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Abstract. We describe a general method for constructing a Lax pair represent-
ation of certain quantum mechanical systems that are integrable at the classical
level. This is then used to find conserved quantities at the quantum level for the
Toda systems.

1. Introduction

There is as fairly general method for constructing conserved quantities of classical
mechanical systems in one and two dimensions (field-theories), that has been much
studied and developed recently. In this method [1,2] one starts with a
Fundamental Poisson Bracket relation, that is, an expression for the Poisson
bracket between the elements of a certain matrix, which is a function of the
canonical variables of the dynamical system. One then finds, under certain
conditions, that it is possible to get a family of conserved quantities, or
Hamiltonians, in involution. A zero curvature condition for the "gauge potentials"
(which are the auxiliary matrices constructed out of the canonical variables), plays
an important role in this construction.

In the one dimensional case, this corresponds to showing that there is a Lax
pair representation of the dynamical system, i.e. the classical equations of motion

dA
can be written in the form —- = [^4, JB], where A and B are matrices, functions of

at
the canonical variables. The conserved quantites are then Tr^4N for any power N.

In this paper we will develop a similar approach for a quantum mechanical
system. We consider the case when the Fundamental Poisson Bracket (FPB) goes
over directly into a commutator bracket. We then show that there is a Lax pair
representation of the quantum system.

This method has been developed with a particular application in mind. We
wanted to construct conserved quantities for the quantum mechanical Toda
system [3]. This is done by making use of the Lie algebraic properties of our
"quantum mechanical" Lax pair. Our approach works uniformly for all the finite
classical Lie algebras.

A first proof of integrability of the quantum Toda lattice was given by Kostant
in [6]. Goodman and Wallach [7] give a recursive procedure for constructing
integrals of the classical and quantum system. The reader is also referred to the
review article [11], where several explicit formulae for first integrals can be found.
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What we believe is new in this article is the use of the P-operator as introduced
in [1], to derive the quantum-mechanical conservation laws of the Toda system.
As we discuss in the next section the method is quite general, so that we hope that it
will be possible to apply it also to other systems. Finally this method gives us a
simple algorithm for explicit construction of the quantum intigrals which may be
used in applications.

The techniques that we use are closely related to [4], who discuss the classical
mechanics of Toda systems. We have been also motivated by some of the results of
[5], who refers to construction of solutions in one and two dimensions. The
quantization of Poisson brackets and the relation between classical and quantum
R-matrices is considered in [12].

2. Quantum Commutators and the Lax Representation

In order to realise the FPB one starts with the canonical variables of the system
(gα, px) and uses an auxiliary vector space (e.g. a Lie algebra), in order to construct
the A operator (in general some matrix function of pα, gα). The Poisson bracket
between the elements of A is then given by the expression.

(1)

We have here used the compact notation [1].
The tensor product between two matrices is defined as usual

. ι = 4A«> (2)

and the product between tensors

A (x) A\ stands for the PB of two matrix elements

ΆtyAl = {AtJ,Au},

P is constant, independent of the canonical variables. The usual commutator
product of P is considered in (1).

Relation (1) seems to apply for a wide range of integrable systems [2] and the
corresponding P operator is known for several models. In the next section we will
present the explicit form of A and P as it applies in the case of the Toda system.

In this section we will consider the most simple case for quantum mechanics,
when the PB directly goes over to a commutator bracket. That is

[A®l,l®A] = ift[P,A®l + l®A] (4)

with the same constant P as in the classical relation (1). Note that A is now a certain
matrix with elements that are functions of the quantum mechanical operators

Pα> 4α

One would have to consider each model separately to determine whether (1)
and (4) apply in classical and quantum mechanics respectively. The Toda systems
that we are interested in, certainly satisfy relation (4) as it will be verified.
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Classically the Hamiltonian is taken to be H = ΎrA2. We will also take this as
our quantum Hamiltonian, which determines the time evolution of any operator
through the Heisenberg equations. We will use this to construct a Lax pair. We can
write (4) in a more compact form

[4® 1 - ftP, 1 ®A + iKP] = 0 . (5)

This expression looks more interesting than (4). Note the interplay between the
ordinary commutator of P with A and the "quantum" commutator between the
components of A. This form suggests to us that A (x) 1 — ftP acts as a single operator
and we should therefore consider taking its powers. In particular it follows that
[(A (8) 1 - ftP)2, 1®A + iKP] = 0.

Since we want the Hamiltonian to enter we will take TrL of the above
expression, where TrLS = S/ίw, that is the trace on the left indices of the tensors:

TrL [A® 1 - ftP)2, 1 ® A] + TrL [(A® 1 - ftP)2, iKP] = 0 .

The second term is zero, since we can make use of the cyclic property of the
trace, so that terms TrL[^2(x)l,P]-0 and

TrL[μ®l)P,P] cancels TrL[P(v4(χ)l),P].

We therefore get

h2P2\A~]=:Q. (6)

The reader can convince himself that one can simply take the TrL inside the
commutator, as we contract from tensor products to matrices. Using the
Hamiltonian H = ΎrA2 the above expression can be brought to a form

^LH9A] = \:-2ττLP(A®ί) + iKττLP2

9A]. (7)

dA
The left-hand side is simply — and we therefore interpret (7) as a Lax pair

representation of our quantum mechnical system, with the two operators:
dA

A and £= -2TrLPμ®l) + ftTrLP2, —=IB,A]. (8)
at

Note that B is constructed from the A operator. Furthermore B has the same form
as in the classical Lax pair apart from the constant matrix ίh TrLP

2. In other words
if we take fi->0 and interpret A and B as matrix functions of the classical variables
(Pv <?α)

 we recover the classical equations of motion.
Up to this point we have kept our discussion quite general. At this point it is not

clear which is the best way to proceed. Note that (8) although in form is the same as
in the Classical Lax representation, it does not share all of its nice properties. In
particular Tr^ are not constant in general, since we cannot use the cyclic
property of the trace on [β, AN~\, because their matrix elements do not commute.
But we observe the following: if we define the time ordered exponential

u = Texp J Bdt, so that B = — - u ~ \ we can easily see that — (u ~ 1 Au) = 0, if we use
at at

Eq. (8). We would like to give a precise meaning to these conservation laws by
studying particular models.
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3. The Quantum Mechanical Toda Molecule

In the simplest case this describes a finite chain of particles with interactions which
vary exponentially with their separation. We will be using the mathematical
language of Lie algebras [8] in order to describe these systems, since the algebraic
structure underlies most of their integrability properties.

The Hamiltonian written in terms of the canonical variables pα, qa is

H = Σ (4 λβΪP Pβ + Σ -2 exp /Σ Kaβqp] . (9)
*,β « α \β J

The sum is over the set A of simple roots. The number of simple roots is equal to the
rank / of the Lie algebra, and they form a basis for the root space.

Kaβ is the Cartan matrix. It encodes the structure constants of the algebra

λΆ are the fundamental weights. 4α n ^
The reader can check that the matrix (λa λβ) is the inverse of 2 2 = -^ Kaβ. It

then follows from (9) that the classical equations of motion are

This is the non-linear system for / variables known as the Toda equation.
We will be using the Chevalley basis for the Lie algebra [Hα, Hβ~] = 0,

LHaE±f]=±KβJS±β, a , ,

and normalize the Killing form by

We will use (9) as our quantum Hamiltonian with canonical commutation

relations Γ - ι ^ Γ Ί Π Γ Ί A / 4 < i \
[p«ί^]=-^α/?J [Pα?P^]=0? [^^]=0. (13)

It is also useful to evaluate
ΣKβγqy

(14)

Then the expression for the Lax operator is given with

A= ( λ - λ , )

with E±Λ9 HΆ generators of the algebra.
It is easy to check that H = ΎrA2. We next evaluate the commutator using (14),
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The above expression can be now expressed using the P operator, as it is done in
the classical case. We refer the reader to [4], where the properties of this operator
are discussed. It is given

P = -iΣ α2(£α(x>£-α-£-α®£α), αeΦ + . (16)
α

The sum is over all positive roots Φ+ and (not only the simple ones).
We therefore conclude that Eq. (4) is satisfied and the analysis of our previous

section applies. To determine B of Eq. (8) we need to evaluate

=-iΣ Σ
βeΔ αeΦ+

(E-β-Eβ),
β

and the constant term

But one can show that the Casimir operator of the algebra is

α, βeΔ αeΦ+ ^

This of course commutes with every other generator. We can therefore drop it and
write for B in (8),

ι ί/2ΣKβγqy ίh

2 β β β 4 «,/? α β α β

Note that A is Hermitian and B antihermitian. The constant term in B also appears
in [5]. Our derivation makes clear the origin of this term.

4. Conservation Laws from the Quantum Lax Pair

It is most suitable to write the Lax equation in the form

-0 (18)

with H the Hamiltonian and A, B as given from (15) and (17) respectively. We now
observe how the above equation is transformed by a "gauge transformation."
Define

where HΛ are the Cartan subalgebra generators. Consequently

l=Px-
lHa. (20)
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Therefore the Hamiltonian becomes

gHg-^H-ihΣ (λ, λβ)PxHβ - ̂  Σ (V ^)Hcflβ (21)
oc,β 4 <*,β

The term proportional to h is the same one that appears in A and the h2 is the
constant term in B. Here it appears through a gauge transformation. We also have

^. (22)
& I

Using (20) and (22) we can also calculate

5=gBg-1=iΣe"""'£-.-iΣ£.+ τ Σ (Wβ)HxHβ,
4"' (23)

^g^Γ1= Σ (V WP,-T Σ (V Wtfβ+iΣ^' E-α+iΣ^
α,β ^ a.,β <x a

Finally the reader can check that (18) can be written

- « . (24)
n a _\

We have arrived at this form after adding A to the left-hand side of the equation.
The above Eq. (24) also applies for any power n of Άn = gAng~ 1. Also, it applies

for any representation of the Lie algebra. In order to find operators which
commute with the Hamiltonian H, consider the following properties of the
generators E_α. In any finite dimensional representation of a Lie algebra there is a
highest weight state |/l> and a lowest weight state |I>, such that </l|E_α = 0 and
E_α|J> = 0, for every positive root α.

By taking matrix elements of (24) between these states, we conclude

[ff,<λ|JΪ"|I>]=() (25)

for every power n. These are the conserved quantities.
We therefore have a simple prescription for determining conservation laws:

Starting with a Hamiltonian (9) for any simple Lie algebra we use a low
dimensional represention for the generators Hα, E±a to express A in Eq. (23) as a
matrix. Take powers of this matrix and find the matrix element between the highest
and lowest vectors. One should perhaps note here that the highest state vectors |A>,
have also been used to construct solutions of the classical equations of motion [9].

Since there is an ambiguity with the phases of the £±α, the matrix elements are
not automatically hermitian. We show in the appendix that the operators (λ\Άn\ J>
come out to be hermitian (up to constant phase factors) when evaluated for any
representation of the Lie algebras Bb Cb Dl (I even), E7, E8, F4, G2. For the other
simple Lie algebras we can always choose a representation (e.g. the adjoint) that
satisfies the hermiticity condition.

In order to complete our results we will next have to show that these operators
that commute with the Hamiltonian, also commute with one another.
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5. Commuting Set of Operators

The idea is to modify the original commutation relation (4) in a way that it applies
for the A operator. Let us first introduce the notation,

- T («2
-.— L I ^Γ

~*Λ2' (26)

c0=αΣJVW®#/?

The combination C = C + 4-C_+C 0 isa Casimir-like operator and commutes [4]
with any generator T:

This means that we can add any fraction of C to the P operator without affecting
the fundamental commutation relation (4). Instead of P we take

and therefore

^®l-i/ίP^^(x)l + yCo + ̂ C+-(l(χ)g-1)μ®l)(l®g) + ̂ C+. (27)

The last equation follows from the definition (19) of g and its property (20). To see
this consider only the part of A®\ which does not commute with (l®g):

Σ (λβ λ/l)Hβp/ϊ
Λ,βeA

= Σ OΛ)tfα^(x)l + — Σ (λaλβ)H,®Hβ.

The last term in the sum is precisely — (C0 and this proves (27). We can therefore

substitute (27) in Eq. (4) or (5) and take arbitrary powers n and m and arrive at the
final expression:

[((l®g~1)(>l®l)(l®g) + ι7KC+)^((g®l)(l®^)(g~1®l) — iftC+)m]=0. (28)

We will need this expression rather than (5) for two reasons: first it includes g
and this is desirable since we know that the conserved quantities are not given in
terms of A but A = g^g ~ 1. Secondly in this last commutator we have C + instead of
the operator P. C+ does not mix positive with negative roots; in fact we can find a
tensor product of states which is annihilated by C+:

C+|A>®1=0 and <C+1®|Γ> = 0,

where |A> and |J> are, as before, the highest and lowest weight states of a
representation. Similarly <Z|®1(C+=0 and 1®<A|(C+=0. This is precisely the
property that we want in order to remove (C+ from (28) and find a commutation
relation that no longer contains tensor products: We will take the matrix elements
of (28) between the states </Γ|® <Λ,| on the left and |/1>®|I> on the right. This is
completely analogous to the step that gave us Eq. (25).
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Evaluating the matrix element is straightforward, for example evaluating one
of the products

((g®i)(i®^)(g~1®i)-^c+)^λ>®|l>-(μ>®i)(i(g)gλ~
1|i>,

where gλ = <A|gμ> = exp & ̂  q)).
\2α α /

We omit all details here and just quote the final result for the matrix element of
(28):

*-Un

gμ>,<λ|gΛwg-TO=o. (29)
This proves our claim that we have a set of commuting operators. If we make use of
the hermiticity property (see the Appendix), we can write this in the form

The first non-trival example is SU(3). After a suitable change of coordinates we
can take as our Hamiltonian H = pl+p2—pίp2 + eqί + eq2, with canonical com-
mutation relations [p ,̂ qj\ = — ihdtj. Then in the fundamental representation

Pi 1 0

0 eq2 -p2

1 is the 3 x 3 unit matrix. The matrix element between <A| and | J> corresponds to
selecting the top right element of the matrix. Equation (25) tells us that for any
power n oϊA, this matrix element commutes with the Hamiltonian. We find indeed
that for n = 4 we recover H, and for n = 5 an operator

Π — r»2r

Higher powers of Ά do not produce any more constants.
In conclusion we have shown how to construct Lax pairs in quantum

mechanical systems, and we used it to find conserved quantities for the Toda
molecule, related to all classical or exceptional Lie algebras. We would like to
mention that the same method also applies for the periodic Toda lattice. This
system is known [10] to be related to the infinite dimensional Kac-Moody
algebras. However the last part of our method will have to be modified, because we
cannot find both a highest and a lowest weight state for the representations of these
algebras. Progress will be reported in a subsequent publication.

Appendix

We will here discuss the hermiticity properties of the operators. The position and
momentum operators qa, pa are hermitian, and for the Lie algebra generators we
have + +

(E±a) ^E + ai (^a) = Ha

Therefore A+ =A and g+ =g, and the matrix elements
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We know [8] that for the root systems of the Lie algebras A2, Bb Cb Dl (I even), EΊ,
E8, F4, G2 there is a Weyl group element that transforms each root to its negative.
This means that there is a group element s0 with the following properties:

s0Has^ = H^a=-Ha, (A.2)

s0E±aSQl=-E^a with s£=SQ\s% = i.

s0 permutes the weights, and it is easy to see that it takes the lowest weight state to
the highest weight state:

50|I> = \λy (up to a phase) . (A.3)

(For more details about the s0 we refer the reader to the second paper of [9].)
We can use s0 to write (A.I),

s0-
 2μ> .

But g and A transform under conjugation with s0 as follows:

Sogsvl=g~l and s0Asόl = -A.

We conclude that {λ\gAng~l\λy + = (phase) (λ\gAng~^\Iy. This is the hermiticity
property that we have used. We should note that when we have one of the other Lie
algebras we can still construct an s0 which satisfies (A.3). This s0 takes every simple
root to the negative of another simple root related by an automorphism of the
Dynkin diagram. Instead of (A.2) we have

s0HaSoί=-Ha, a,aΈA9

a-+af an automorphism of Dynkin diagram.

Then everything that we have said applies unchanged, provided that we consider
only representations with highest weight, which does not change under automor-
phisms of the Dynkin diagram.
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