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Abstract. A class of stochastic differential equations with highly singular drift
fields is considered. Using a purely probabilistic approach, we can show the
unattainability of the nodal set. Moreover, a global existence and uniqueness
theorem for diffusion processes with singular drift fields is established. The
finite action condition of Carlen and Zheng can be modified. We relate our
results to the diffusions which describe the time evolution of quantum systems
in stochastic mechanics.

I. Introduction and Summary

The main bulk of the mathematical literature on stochastic differential equations
(SDEs) tackles the question of existence and uniqueness of solutions under
assumptions very reminiscent of those for deterministic (ordinary or partial)
differential equations (see e.g. [1-3]). Usually the coefficients of the SDEs (the so-
called infinitesimal characteristics) are required to satisfy some regularity con-
dition (such as a Lipschitz condition) to ensure local existence and uniqueness of a
continuous solution, and a growth condition is imposed to avoid explosions, i.¢. to
prevent the process from running off to infinity within finite time.

Both from a mathematical point of view and a look towards applications in
other disciplines, e.g. physics or biology, it is desirable to relax the standard
conditions.

There has been some previous work in this field. The stationary case was first
considered by Albeverio and Heegh-Krohn [4], and then by Carmona [5],
Nagasawa [6], and Albeverio et al. [7]. The analysis in [5, 7] is in terms of
Dirichlet forms. A nice feature of this work is that the probability densities
involved are admitted to be discontinuous. The point of view of Dirichlet forms is
also taken in papers by Albeverio et al. [8], and Fukushima [9]. Reference [8] also
discusses several physical aspects of the unattainability of the nodal set (i.e. the set
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where the probability density vanishes), viz. natural phenomena such as the
formation of planetary systems, the morphology of galaxies, the formation of
zones of winds in the atmosphere, and the formation of spokes in the rings of
Saturn. Nagasawa [6] presents a model of segregation of a population in an
environment, which is of interest in some applications to biology and ecology. In a
recent paper by Blanchard and Zheng [10] the stationary case is dealt with by
employing a pathwise conservation law.

The non-stationary situation was solved only recently. In the case of a compact
manifold this was accomplished by Nelson [11,12]. But the compactness
condition can be dropped. For a Euclidean configuration space Carlen established
weak existence of solutions of stochastic differential equations with singular drifts
by means of PDE methods [13]. In a completely different spirit, Zheng used
tightness results for semi-martingales to obtain weak existence for diffusions on a
Riemannian configuration space [14]. This probabilistic approach has the
advantage of exhibiting explicitly that the diffusions avoid the nodes. On the other
hand, Carlen’s analysis requires less regularity. Both Carlen and Zheng use a kind
of (global) finite action condition to construct the diffusions. In fact, Zheng and
Meyer showed [15] that also a local condition guarantees that the diffusions do
not reach the nodes in finite time. Finally, by exploiting Carlen’s existence proof,
Guerra [16] has found a continuity argument to introduce an enlarged class of
diffusions with singular drifts.

The work contained in this paper was inspired by [10, 15]. We use a purely
probabilistic approach in terms of suitably defined stopping times. Making use of
some physical and geometrical ideas, the construction of diffusions can be carried
out in a transparent way. As we shall see, the finite action condition can be
modified.

The basic problem to be tackled in the sequel is the following. Suppose we are
given at each time telR,:=[0,00) a probability density ¢(-,tf) on the
d-dimensional Euclidean space R?. Define

U:={(x,1)eR*x R, |o(x,1)>0} 1
and the nodal set
N:=U={(x,t)e R xR, |o(x,1)=0}. (2)

Let a drift field b: U—IRY be given and suppose that ¢ and b are related to each
other by the ( forward) Fokker-Planck equation on U,

0,0 = —div(gh) +vdp, (3)

where v is a positive constant. To make this equation meaningful one needs, of
course, some regularity conditions on ¢ and b. However, we are only considering a
field b which is defined on U, i.e. it may be of very singular nature near the
boundary of U. Suppose we are given a probability space (Q, #, P), a filtration
{Z.}er > and a standard Wiener process {w,},.r , adapted to the filtration and with
variance 2v (i.e. E[ww/]=2v(sAt)é" (5,t20; i,j=1,2,...,d). Our problem
consists in constructing a diffusion process {X,},.g, with drift b and probability
density g, in other words, we will investigate existence and uniqueness of solutions
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of the stochastic differential equation

{dX, =b(X, t)dt +dw,, (4a)
XO =1, (4b)

where 7 is a fixed #,-measurable random variable with density ¢(-,0). If such a
process X, exists then — under suitable conditions — its mean forward derivative (cf.

[12]), 1
lim -~ E[X,. 4~ X 7], ()

exists and is equal to b, and moreover,
P{f(X)eA}= ] dxox.0)f(x) (6)

for all bounded measurable functions f and all Borel sets A. We will remark on the
meaning of the equality b=DX in Sect. IIL.

We now summarize the paper. In Sect. II, we recollect some heuristic ideas
underlying the expected behaviour of sample paths of diffusions. The proof of the
unattainability of the nodes as well as the global existence and uniqueness theorem
is contained in Sect. II1. Section IV is devoted to an application of these results to
stochastic mechanics. We conclude in Sect. V with some remarks on possible
generalizations of the strategy contained in this paper.

I1. Heuristics

Before going through the mathematical argument it is worthwhile to get some
physical intuition about what might prevent a diffusion from being defined
globally and why this is not so.

Let us assume for the moment that the SDE (4) has a local solution, i.e. the
sample paths of the process X, are defined at least for some finite time interval. But
what may go wrong and prevent a trajectory from being defined for all times? This
can occur only if the trajectory under consideration approaches the nodes within
finite time (and then b is undefined, Fig. 1a) or if it escapes to infinity within the
finite interval (Fig. 1b).

R R’

Xt

\

Fig. 1a Fig. 1b
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From a physical point of view the unattainability of the nodes seems rather
plausible. In the theory of classical diffusions it is not the flow b itself that is of
physical significance but the current gb, and even if b is singular at the nodes, the
product gb may stay finite. In terms of physics this means that hardly any diffusing
particle runs into the nodes. Moreover, there could be another mechanism
explaining the unattainability of the nodal set: if the singular drift field points away
from the nodes it will give rise to a strong repulsion and prevent the particle from
approaching the nodes.

In the context of stochastic mechanics the diffusion process is associated to a
quantum state (cf. Sect. IV). If y denotes the quantum mechanical wave function,

th
o o=y, (7)
b=2v(Re+Im)gradlny  (on U). (8)

Itis easy to check for generic stationary wave functions, e. g., for the bound states of
the harmonic oscillator, that the corresponding drifts are repulsive at the nodes,
and moreover gb tends to zero.

To prevent explosions (i.e. the escape at infinity) one needs an additional
condition [cf. (A.4) in Sect. III]. Again, this will be typically satisfied in the theory
of stochastic mechanics.

III. Unattainability of the Nodes and Global Existence

In this section we will present our main theorems concerning the construction of

diffusion processes with singular drift fields. We do not look for optimal regularity

conditions on ¢ and b and as a reward for this we get transparent proofs.
Throughout the sequel we assume that

0eC*'(R*xR ), (A1)
be COU), (A2)

and that ¢ and b satisfy the Fokker-Planck equation (3). Here C™” denotes the set
of functions having m continuous spatial and n continuous temporal derivatives.
Locally, the drift field b is rather regular, and the standard theorems grant a unique
local solution X,, 0=t <{, of the SDE (4) up to the stopping time { (the so-called
killing time). In fact, existence and uniqueness are in the strong sense.

We will need the following lemma [15]. It relates the process X,, which has
possibly been stopped (if { < o), to the globally defined density ¢. In the proofs to
follow this lemma will be a key ingredient.

Lemma 1. Let f(x,t) be a non-negative function and let © be a random variable
satisfying 0t <{ A k for some k>0. Then

T k
E[j dt f(X,, t)J = [dx [ dto(x,t) f(x,1). )
0 0
As E.A. Carlen pointed out to us, the proof of this lemma is an easy

consequence of the maximum principle applied to the Fokker-Planck equation
(see also [11,12]).
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To state our propositions we need some definitions. It is convenient to
introduce the osmotic velocity

gradg

v 0 on U
= 10.
" 0 on N (102)
and the current velocity

vzzib—u on U (10.b)

0 on N.

For ye(x,t)eR?x R, we define the norm

Iyll:= /1> + 2. (11)

If E is any subset of R x R , the Euclidean distance between y and E is denoted by

min [y—y| if E+0
d(y’E)zz{ w it E=0. (12)
where () is the empty set. Moreover, we put

Y :=(X,1). (13)

Theorem 1. Let the process X,,0=t<{, have a probability density ¢ and a drift b
subject to assumptions (A.1) and (A.2). Suppose also that

odivve ZL(RYxR ). (A.3)
Then, for any compact set KCR*x R ,,
P{weQ’tigtgd(Y,,KmNbO} =1. (14)
Proof. Let k, [e N, and define the compact set
K:={(x,neRxR.||x|<L <k} (15)
We also define a subset A of the probability space Q by
A= {Q(YO)>0,KEK(VI<CAk),t<i?£kQ(Y;)=0}. (16)

Of course, the set {o(Y,)>0} has unit probability. Throughout this proof the
continuity of the sample paths ¢+ Y, will be essential. A first consequence of this
continuity is the fact that in order to prove the theorem it suffices to show

P(A)=0(Vk,IeN). (17)

Next we introduce for each ne N a stopping time by

7},:=inf{t<{x\k[Y,¢K orQ(Y,)§%} (18)

. 1. . .
if {t<£ AKkIY, ¢ K or o(Y)= } is non-void, and we set T,:={ A k=k otherwise.

n
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Since the sequence {7,} is non-decreasing we define another stopping time by
T:=lim T,. (19)

Clearly, T>0 if and only if | Y| £ 1 and ¢(Y,) > 0. Thus we may rewrite the set A in
terms of stopping times,

1
A= {T>O,Q(YT")§H(Vne]N)}. (20)
We shall now look at those trajectories for which the density ¢(Y,) becomes

arbitrarily small or, in other words, Ing(Y;) is unbounded from below. An
application of It6’s lemma yields

Tn a ,d
Iirsone(Ye)=Iirsoino(Yo)+ | dt [?Q +b. 5220 +vA1nQ}(Y,)
0
Tn d
+ [ aw B2 (Y)  (neN), (21)
0

where I ., is the characteristic function. Now the expectation of each term is to be

analyzed.
If T,>0and t € [0, T,] then Y, K, and grad o(Y;) is bounded on K by continuity.

1
Moreover, T,>0 implies that o(Y,) = P for t€[0, T,]. Therefore

Th dol?
Ejmgmghm<w, 2)
0 4
.. Tn gradg ) ) .
and the stochastic integral | dw, r (Y;) is a mean zero martingale (indexed by
0

n).
Since {T>0} C{|Y,| <1}, it follows that

EQl 7> olne(Yo)l1 2 E[ v, <plinel(Yo)] = [dxe(x, 0] <(x)linel(x, 0). (23)

The last term in Eq. (23) is finite since g is locally bounded [by (A.1)] and hence
E[I1. ¢lno(Y,)] exists and is finite.

Let us consider the left-hand side of (21). If T>0 then Y, €K, neN, and
Iy lne(Yy,) is bounded from above uniformly in we and nelN. Hence
E[I15olng(Yy,)] is uniformly bounded from above.

Assume now that (17) does not hold, i.e. P(4)>0. Our aim is to deduce a
contradiction from this assumption. Let us denote the decomposition of real-
valued function f into its positive and negative parts by f=f*"— f~. Since 4
C{T>0} and Ing(Y; )< —Inn on 4, it follows that

E[lirso(ng)™ (Y7, )]Z E[1 4(Ing)™ (Y, )] =2 P(4)Inn. (24)
As E[Iz)no(Yy,)] is uniformly bounded from above this implies

E[Ir5olno(Yy )]>—o0 as n—oo, (25)
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and therefore

Tn 0 d
E | dt[£+b g8 g+vAlnojl(Y)—> o as n—oo. (26)
0 0 4
On the other hand, we can rewrite the integrand by means of the Fokker-
Planck equation (3);

0Q ‘b grade _ A@

—divb  (on U) (27)
0 0
implies
A
%0 Ly, grzdg +vdlng=v22 _dive (on V). (28)
0 0

If T,>0 and t€[0, T,] then Y, € K, and hence

O'—w

Th -
d{g Lp B, Aln@] (Y)=E | drf{rn>m[vi,9—divv] (1)
Q 0

Th -

SE [ ditly, g [v LLTQ ~divv] ()< [dx[dtIg(x,t)[vde—odivo]~(x,t)
0

<v[[dxdi|dg|(x, 1)+ || dxdteldivo|(x,1), (29)
K K

where the last but one step follows from Lemma 1. Since K is compact the
regularity of ¢ implies that [ dxdt|dg|< oo, whereas finiteness of || dxdto|divu|
. K K

follows from assumption (A.3). Thus we have obtained a uniform upper bound for

d
E | [f b 8¢ Aln@] (%),

g

and this contradicts (26). As a result we conclude that A cannot have a non-
vanishing probability, i.e. (14) is established. []

Remark. In the symmetric case, which is defined by v=0, condition (A.3) is trivially
satisfied.

In the next theorem it will be proven that explosions in finite time cannot occur,
in other words, the process X,, 0 <t <{(, cannot disappear at infinity within a finite
time interval. This follows essentially from the following assumption on the
probability density o:

There is no continuous curve ¢+ 7,, defined on some
finite time interval [0, s), such that sup |y,|=o00 and tir<1f 0y,1)>0. (A4)
t<s s

In addition, we have to strengthen the assumptions on ¢ and its derivatives
from a spatially local to a global form. Then this yields a unique global
construction of diffusion processes. Here both existence and uniqueness are meant
in the strong sense.
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Theorem 2. Let the process X,, 0=t <{, have a probability density ¢ and a drift b
subject to assumptions (A.1), (A.2), and (A.4). Suppose also that

[dx|dole Zi (R ), (A.5)
fdxo|divv|e Z| (R ), (A.6)

Then
P{{=w}=1. (30)

Proof. As in the previous theorem the proof will be accomplished in terms of
suitably defined stopping times. For k,/,neIN we introduce the stopping times

0 if X >
(1. 0
S {cAk it X<, (3D

Sf,”:=inf{t<(/\ klo(Y) < %} (32)

if {t<§ A klo(Y) < %} is non-void, and we set S{?:={Ak=k otherwise. For
technical reasons we define another two families of stopping times,

SP:=inf{t<{ A k|lgrade|(Y)2n}, (33)

SW:=inf{t<{ Aklo=Inn}, (34)

where S and S{* are set equal to zero if the respective sets on the right-hand side
of (33) or (34) are void. By (A.1), the families S'?, S¥, and S increase
monotonically to { A k. Thus the sequence

S, =SPDASPASP ASH (39
gives rise to the limiting stopping time
S:=1im S,=SYA{ k. (36)

Clearly, >0 if and only if | X | <! and ¢(Y,)>0.
Proposition (30) follows, in fact, if we could show

P{{>k}=1 (YkeN). 37
But we can rewrite the last set [because of (A.4)],
{{>k}= {,l?fk Q(Y,)>0}- (38)

Moreover, it is sufficient to consider trajectories starting within bounded regions
around the origin. Since P{o(Y,)>0} =1, it suffices to show that

P(B)=0 (Yk,leN), (39)
where

(VnelN)}. (40)

S| =

B:= {520, inf 0(1)=0] = {S>0,@(Ys,,>§



Diffusion Processes with Singular Drift Fields 429

Again, we obtain from [td’s lemma an equation analogous to (21),

d
Iso olno(Y)=I 5o olno(Yo) + | dt{ ;Q +b- grz S Alng}(Y)

S d

+ aw, B2 vy (neN). (41)
2) 1 Q(3) grade 2
If S,>0 and t€[0,S,], then te[0,S{” A S}”] and T (Y,)<n*. Therefore
ETdt B dQ‘ (Y)<kn*< oo, (42)
0

gradg

Sn
and the stochastic integral | dw, (Y)) is a mean zero martingale.
0

Since {S>0} C{|X, |1}, it follows that
E[|I(s>0}an(Yo)|] <E [I(|xo| §1}|1nQ|(Y0)] = jde(X, O)I{le §l}(x)|1an(x7 0). (43)

By (A.1) the density ¢ is locally bounded and hence E[I s ¢,lng(Y,)] exists and is
finite.
We now turn to the left-hand side of (41) and use the decomposition

I=Ig, -0yt 15,50 (44)
Since
E [I(s> 0} {Sn= 0)(ln 0" (Ys“)] <E [1{|x0| 51}(lng)+ (Yo)]
= [dxo(x,0)I, <;(x)(Ing) " (x,0)<const  (45)
for some finite constant independent of n, and

E[liss 0jnis,>olne) " (Y5 )]S E s> olng)* (Y5, )]<Inlnn (46)

for n=3, it turns out that E[I 5. oIng(Y;5 )] may not tend to + oo faster than of the
order of Inlnn.

Let us assume that (39) is not true, i.e. P(B)>0. Since BC{S>0} and
Ing(Ys,)< —Inn on B, it follows that

E[lis>0(In@)~ (Y5 )1Z E[Ig(lng)” (Y5, )] = P(B)Inn, (47)
and this therefore implies
E[I{s>0}an(st)]_’—OO as n—oo, (48)
0,0
E | dt[@ +b- grade +VAIHQ:I(Yt)—~>—OO as n—oo0. (49)

In analogy with the previous proof we rewrite the integral,

Sn d - k
E| dt[af +b-grz g +vAan} (Y)< [dx [ dt[vAg—odive]™ (x,1) (50)
0 0

k k
<vfdx (j; dt|Ao|(x, )+ fdx (j; dto|divo|(x, 1), (51)
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and these terms are finite according to (A.5) and (A.6). This yields a contradiction
to (49), and we conclude that P(B)=0. [

Remarks. (i) Assumptions (A.5) and (A.6) are to be compared to the finite action
condition of Carlen [13] and Zheng [14],
fdxo(u?+v*) € LR ,). (A7)

Strictly speaking there is no inclusion relation between these conditions, though in
aloose sense (A.7) implies (A.5) and (A.6). This can be seen as follows. Provided that
no surface term turns up, we have

2 d
[ dxo (gradg > = [ dxpdivE?Y (52)
U Q U Q
Thus the condition [dxou*e LL(R,) does not quite imply
§ dxo |div grzdg e 7L (R ), which were sufficient for (A.5), since on U
v 2
Ag=0 [(gradg> + diy &rade ] (53)
Q Q
2
0|0 [<ﬂ> + ldiv grade H (54)
Q Q
Similarly, 2|uv| £u®+v?, and thus
[dxoluv| <3 [dxo(u® +0v?). (55)

Therefore (provided there is no surface contribution)
. 1
fdxodivo= ;jdxguv (56)

isin £} (R ) by virtue of (A.7). However, (A.6) requires a |[divv| term rather than
merely dive. In conclusion, our conditions (A.5) and (A.6) constitute a different
kind of finite action condition than that of Carlen and Zheng, but often they will be
a consequence of (A.7).

(i) The basic strategy in our proofs is to find appropriate estimates on In g, and
this is done by means of 1t6’s lemma. In this respect our method is similar to the
one employed by Nelson [11, 12]. His proof does not require the finite action

condition (A.7) but works with the weaker condition j dt (dxglu - v| < oo which,
according to (56), is related to (A.6).

(ii)) In [7, Theorem 4.2] (see also [8, Sect. 3]) the unattainability of the nodal
set is proven under the assumption that, in perpendicular direction to the nodes,
the probability density falls off to zero sufficiently fast (essentially, faster than
linearly). In a way this corresponds to (A.5), although our assumption has the
drawback of not distinguishing between perpendicular and tangential properties
of the density.

(iv) In what sense does the limit in (5) exist? Follmer and Wakolbinger [17]
have shown that if

E [f dtib(i’,ﬂ <o (57)
0
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for some p=1, then for allmost all te[0, 7] the limit hm E[X,M,—X,I%]
exists in £P(Q, #,P) and At
1
b(Y)= lim —- E[X,. 4~ X% (58)
in the #?-sense.

IV. Application to Stochastic Mechanics

It is the purpose of this section to explain how the diffusions constructed in the last
section enter the theory of stochastic mechanics. To this end we will delineate its
basic ideas.

Stochastic mechanics is an attempt at a probabilistic description of quantum
phenomena [18-20, 12]. It aims at dealing with quantum systems in classical
terms. In agreement with other physical theories stochastic mechanics can be
divided into two parts: the kinematics and the dynamics. The kinematical
structure is given by associating a diffusion process X, governed by the SDE

dX,=b(X, t)dt+dw, (4.a)

to the quantum motion in configuration space. The kinematical picture is
completed by requiring that X ,=# has a distribution identical to the quantum
mechanical distribution at time 0.

The dynamics specifies the influence of the potential V on the motion. It should
be a suitable generalization of classical dynamics. In stochastic mechanics this can
either be achieved by a Newton law in the mean (Nelson [19, 207) or by a stochastic
variational principle (Guerra, and Morato [21]; Nelson [12]). In this way the
solution y(x, t) of the Schrddinger equation

, h?
ihop= I:— M A+ V(x)} v, (59)

where m, denotes the mass and # is Planck’s constant divided by 2, is related to
stochastic mechanics. In fact (provided y is normalised),

o(x, 1) =lp(x, 1), (7)
and therefore
U={(x,0)eR*x R, [p(x,1)*0}, (60)
and also
b(x,t)= % (Re+1Im)grad Iny(x,t) on U. (8)

cor - . h
Moreover, the diffusion constant v is equal to "
m

It is, of course, of vital interest to stochastic mechanics whether the diffusion
processes postulated in this framework actually exist. To check that in typical cases
the stochastic mechanical diffusions can be constructed it will be necessary to
reformulate the conditions of Theorem 2 in terms of wave functions. We shall
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assume throughout this section that the wave functions are square-integrable and
normalized.
The regularity conditions (A.1) and (A.2) can be reexpressed by

peC*'(R*xR,). (A.8)
Denote by p* the complex conjugate of 1. Then
Ao =2[IVy|* +Re(p*Ay)], (61)
odivo=2vIm ,:zp*Azp— 1(1/)*!71,0)2} (62)
Q

and the modulus of these expressions can be bounded in terms of [F'y|* and |yp* Ay|.
Let H™(IR?) be the m-th Sobolev space over RY. We have immediately the following

Theorem 3. Let (A.8) be satisfied. If
w(-, e H*RY)  (vteR,), (A.9)
then (A.5) and (A.6) also hold.

Remark. (A.9) is, of course, a stronger condition than necessary because the proof
of Theorem 2 depends only on the negative part of v4p —p dive. Note that (A.9)
also implies |grady|2e ZL (R ), which is just the finite action condition (A.7).

Although the assumptions of Theorem 3 will be true in many quantum
mechanical situations, it would be nice to have conditions in terms of the potential
V and the initial wave function yp,=1(-,0). The stationary case, where y(x, 1)
=e "EMy (x), is dealt with in (cf. [22, p. 54]).

Theorem 4. Let yp be a weak solution of

<—%A+V>1Z>=E1]), (63)
where V is a measurable function E a complex number. If
Ve C™(RY), (64)
then
weC"” 21+ (RY). (65)

2
So in the three-dimensional case i has at least the same regularity as the
potential. In particular, if Ve C3(IR?) then (A.8) is satisfied.
To deal with the time-dependent situation we shall rely essentially on results by
Wilcox [23]. The proof of the next theorem (as well as the proceeding one) depends
on Sobolev’s imbedding theorem [24].

d
Here [~] denotes the integer part of g

Theorem 5. Let m> [g} +k+1, 1<k and pe C(R ., H"(IRY). Then (a version

of ) y has continuous derivatives up to order k—I in space and | in time
simultaneously.
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If we note that C>'=C*°~C®!, then a twofold application of this theorem
yields the important

Corollary 1. For m= I:‘—Zi:l +3,

C'R ., H"R)NC(R,, H" >R CC> ' (R!xR ). (66)
In particular, if d = 3, then one has to make sure that the wave function satisfies
peCUR, H(R*))NCYR, H*(R?)). (67)

From the paper of Wilcox one can also read off conditions on the initial wave
function p, and the potential V' such that (67) holds.

Theorem 6. Let meIN and suppose that
o€ HM(RY), (A.10)

V and its derivatives up to order 2m—2 are continuous and bounded in R? .
(A.11)

Then (a version of ) the solution 1p,:=e_it(_m +) wo of the Schridinger
equation satisfies

pee () CR ,, B2 I(RY). (68)
1=0

Self-adjointness of the Hamiltonian follows from Kato’s theorem (since V' is
bounded). Combining Theorem 3 with Corollary 1 and Theorem 6 we obtain

Theorem 7. If conditions (A.10) and (A.11) are satisfied for 2m= [g—:l +3,then(A.5)
and (A.6) hold.

In particular, in the three-dimensional case m has to be greater than or equal to
two;i.e., we need that 1, € H*(IR®) and that V and its derivatives up to order 2 are
continuous and bounded.

Theorems 4 and 7 give conditions under which the stochastic mechanical
diffusions exist, although the boundedness condition on the potential is physically
unsatisfactory. In a given situation assumptions (A.10), (A.11) may not hold but
(A.5) and (A.6) may be true nonetheless.

V. Conclusion

The results presented here show that a wide class of diffusion processes with
singular drifts can be constructed. In particular, this is of interest in stochastic
mechanics where the generic drifts are indeed singular. Moreover, both (global)
existence and uniqueness are in the strong sense.

Conditions similar to (A.3), (A.5), and (A.6) are tantamount to all constructions
of diffusions with singular drifts, and from a physical point of view they are not
unreasonable. Our conditions are a kind of modification of the finite action
condition of Carlen and Zheng. On the other hand, it does not seem to be within
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the scope of our method to relax the smoothness assumptions (A.1) and (A.2)
considerably. As a slight modification we can replace the requirement of a
derivative to exist by asking for a Lipshitz condition to be satisfied, which in turn
will give uniform bounds, too.

The use of stopping times was essential to our analysis. An advantage of this is
that the sample path behaviour enters in a transparent way. However, we did not
make use of all information at our disposal: only |grad Ing| rather than gradIng
entered the proofs; we also did not consider the direction of the drift b. It is clear
that the unattainability of the nodes should follow only from conditions on the
behaviour of these velocities perpendicular to the nodal set. Likewise global
existence will involve the direction of gradIng and b at large distance from the
origin (in RY).

It became obvious in the course of the proofs that the sample paths of the
diffusion processes behave according to intuition with probability one. In terms of
1t6 calculus, however, one does not get control over all trajectories. So there exist
trajectories which behave in a crazy manner, although their total probability is
zero. From a physical point of view one would like to exclude this.

As a last remark it should be pointed out that our analysis carries over to the
case where the state space is a Riemannian manifold.
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