n large enough and for all w' e [u;,; ,, u,] and ue[u; ,,u']. We
conclude that:

u dv
L+ Cm A ) +n(u; )] ex [C WJ
B St COM ) 108 M exp| € iy
Therefore, considering that
w dv 2
,f . 2 = k s
wron (05734 1)) i+ 1

we obtain that for all u'e[u;,, , u,], n large enough,

sup <r?
rzr.

Now, since u; ,— o0 for n— o0, we have n(u; ,)—0 for n—co. Also, by part 3) of
proposition P, [; ,—0 for n—oo. It thus follows from (2.46) that

sup {rz
Avsan

which together with part 3) of proposition P; implies part 3) of proposition P;, ;.
We conclude that proposition P; implies proposition P;,;, and therefore
proposition P; is true for each i.

It then follows from Lemma 3 [see (2.17)] that for each i and n=N;:

2

O )

ou

} =B ) S Cli, +1' () +1(u;. ). (2.46)

%‘} -0 for n—-ow0,
ou

inf g=

1
C— 247
Ain aM, 1 247)

Now since [see (2.14)],

r< (e —ne?/8M 1ro)i o
bl

1=

there is a first [ such that

ne?

. <
"=4M1‘

Then according to (2.47)in 4, , for each n= N, we must have g=1: a contradiction.
The contradiction is avoided only if N—0 as u—»o0. [
Lemma S. For each ry>2M |,

sup {rlh(u,r)[}-0 as u—co,

and for each ¢>0,

sup {r2 *|h(u,r)|} >0 as u—0.

rzro

Proof. Let us set
e(ug):= sup |N(u). (2.48)

u=ug
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According to Lemma 4, &(uy) =0 as uy— 0. Let x, (- ;7o) denote the characteristic
through (u,, r,), where r is fixed and greater than 2M ;. For each ue [0, u, ], we set

a, (w):=sup {r*lh(ur)}, (2.49)

¥ 2 xu, (U370)
o, 1s a continuous function on [0,u,]. By (1.19), for each ue[0,u,;] and

rZx,,(u;ry), we have

IN ()] IN ( u)l dr/

_ 1
|h(u,")|§T+; £| (w,r)dr's —— —I (U 37
IN(w)| | 2o, (u)
- L, 2 (2.50)

In view of (2.50), (2.49), and (1.5), we conclude from the nonlinear evolution
equation that in the region {(u, |0 <u<u,, r =y, (u;ry)},

N
|Dh|§M0< T | '> (2.51)

holds.
Let r, 2rq and let y,,(-;r;) denote the characteristic through (u, r,). Integrat-
ing inequality (2.51) along such a characteristic we obtain:

(s s, (15 7)) = [P, 2, (U037 1))

ooy, () v IN@W)
IM L ————du’. .
Mo L Gty WMo LG g e @52
Now, since y,,(u;r;) < 1, (1o 1), we have
(i, (w3 7)) 2 Ao, o, (03 7)) S (14, uo) (2.53)
where
d(uy, ug):= sup ){r3/2|h(u0,r)[}. (2.54)
rZ xu, (uo;ro
Also,
sy 3/2 &y, (“/) w < K “ul(”,) w < " O‘ull(“/)
lisr)? J o S ] s | S
and (2.55)
“ IN@W)du _ % IN@W)dw
W rp)? < ,
Gt ) = s )7
“  IN@)|du du’
< el e e
Gt rg 5900 § i
2 Xug(uosro)  dy’ 4
éE &(ug / V’T/zékr—é/zg(%) (2.56)
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[see (1.2)]. Multiplying then (2.52) by (x,,(u;r,))** and taking into account (2.53)
and (2.56), we deduce the linear integral inequality

O(ul(u)z SBp {(Xul(u;rl))z)/zlh(“ﬁ Xul(u;rl))]}

4M, ue, (W)
< £ IM, | —2———du'. 2.
_d(“1»u0)+ kl‘(l)/z ‘(uo)'f' 0 i (Zul(u/;ro))z du ( 57)
We conclude that
4M, u du’
< s & My | ————5 |-
Hult)= (d(“““‘)” ki “”‘))) e"p[ i ro))z}
Therefore [sec (1.35)]:

sup (32 |h(uy, )|} = e, (uy) S Mo (d(ul, Uo) + ﬂ\{l/‘g 8(“0)) - (239

r2ro kr(l)
According to Lemma 1, for all u=0 and r=r,,

h(u,r)| < Cz (2.59)

r
holds. This together with (1.41) implies that
C

d(ug,ug) < — AR (2.60)
<"o + 3 (uy— ”o))
Given now any 0> 0, we first choose u, large enough so that
&(ug) <0+ 87M; e~ OMolkro
We then choose u, large enough so that
1 ol 1 iz
Fot+ j(u2 —ug)= 5 42t 2Molkro
Then by (2.58), in view of (2.60), for all u, >u,, we have
sup {2 [h(u,, )|} <o.
Therefore,
sup {r¥2[hu, )[} -0 as u-—oo. (2.61)
Since
_ N 1
]’lZ 7‘* — '— j hdr,

(2.61) together with the fact that N—0 as u—oo implies that

sup {rlh(u, 1) >0 as u—o0.

r=ro
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Finally, the uniform estimate (2.59) together with (2.61) imply (as in the last
paragraph of the proof of Lemma 2) that for each ¢>0,

sup{r2 ‘Ih(u, 1))} >0 as u—oo. [

rro

Lemma 5 implies that at each r>2M |,

M(u)—m(u,r)=27ro§O (h—h)*dr—-0 as u—oo.

OQWQI

The proof of Theorem 1 is therefore complete.
Corollary 1. At each r+2M,,

1 for r>2M,
8781
0 for r<2M,
pointwise, uniformly in each [0,r,JU[r,, [, 1y <2M,, r,>2M,. Also,

_ 1-2M,/r for r>2M,
- =
878117 Jor ¥<2M,

as u—>aoo

as u—oo,

uniformly in r.

Proof. 1t follows directly from Lemma 5 that at each r,>2M,,

1—g(u,r2)=1—expl: [(h h)? d]—»O as u—oo.

ra

Therefore, in view of the fact that g is a montonically nondecreasing function of r at
each u, g—1 as u— oo uniformlyin [r,, co[. Now, Lemma 1 implies that there exists
a constant K such that for all u=0 and r=4M,,

K
1—gu,nN= a2 (2.62)
Therefore in ]J2M;, o[, 1 —g(u, - ) is bounded by a function of r which belongs to
L'(2M ,, c0) and converges pointwise to 0 for u—oo. By the dominated conver-
gence theorem we conclude that
{ (1—g(u,r)dr—-0 as u—oo. (2.63)
2M,
Since g is expressed as

gu,r)=1—

2O T (g,

and M(u)—M, as u— 0, it follows from (2.63) that in the interval [2M, o[, &
converges uniformly to 1 —2M,/r as u— oo. In particular, g(u, 2M,)—0 as u— oo.
Then, in view of the fact that g is a monotonically nondecreasing function of r at
each u, in the interval [0,2M ;] §—0 uniformly as u— oo. We shall finally show that
at each ry <2M g(u,r,)—0 as u—oo. For if there is an r; <2M, such that g(u,r)
does not tend to 0 as u— oo, then there is an ¢ >0 and a sequence {u, }, u,— oo for n
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— o0, such that g(u,,r,)=e¢. But then, since g is the mean value function of g, we
must have g(u,,2M,)=¢&(2M, —r,)/2M ,, which contradicts the fact that g(u,2M )
—0 as u—o0. Hence g(u,r,)—0 as u—oo for every r; <2M, and, since g is a
monotonically nondecreasing function of r at each u, g -0 as u— co uniformly in

[O’rl:l' D

According to the above corollary, in the region exterior to the Schwarzschild
sphere r=2M, corresponding to the final total mass M, the spacetime metric
tends to the Schwarzschild metric

ds? = — <1 — 2—]?‘») du* —2dudr +r*dX?,

as the retarded time u tends to infinity.

1II. The Formation of the Event Horizon

In Proposition 1 of [1] it was shown that the part of the limiting hypersurface
u= oo for which r>2M  represents future timelike infinity. In the present section it
will be shown that the part of the limiting hypersurface u= oo for which r <2M,
represents the future event horizon. This will be so as we shall demonstrate that the
timelike lines r=r, for r, <2M, are incomplete, that is, they have finite proper
length. To prove this we shall estimate the rate at which g(u, ;) tends to 0 as u— co.
The results of this section are contained in:

Theorem 2. In the interval [0,2M [ there is a continuous increasing function uy(r)
such that in the region

{(ua ")‘”2“0(")5 re[OaZMl[}’
we have

g(u,r) Se~ W vow)32M,y

For each 1, €[0,2M [ the timelike lines r=r, are incomplete, and their proper
length T(r,) is a continuous increasing function in [0,2M,[. Also for each
r1€10,2M [ there is aunique characteristic y, asymptotic to the liner=r, asu— co.

Proof. For any generalized solution we can show that the quantity
| rh*dr
0

is a continously differentiable function of u and

L <T rl12dr> —M— [ glog(1/g)dr. (3.1)
ou \ o 0

We call (3.1) the “scaling identity” as it arises from the covariance of the nonlinear
evolution equation under the scaling group (u,r)—(u/a,r/a), a>0 (see Sect. 4 of
[11). In fact, the nonlinear evolution equation arises from the variational principle
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corresponding to the action:

rog _ NS oh (Oh h
S(g, g, h;u)= jdujdr{ (1 g or >+r [g<6;> 2au<6r+;):|}’
(3.2)

where the quantities g, g, and h are to be varied independently. Variation with
respect to g gives the definition of g, variation with respect to g gives the definition
of g and variation with respect to h gives the nonlinear evolution equation. The
action (3.2) is covariant under the scaling group in the sense that g'(u,r)
=g(u/a,r/a), g(u,r)=gu/a,r/a), K(u,r)=h(u/a,r/a), then S(g’. &, h;u)
=a?S(g, g, h;u/a). The identity (3.1) arises through Noether’s theorem from this
covariance as the identity

oM,

oy = TE

arises from the invariance of S under the group of time translations u—u+b.
By Corollary 1, at each r+2M,, glog(1/g)—g,log(1/g,) as u—oo. But
g, log(1/g,)=0, since if f(x):=xlog(l/x), then f(0)=f(1)=0. We have
glog(1/g)<e™ !, since the maximum value of f in the interval [0, 1] isequal to e~ .
Also, (2.62) implies that there is a constant K’ such that at all w and re [4M, o[ :

glog(1/g)<K'/r”.

Thus g(u, - )log(1/g(u, - )) is dominated as an integrable function of r and converges
to 0 pointwise for almost all » as u— co. By the dominated convergence theorem we
conclude that

| glog(1/g)dr—0 as u—oo. (3.3)
0
Therefore there is a u, such that for all u=u,,

Zf (glog(1/g)) (u,r)dr < MT

The scaling identity (3.3) then implies that if u>u,,

8n

The proof of Theorem 2 is based on the local form of the scaling identity, that is,
the evolution law of the function

o(jj 2, dr= M u— ). (3.4)

[ rh*dr
along the characteristics. We have
p(fmrar) =7 Zen+ Lani=T | Dokt 4 gi(th) dr+ g
r r 514 2 r 2 2

i [D( h)- 3 (-ff) hZJ dr. (3.5)
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From the nonlinear evolution equation we obtain

0 1 — 1
D(rh )~<~g) (VS TR S PV NN EX)

or

Now, since d(rh?)/0r=2hh—h?, we have:

1 ghdr= fg(h hzdr—i—jg; (F)dr= | glh—Rydr—rgh®— { (g —g)k2dr.

r

We therefore obtain from (3.6):

i [D(rh <‘2§> hZ] dr= %rg"ﬁzqh ; T ath—Rdr— | glh—Rydr. 3.7)

We can express:

I

o ) _ o0 (’} B - 7{ o0 _
’Sg(h—h) dr——zm irf?;(l—g)dr (1 +47r i(i 2)dr, (3.8)

C 4
and

- _ R Ologg
’jg(h h)?dr= in { rg——— dr—

In view of (3.5), (3.7), (3.8), and (3.9) we conclude that:

T glog/g)+ | glog/g)dr. (39

© 1 r
2 —  woh2 o _ ) _
D<§rhdr>-—2rgh +87I(1 i(l

Fo %
— . log(1/9)~ »4—n- J glog(1/g)dr. (3.10)

This is what we call the “local scaling identity.”

We shall now show that the local scaling identity together with Corollary 1
imply that in the interval [0,2M [, there is a continuous increasing function u,(r)
such that in the region

{wruzu,r), rel[0,2M [}, (3.11)
we have
D (T rhzdr> > ];inl (3.12)

Indeed, since, according to Corollary 1, g(u, -) tends to 0 as u— oo pointwise in
[0,2M [ and g is a continuous increasing function of r at each u, we can find in
[0,2M [ a continuous increasing function u,(r) such that for each re[0,2M [,
u=u,(r) implies

gu,r)<1/6
and

(glog(1/g)) (u,r)=1/12.
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Also, by (3.3) there is a positive real number u3 such that u=u; implies
< M,
| (glog(1/g) (w)dr= %

We set
uy(r): =max {u,(r), us} .
Then, considering the fact that
1 )
r(1—g)+ j (1—g)dr>2M—rg, (M: 3 fa —g)dr),
0
(3.10) implies that at each (u,r) such that 0<r<2M, and u=u,(r), (3.12) holds.

We shall now show that there is a constant y such that forallu>0and r £4M 4,
we have

g(u,r)<exp [y—4I42 jrhzdr:|. (3.13)
1 r
Indeed, since
4My _ 4M, 4M, 8 4M,y
I (h—Rydr=T Wdr— | < (R)dr= [ Fdr—4MPAM,)+r, k().

we have by Lemma 1:

aM, e 4M; 12d B?
— > —
rjl (h—h)*dr= r[l r TV
Therefore:
el W nemarz - e B
. > — > -2
Y VA Ay vl L T vE:
1 o 2
1 ri
On the other hand, again by Lemma 1,
4M, ) v'e) N o B © 5 © CZ © ) CZ
r{ rh*dr = rjl rh*dr — 41{4‘ rh*dr > rjl rh*dr — 4}&1 P2 dr= rjl rh*dr — IVER
(3.15)
Consequently, defining
C2
yi= 4M2 (B2 32M%>’ (3.16)
we obtain from (3.14) and (3.15) that
A(ry):= f(h h)* %}:> ! T rizdr— 1.

16M? 4r
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Then, since g=e~ *™, inequality (3.13) follows.

Given now r, € 10,2M [, let r, be the arithmetic mean of r, and 2M :
ro:=73(r +2M,), (3.17)

and let {u;,|n=1,2, ...} be an increasing sequence of positive real numbers such that
u, — oo for n— oo, Consider the sequence of points (u,, r,) on the line r =r,. Let u, be
the value of u at which the characteristic through (u;, r,) intersects the line r=r,,.
Then the sequence {u,[n=1,2,...} is increasing. For each n, let us denote by y, the
segment of the characteristic through (u;,r,) between that point and the point
(u;, ro). We shall show that the sequence {u;} has an upper bound. For, either
Case 1) u, <u,(r,) for all n,

or,

Case 2) u, = u(r,) from some n onward,

n—

In case 1) the sequence {u,} has obviously an upper bound. In case 2) for all large
enough n the segment y, is contained in the region defined by (3.11). Therefore
(3.12) holds along y, which implies that, along y,,

[? rhzdrln (u)= % (u—1). (3.18)

This in turn implies by (3.13) that along y,:
[g], (u)Se e @mum3Me,

and, a fortiori,

(2], (u)Se? e W32, (3.19)
Let us set
O(u):= /s[up . gw',2M,). (3.20)

Then 0 is a continuous decreasing function of u and, according to Corollary 1, 6(u)
—0 for u— 0. Since [g], (u)=g(u,2M ), we have:

Lel,.(w=0(u,). (3.21)

We conclude that along y,, g is bounded by the geometric mean of the right-hand
sides of (3.21) and (3.19):

2], () <e”*(0(u)))!/? e~ wmum/oar (3.22)
According to the definition of u,, we have

ro—r, = % T L1, .

Un

Therefore, by (3.22):

M\ —ry
2

1 « ,
—rg = S 5 @012 | em TN Gy = 32M e (0fuy) 2.
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Hence

o7 2M1— 1 2
9(“1")2(3;1\41)2[ . r ] . (3.23)

Since 0(u)—0 for u— oo, (3.23) implies that for each r, € ]0,2M [ the sequence {u,}
has, in case 2), an upper bound b(r,) which increases with r,. b may be chosen to
depend continously on r,.

We conclude from the above that for each r, €0,2M [,

u,—>u'(ry):=sup {u,} as n—ooo,
n

and

u'(r) Sug(ry):=max {u,(ro), b(ry)} . (3.24)
Then the characteristic through (u/(r,), r,), extended into the future, is asymptotic
to the line r=r, as u— co. Let x,, denote this characteristic. Then the part of x,, to

the future of the line u =ug(r,) lies in the region (3.11). Therefore for u > ug(r,), (3.12)
holds along y,,, which implies that:

[ofo thdr:l. (W)= % (u—ug(ry).

1

This in turn implies by (3.13):
[g]y. w<e’- o~ uo(r))/32M;
Consequently, setting
ug(ry) i =up(ry)+32M,y, (3.25)
uo(ry) is a continuous increasing function of r, €[0,2M,[, and along g, for
uZug(ry),
I:g])(rl (u) < o (—uo(r1))/32My (326)

holds. Therefore, a fortiori,

glu,ry) Se (w320 (3.27)

holds for all r, €[0,2M [ and all u=u,(r,).

The proper time element along the line r=r is e"“"du, and e’ =(gg)'/* (see
part I). By (3.27), (g8)"*(-,r,)e L'(0, o0) for each r,e[0,2M,[. Therefore the
proper length of the lines r=r,

T(ry)= [ (g8)'*(u,r)du=<uq(r;)+32M,, (3.28)
0
is finite for each r, € [0,2M [. The fact that the function (gg)'/* is continuous and
monotone with respect to r implies by the monotone convergence theorem that if
{r,} is an increasing or decreasing sequence in [0, 2M [ such that r,—»re[0,2M [,
then

T(r,)=>T(r).
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Therefore the function T is continuous in [0,2M,[.

We shall finally demonstrate that for each r; € J0,2M [ the characteristic ,,
constructed above is the only characteristic asymptotic to the line r=r, as u— oo.
For,let ¥ and " be two characteristics which are both asymptotic to the line r =,
as u—oo. Their equations are r=y'(u) and r= y"(u) respectively, and ¥'(u)—r,, ¥"
-, foru—oc. We can assume that y'(u) < ”(u) at some, and therefore all, u. Then if
ro:=(r,+2M,)/2, there exists a u, such that y"(u,)=r,. Consider the character-
istics through any point r =5 on the line u=u, such that y'(u;) <s<y"(u,). Such a
characteristic, the equation of which we denote by r=y, (u;s), must also be
asymptotic to the line r =r, as u—oo. According to Sect. 5 of [1] (the convergence
factor) for any u, >u, we have:

"

7 (o) = 7 (uy) = (7" (uy) = 7' (uy))
x mean value {exp [ _bw [1 (g—g)} (U, 2y, (15 s))du]}. (3.29)

sely’ (1), 1" (u1)] 25, |

Taking into account (3.27) we obtain that for each se[y'(u,), y"(u;)]:

u) 1 0
J B(g—g)] (u,xul(u;s)dué}— jg(u,ro)dugrl(uo(ro)+32M1). (3.30)

uy 10 1

Therefore, by (3.29)
7 (uy) = () S o0 SN 1)) — ' (u)) (3.31)
Letting u, — oo in (3.31), we obtain y"(u,)— y'(uy)=0. Therefore, y"(u) = y'(u) for all

u.
The proof of Theorem 2 is now complete. []

We note that as r, —»2M, uy(r,) and T(r,) tend to infinity. The point r=2M,
on the ideal line u = oo represents the point at infinity on the future event horizon.

IV. The Behaviour of the Scalar Field on the Horizon

The following theorem describes the behaviour of the scalar field on the future
event horizon:

Theorem 3. Ar each re0,2M [,
h—hy, h—h,, oh/or—Ch,[0r, as u—oc

pointwise, uniformly in each compact subinterval of the interval 10,2M ([. h, is a
continuously differentiable function on the interval 10,2M,[ and h, € L*O,r,) for
each ry <2M . Also, hy is the mean value function of h;.

Proof. For each r, €]0,2M,[, consider the mass-flux relation (Eq. 5.43 of [2])
along the characteristic y,, asymptotic to the line r=r:

’7Z(HI>X"1(MI))+7T ug |:; 52] (M)du:m(os /»r;(o)) (41)

Irg
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Since m is nonnegative and a monotonically nonincreasing function of u along y, ,
m(u, y, (1)) tends to a limit m,(r;) as u— oo,

Tim m(u, 7,,():=my(r,). (42)

Then, letting u, —» oo in (4.1), we obtain that

1
172 é:, L2 05

1

and
o 1
(I) [ 3 fz} (w)du= - (m(0, ,,(0)) —m(ry)). (4.3)

Integrating the evolution law of & (Dh=¢/2r) along y,,, we obtain

h(”za Xrl(uz)) h(ula 7r1 I [27:' (u)du .

Therefore
_ _ 1 [uw]&2 12 [u, 1/2
(h(us, i, (U2) — h(uy, 2, (W) = o < ) [—J (u)du> <I (g],., (u)du> .
Fi N L8y, us (4.4)
Now, by (4.3),
uy £2
i [i} (Wduz Mo
uy g xn, T
while by (3.26) for u, = uy(r,), we have
ujz [g]h] du§32Mleuo(rl)/szMx(eful/uMl_e—uz/32M1)' (4.5)

uy

Hence

16M M »
(3, 71, (02) = Ry, 7, (41| S - O e /3 2= 3201 g w3200,
1

-0 for wu,>u,,u;—0. (4.6)

We conclude that h(u, y, (1)) tends to a limit /,(r,) as u— oo. Letting r, range over a
compact subinterval [a,b]CJ0,2M,[ and taking into account the fact that
uy(ry) is an increasing function of r,, we obtain

_ _ 16M M
(1, 71, (02)) 1y, 1y (4 )| S == O Qo032 (@ 3201 _ g muaf32001)
na
We conclude that the convergence is uniform in any compact subinterval of
10,2M [, and therefore h, is a continuous function on ]0,2M ,[.
By the above on the interval ]0,2M [ there is a continuous function ¢, such
that

A, 1, (s ) = colry) 4.7)
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forallu=0and r, €]0,2M,[. We now integrate the nonlinear evolution equation
along y,,, obtaining

uj

e B A R A

U ‘1 o u 1 _ , )
- (f) o (g—g)hl (u)exp[— g [5 (g~g)L (u)du} du}.

By (3.26) we have:

=

T [%(g—g) (Wdu< 5 T [g],, (Wdux 2‘7(u0<r1)+32M1). (48)

0 iy, 1

Ot—

2r
Taking into account (4.8) and (4.7) we conclude that for allu; =0and r, € 10,2M ([,
th(uy, 7z, () = cy(ry), 4.9)

where,

cl(rl) - e(uu(nH— 32M1)/2ry [

h(, X“(O))‘ n c;(:l) (o) + 32M1)J (4.10)
1

¢, is a continuous function on the interval ]0,2M [. Let us now take u,>u,
> uy(r,). By (4.9), (4.7), and (4.5), we then have

us uz 1 —
(1. v (112) = huy, g (Wi = T LDAIL,, (W)du= [5 (g—g")lh—hl] (w)du

Xy

S k() (oM — o2, @11
where
16M .
k(ry):= p ' (Co(r1)+Cl(”l))e“O‘rl)/32M;. (4.12)
1

Since k is a continuous function on 0,2M,[, (4.11) implies that in any compact
subinterval [a,b] of the interval 10,2M,[, |h(u,, x,,(u,))— h(uy, ¥, (u)| =0 as,
U, >uy,u;— oo, uniformly inr, € [a, b]. Therefore in J0, 2M, [, h(u, y, (u) > h(r;) as
u— 0. hy is a continuous function on ]0,2M [ and the convergence is uniform in
compact subintervals.

Integrating (1.13) along y,, gives:

’\h uy s
%— (ulv Xrl(ul)) =CXp [f [(g‘ﬁg):l (U)du:l {
r 0 4 Ar,

e

Uy 1 — I .
+] I:-ZF(—3(g—g')+47tg(h-h)2(h—h)} (u)exr)[~ (I)[

SRS
=

0, %,,(0)

gjiJ (u')du’] du} .

Taking then into account (4.7), (4.8), and (4.9), we obtain that for all u; =0 and
ri€]0,2M [,

|~

=ci(r), (4.13)
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where
Oh
Cll(rl) = e(uo(r1)+32M1)/r1 {‘5 (0’ X“(O))l
+ 24:,‘ (uo(ry)+32M,)[3 +47T(C1(r1)+co(r1))2] (Cl(r1)+co("1))} , (4.14)

¢} is a continuous function in the interval ]J0,2M[. Then if u, >u; > u,(r), taking
into account (4.13), (4.9), (4.7), and (4.5), we obtam in view of (1.13), that:

oh oh oh
I (“2,)(”( U,))— ar (u1’7r1( uy))| < j [ <5> :|Xr (w)du
§k(rl)(e_“‘/”M‘—e_“Z/“M‘), (415)
where
K(ry):= 1'6TM1” glor/32Ms {2"1"/1(’”1)"’ [3+4n(c,(ry)+colr)*] (C1("1)+Co(r1))} .
" (4.16)

Since k' is a continuous function on ]0,2M [, (4.15) implies that in ]0,2M,[,

0h/0r(u, xrl(u))—>h’ (ry) as u—oo, h} is a continuous function on ]0,2M [, and the

convergence is uniform in compact subintervals. It follows easily that h’1 =0h,/or.
By (3.26) for each r, €]0,2M [ and each u, = u(r,), we have

j [g]b1 (u)du§ 32M1e_("1 ~uo(ry))/32My

It follows that the convergence of y, () to r; as u— oo is uniform in any compact
subinterval of ]0,2M,[. This fact together with the above implies that at each
r,€10,2M [, h(u,r{)—>h,(ry), h(u,r)—>h,(r,), Oh/Or(u, r,)—Oh,/or(r,) as u— oo, and
the convergence is uniform in any compact subinterval of the interval ]0,2M,[.

According to Proposition 3 of [3], for any generalized solution the quantity

T W2, r)dr
0

is an absolutely continuous function of u and

(,7% <O§ h?(u, r)dr) +

Here

N —

[ =9k +20- A1 Y+ 0= o (1—g0).
4.17)

f ()= lim @"2R) (),

where, according to Proposition 2 of [ 3], the limit is defined for almost all u, and we
have feL*0,u,), u, arbitrary. On the other hand, the function

[ h2dr
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is continuously differentiable in the complement of the central line, and from the
nonlinear evolution equation we deduce that

D <°f hzdr> -

Therefore, the function

© - d 1
[ [g—gf+8h—FP1 "+ (1—g).  (418)

0o =

} h2dr
)

is weakly differentiable in the complement of the central line and, by (4.17) and
(4.18),

r 1 _ _ —odr 1 1
D [h¥dr) =~ [lg—gh*+gh—n*]— — 2w+ . (gu,r)—gu0).
0 2% roo2 8n
(4.19)
Integrating (4.19) along a characteristic y, , r, € ]0,2M,[, we obtain:
Kry (1) 1 o d
1 Rundr (0 [ @R +gh-01 du
0 2 00z, 5w 4
1w 1 w0 xr, (0)
+ 2 [ fAwdu+ o | gu,0)du= | h*0,r)dr
20 81 o 0
1w
+ - (j} [811,1(”)‘1“» (4.20)
where
Qs u):={(w,n0<u<u,,0<r<y, (u)}. 4.21)
Considering (4.8) we conclude from (4.20) that for all u=0:
Xry ()
I hu,r)dr<C(ry),
0
and therefore, a fortiori,
T 12, r)dr < C(r,). 4.22)
0
Here
2r, (0) 1
C(r):= | h*0,rdr+ 87{(140(1’1)4-32]\/11). (4.23)
0

Since h(u,r) converges pointwise in 0,r,] to h(r) as u—co, (4.22) implies by
Fatou’s lemma that h, e L*0,r,), and

T 2()dr < lim inf [ h(u,r)dr .
0 U= g
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We shall finally show that &, is indeed the mean value function of h,. By the
above for each ¢ and r such that 0<d<r<2M,, we have on one hand,

[ h(u,7)dr'—= [ hy(+)dr" as u—o0,
b o
and, on the other hand,

} h(u, r')dr' = rh(u, r)— 6h(u, 6)—rh,(r)— 6h(6) as u—oo.
p
Hence,
rhy(r)=0h,(8)+ [ hy(r')dr'. (4.24)
p
From (4.22) we obtain:

5 5 12
Olh(u, )| < [ |h(u, r)ldr <562 <j h*(u, r)dr) <OMAC(o)M3.
0 0

Therefore
SR (B) £8VA(C(5)* >0 as d-0

[since C(r,) is an increasing function of r, ]. Consequently letting — 0 in (4.24), we
obtain [in view of the fact that h, is integrable on (0,r)]:

\\H

1("

[ hy(r)d
0
and the proof of Theorem 3 is complete. []

We note that h, ¢ L*(0,2M,).
Letting u, — o0 in (4.20), we deduce

Corollary 2. feL*0, ).
We also deduce
Corollary 3. At each r,€]0,2M [,
—241(r1)

(@/8)(u,ry)—e as  u—co,

where
e 2Ml) .= ;1: rofl exp [ —4n rf (hy—h)*(r) g} dr,
and the convergence is uniform in any compact subinterval of ]0,2M [. Also,

ry

e—211(r1) =1—

Proof. Let r, €]0,2M,[. We have
> 1 n r _ !
<§> (u,ry)=e 2= — [ exp [—471 [ (h—h)*(u,r) d’: ] dr.
g ry o r

r
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Consider the integral

dr’
r/

w(w,):= | (=R (w7

By Theorem 3, for each ¢>0 a(u, #)—a,(r) as u— oo uniformly in [e,r, ], where:
T — dr’
oy ()= j(hl_hl)Z(r/)T‘

Thus for every ¢, § >0 there exists a u,(e, 0) such that u>u,(e, J) implies
loe(u, ¥)—o (1)) <6 forall reler].
Given now any x>0, let us set

uy(n)=uy(nry/2,n/8m).
Then u> u,(n) implies:

ri

I |e~41ra(u,r)_e~4mx1(r)‘dr<nrl/2’
nri/2

and, since
nry/2

j’ Ie_‘“”““")—e_4"“‘(”|dr§r]r1/2 ,
0

u>u,(n) implies in fact that:
r
levzl(u,rl) _e—2),1(r1)| — i f (e—4na(u,r)_e—41za1(r))dr <V/ .
ry o

Thus e ™ 24 )¢~ 2010 a5 4y o0. The fact that the convergence is uniform in any
compact subinterval of ]0,2M [ follows easily. Now

e~2}.(u,r1):1 o Zm(u’ rl) ,

Iy
and by (4.2) m(u,r,)—>m,(r;) as u—oo. Hence

o 2m(ry)

ry

o 2Mlr)

For each r; €]0,2M,[, let us denote:
Q0= {(u,Nu>0,0<r<y, W)}
We finally have
Corollary 4. ¢** ¢ L}0,r,) and g''*¢/gr'/* e LXQ(y,,)), each ry <2M.

Proof. The first conclusion is in fact equivalent to the conclusion of Theorem 3 that
h, e L*0,r,) for each r, <2M ,, but we shall deduce it here directly from the main
integral identity which yields also the second conclusion. Along the characteristic
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%, the main integral identity reads

2r, (1) g&? 1 @
[ rdr 42 [f —drdu+ = | gu,0)du= | **®"dr.(4.25)
0 QUtr 3u1) 8T 20 0

Hence, for all u=0,

ry 21 xr, (0) 2300
[ePrendr< | 2Oy,
0 0

and Corollary 2 implies that e?**" converges pointwise in ]0,r,] to e***™ as u
— 0. We conclude by Fatou’s lemma that e**' e L'(0,r,) and

u— o0

r ri
[ e**'"dr < liminf [ e***"dr.
0 0

Letting u, » o0 in (4.25), we deduce also that

g'*¢/gri?e LX(Q(,,). O

We note that as r; —»2M,, y,,(0)— co. The behaviour of the scalar field at the
point at infinity on the horizon needs further investigation.
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