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Abstract. For identity and trace preserving one-parameter semigroups
on the n x π-matrices Mn we obtain a complete description of their "essentially
commutative" dilations, i.e., dilations, which can be constructed on a tensor
product of Mn by a commutative FΓ*-algebra.

We show that the existence of an essentially commutative dilation for Tt is
equivalent to the existence of a convolution semigroup of probability measures
pt on the group Aut(MJ of automorphisms on Mn such that Tt = ίAut(Mn)

αdpr(α)>
and this condition is then characterised in terms of the generator of Tt. There is a
one-to-one correspondence between essentially commutative Markov dilations,
weak*-continuous convolution semigroups of probability measures and certain
forms of the generator of Tt. In particular, certain dynamical semigroups which
do not satisfy the detailed balance condition are shown to admit a dilation. This
provides the first example of a dilation for such a semigroup.

Introduction

Dilations of semigroups of completely positive operators on W*-algebras can be
studied under two different points of view: If the W*-algebras are commutative then
the semigroup of (completely) positive operators can be interpreted as a semigroup
of transition operators, and its Markov dilation turns out to be the corresponding
Markov process. Therefore, from a probability theoretic point of view, a Markov
dilation is a non-commutative Markov process or a quantum Markov process.

On the other hand a semigroup of completely positive operators on a W*-
algebra can be interpreted as an operator algebraic description of an irreversibly
behaving physical system. In this frame a dilation is a larger reversibly evolving
system from which the irreversible system is recovered by coarse graining.

A fundamental problem in non-commutative probability theory is to find all
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stationary quantum Markov processes for a given semigroup of transition
probabilities. Physically speaking the question is what are the possible "heat baths"
which induce on a given quantum system a given irreversible behaviour.

In classical probability theory this "dilation problem" was solved already by the
Kolmogorov-Daniell construction: every semigroup of transition probabilities on a
classical probability space admits precisely one minimal Markov dilation.

In the non-commutative case the situation is not so straightforward. Dynamical
semigroups may admit many, a few or only one dilation, possibly even none at all.

Dilation theory on non-commutative C*-algebras was initiated by the interest in
constructing heat baths (cf., e.g., [Lew 1]) and started with [Eva 1, Eva 3, Eva 4, Dav
1]. Here C*-algebraic versions of dilations have been constructed for any semigroup
of completely positive operators on a C*-algebra. However, no invariant states have
been taken into consideration. The first dilations in the full sense of our definition
appeared in [Emc 1, Eva 2] where the quasifree calculus on the CCR algebra and
CAR algebra has been used for the construction. A general theory of dilations has
been developed in [Kϋm 1] to which we refer for their basic properties. The first
example of a dilation which does not make use of quasifree techniques appeared in
[Kύm 2], followed by [Fri 1, Maa 1, Fri 2], where a dilation has been constructed
for any semigroup on the n x π-matrices satisfying a so-called detailed balance
condition (cf. [Kos 1]). It has been suggested in [Fri 1, Fri 2] that the detailed
balance condition is a necessary condition for the existence of a dilation. In the
present paper it will be shown that this is not so.

This condition of detailed balance originated from the quantum theory of atoms
and molecules, and says that every pair of energy levels, with the probabilities of
transitions between them, constitutes a balanced subsystem. Mathematically this
amounts to the self-adjointness of the generator of the semigroup on the GNS-
Hilbert space, apart from a purely Hamiltonian part. In this paper we shall go one
step towards a general solution of the dilation problem. We consider a dynamical
semigroup {Tt}t^0 on the algebra Mn of all n x rc-matrices, the simplest non-
commutative system, and then ask for all dilations which do not add any further
non-commutativity. We shall call such a dilation "essentially commutative". In the
language of probability theory this means that the Markov process involved is
essentially a classical stochastic process. A related problem is investigated in [Ali 1]
where non-commutative stochastic differential equations are solved by using
classical Brownian motion only.

In the physical interpretation we are speaking of a quantum system which evolves
irreversibly under the influence of a classical heat bath. A necessary condition for a
dynamical semigroup to admit such a dilation is that it preserves the trace on Mn.
This is physically reasonable since a classical heat bath can be viewed as a quantum
heat bath at infinite temperature, which is reflected by the fact that the trace on Mn

describes the thermal equilibrium state at infinite temperature.
A common feature of most dilations constructed so far consists of the fact that

these dilations are obtained by coupling to a shift which has the characteristic
properties of white noise, i.e., different times are stochastically independent.
Moreover, in [Kϋm 2, Kϋm 3] it is shown that in various situations any dilation
is necessarily of this type. Again, in the present paper a crucial step consists in
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showing that an essentially commutative dilation can be described as a "coupling to
white noise" (cf. 1.2). This description is then used in 1.3 to show that essentially
commutative dilations of trace preserving dynamical semigroups {Tt}f^0 on Mn

correspond in a one-to-one way to stochastic processes (αj^o w*tn independent
increments on the group Aut(MJ of automorphisms of Mn starting at the identity,
via the relationship

Tf = E(αf).

This step is entirely in the spirit of [Alb 1] where semigroups on Mn are related to
diffusions on Aut(MJ. These authors, however, restrict to the case of "symmetric
semigroups", i.e., semigroups satisfying the detailed balance condition.

While on commutative W*-algebras a minimal Markov process is already
completely determined by its semigroup of transition probabilities, essentially
commutative minimal Markov dilations are no longer unique. However, the
processes (αr}t^0 are completely characterised by their probability distributions,
forming convolution semigroups {pt}t>Q of measures on Aut(MJ. The problem of
classification of essentially commutative minimal Markov dilations can now be
completely solved by a theorem of Hunt (Theorem 1.4.1), which characterises all
convolution semigroups of probability measures on a compact Lie group by a
description of their generators ft->(d/dt)pt(f)\t=0. His formula for these generators
falls into three parts: a drift term, a Brownian motion term, and a Poisson term. The
decomposition into these terms, however, is not determined by the given semigroup
{Tt}t^Q. But if we write the generators in a fixed basis then the particular expression
obtained for such a generator forms a complete invariant for essentially commuta-
tive minimal Markov dilations (cf. 1.5).

As an illustration let us consider the following example: Let us take n = 2, and for
simplicity consider maps y(z): M2 -» M2 given by

(z)/*n *12\ /> zx1 2\

\*21 *22/ \Z*21 *22 /

For \z\ = l,y(z) is an automorphism, and for \z\ ̂  1 it is still a completely positive
identity and trace preserving map on M2. The image y(Γ) of the unit circle
.Γ={z:|z| = l } i s a subgroup of Aut(M2).

A drift on this subgroup is given by αf = y(eίλt\ (t ̂  0, ΛeR).
A Brownian motion on y(Γ) is for instance αf = y(eίbt), where bt is a real-valued

realisation of Brownian motion, constituting an essentially commutative dilation of
the semigroup {Tt}^0 given by

An example of a Poisson process on y(Γ) is given by y(( — l)Nt\ where Nt is a
realisation of the Poisson process with density λ>0, taking values in N. The
associated semigroup is given by

-rn = o n\
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Choosing λ = % one obtains an example of two processes with independent
increments on γ(Γ) inducing the same dynamical semigroup on M2.

For clarity we prefer to stick to the simple case of semigroups on Mn9 although
the result could be generalised into several directions. In particular, replacing
Aut(Mrι) by a compact group of automorphisms of some von Neumann algebra
would yield similar results.

1. Theory of Essentially Commutative Markov Dilations

1.1. Notation and Main Result. As the objects of a category we consider pairs
(jtf, φ)9 where stf is a ΐ/F*-algebra and φ a faithful normal state on j/.

A morphism M:(j/1,φ1)->(^2,02) is a completely positive operator
M. ja/! -> eβ/2 satisfying: M(D) = H and φ2°M = φ^. In particular, a morphism is a
normal operator.

If {Tjr>0 is a pointwise weak*-continuous one-parameter semigroup of
morphisms of (jtf, φ) into itself with T0 = id^, we call (j/, φ, Tt) a dynamical system.

If, moreover, the operators Tf are ^-automorphisms, we define
T_r:= (Tf)~ 1, so that (Tf}feR becomes a one-parameter group, and we call (X, φ, Tf) a
reversible dynamical system.

Definition. Let (j/, φ, Γt) be a dynamical system. If there exist a reversible dynamical
system (j/, $, ft) and morphisms i:(X, φ) -> (j/, $) and P:(J/, $) -> (j/, φ) such that
the diagram

α

commutes for all t ̂  0, then we call (j/, $9 ft; i) a dilation of (ja/, </>, Γf). If the diagram
only commutes for ί = 0, we call (j/, $9 Tt; i) a process over (X, φ).

Remark. Considering the above diagram for t = 0, one derives that i is an injective
*-homomorphism and i °P a faithful normal conditional expectation of j/ onto i(^/)
leaving ^ invariant.

Let (j/, ,̂ T^ 0 be a process over (j/, φ). For / c R we denote by j/τ the W*-

subalgebra of j/ generated by (J ft°i(<3/). In ([Kίim 1] 2.1.3) it is shown that there
ίe/ ^ ^

exists a unique conditional expectation P7 of j/ onto stf 1 leaving $ invariant.

Definition. A process (j/, < ,̂ ίt; i) over (j/, φ) is called minimal if j/ = J/R. It is called
a Markov process if for all αe^[0ί00) we have

Obviously every process includes a minimal process by restriction to J/R. We
note that a Markov process (j/,(β9ft 9i) over (stf9φ) is automatically a Markov
dilation of the dynamical semigroup P°ft°i [Kύm 1].

In the present paper we consider the following type of dilation.
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Definition. A dilation (j/, $9 ft; i) of (j/, Φ,Tt) is called essentially commutative if the
relative commutant of i(jtf) in j/ is commutative.

Throughout the following we shall take &0 to be the algebra Mn of all complex
n x rc-matrices. In this case every process is a "tensor process"; in the present
situation, since (j/, <β, Γr; i) is an essentially commutative dilation of (j/, φ, Tt\ this
means there exists a commutative VF*-algebra # with faithful normal state ψ such
that j/ = j/ ® ̂ , $ = φ®ψ, i(x) = x ® 11 for c e <£/, and the associated conditional
expectation P is given by P(x ® /) = ̂ (/)^

Since every automorphism of Mn leaves the trace invariant, it is easy to see that
ft leaves tr(χ)^ invariant, where tr denotes the normalised trace on Mn. It follows
that tr is invariant under Tt, and we can assume henceforth that φ = tr.

We are now in a position to state our main result.

Theorem 1.1.1. Let (Mn,tr, Tt) be a dynamical system. Then the following conditions
are equivalent.

(a) The dynamical system (Mn,tτ,Tt) admits an essentially commutative Markov
dilation.

(b) There exists a weak* -continuous convolution semigroup {pt}t>0 of probability
measures on the group Aut(Mn) of automorphisms on Mn such that

T,(x) = J a(x)dp,(a), (xeMπ,ί^O).
Aut(MM)

(c) The generator L of the semigroup Tt = etL is of the form

k I

L(x) = p, x] + £ (ajXdj - {(a]x + xa]}} + £ κ^ufxu{ - x),
7 = 1 i = l

where h and aj (j = 1, . . . , k) are self-adjoint elements of Mn, ut (i = 1, . . . , /) are
unitaries in Mn and κt (i= 1, . . . , / ) are positive numbers.

(d) The generator L of the semigroup Tt = etL is in the closure of the cone generated by
{α-id|αeAut(MJ}.

(e) For all t ̂  0, Tt lies in the convex hull co(Aut(MM)) of the automorphisms on Mn.

We shall prove this theorem in Sect. 1.4, making use of the intermediary notions of
coupling to white noise and processes with independent increments. These will be
introduced in the Sects. 1.2 and 1.3.

1.2. Coupling to White Noise. In dilation theory it often occurs that a Markov
dilation can be decomposed into a white noise and a system coupled to it [Kum 2,
Kϋm 3, Kίim 4]. We shall now show that also in the present situation such a
decomposition can be made.

Definition 1.2.1. A reversible dynamical system (^,φ9σt) with # commutative is
called a white noise if for tl9t2 with — oo^ί 1 ^ί 2 ^oo there exists a W*-subalgebra
^[ίι ί2]of ^ such that

(i) # is generated by (J ̂  _„,„],

(iii) if /e#[tl,,2], ge<$lt3ι,4], then ψ(fg) = ψ(f)ψ(g) whenever t2 ^ t3.
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Moreover, if (<&9ψ9σt) is a white noise, a function α from IR + into the inner
automorphisms of Mn®^ which is continuous for the pointwise weak*-topology
on Aut(Mn®^), is called a coupling of Mn to (^9\l/9σt) if

(iv) α ί l + f 2 = α ί l o(id®σ t l )o α f 2 o(id® σ _ ί ι ) for ί l 9ί2^0;
(v) for 0 g ί <; oo the P^*-algebra Mn®^[0jt] is generated by

Theorem 1.2.2. There is a one-to-one correspondence between
(A) essentially commutative minimal Markov processes (j/9$, ft',ί) over (Mw,tr),

and
(B) white noises (#, ψ9 σt) with a coupling α, to Mn9

in such a way that j/ = Mn ® #, $ = tr®^, / = id®H, and

f f = α f°(id®σ f), (f^O).

Proo/. From (A) to (B): As (j/, $9 T,; ϊ) is essentially commutative, it must be of the
form (Mπ®#,tr®^,f ί;id®1l).

The center D ® ^ of si is globally invariant under Tf,(ίeίR), and we define
σ = {σJ^R as the automorphism group of (#, ̂ ) induced by the restriction of ft to

Then α,:= tr °(id ® σ_ f ) is an automorphism of the type I algebra Mn®Ή leaving
its center pointwise fixed, hence it is an inner automorphism. The pointwise weak*-
continuity of t\-+σt implies the pointwise weak*-continuity of ίi-xx, for ίeR. From
the group property of ft and σt one easily derives the cocycle property (iv) of αt with
respect to σt.

Now we define #[0>ί] c ̂  by

iti.trf- ^ι*[o.t2-tl]9 (- oo < ̂  ̂  ί2 ̂  oo);

Then (̂ , ̂ , σ,) is a white noise: condition (i) is an immediate consequence of the
minimality property of the dilation, while condition (ii) is satisfied by definition. To
prove (iii), Iet/e#[flιί2] and ̂ 6^[ί3?ί4]. Then by the Markov property and the module
property of conditional expectations, we obtain

= $1 ® fg) =

From (B) to (A): Conversely, let a white noise (# , ι//, σr) coupled to M „ by αf be given.
We must show that (MrJ®^,tr®^,α ί°(id®σ ί);id®1]) is a minimal Markov
process over (Mn,tr).

The group property of T,:= α^ίid ® σf) follows from the cocycle property (iv) of
αr By (v), V ί'toi(Mn) = Mll®*[oi00), and since T_,(1 ®*[0f00)) - 1 ®«7

[- ί fβo)> the
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minimality property follows from (i). As j/(_ ̂ ^ = Mn® #(_ ̂ ^ it follows from (iii)

that for x ® / e ^ o α o = ^ M ® ^ O O O we obtain

which proves the Markov property. It is now clear that the stated correspondence is
one-to-one.

1.3. Processes on Aut(MM) with (Stationary) Independent Increments. We shall now
show that a white noise with coupling to Mn can be considered as a stochastic
process with values in Aut(MJ, having independent increments.

Indeed, because Ή is a commutative von Neumann algebra, it can be written as
L°°(ί2, Σ9 μ) for some probability space (Ω, Σ, μ), such that μ induces the state if/. In
this setting the inner automorphisms {αt}t^0 of Mn®^, as they leave its center
1 ® L°°(ί2, Σ, μ) pointwise fixed, are to be interpreted as random variables on
(Ω,Σ,μ) with values in Aut(MΛ). We shall see that this defines a process with
stationary independent increments α"1-^, (s^t). Its transition probabilities are
described by the measures pt = p", (ί ̂  0), given by

PΪ(B) = $χB(κt(ω))dμ(ω\ (3.1)
Ω

where χB denotes the characteristic function of a Borel subset B of Aut(Mn).

Theorem 1.3.1. The relation α M pα defines a one-to-one correspondence between

(B) white noises (^,ιf/,σt) with coupling α, ίo Mn,
(C) weak* -continuous convolution semigroups of probability measures {pj^o on

Aut(MJ.

Proof. From (B) to (C): Define the sub-σ-algebras Σ[Stt] of Σ by

Then for all xeMn we have α ί(x®1)eMΛ®^[0)r]. Therefore the function
ωh^(αr(x®H))(ω), and hence also ω(-^ξ(αί(x®H)(ω)) = /;C)(,

oαί(ω) with fXtξ(a,):=
ξ(a(x)) is Σ[θ5ί]-measurable for all ξeM*. As the functions {/X j ( ? |xeMΛ,ξeM*}
algebraically generate L°°(Aut(Mn),^), where ^ denotes the Haar measure on
Aut(MJ, we have/oαίe^[θ5ί] for all /eL°°(Aut(MJ,^). Similarly, as

we have for all

Therefore

hence αf and (id® cr^oa^iid® σ _ t ) are independent random variables on (Ω,Σ,μ).
By definition αt induces pt and from the invariance of \j/ under σt it follows that
(id ® σί)°αs°(id ® σ _ f ) induces ps on Aut(MJ. Now from the cocycle property (iv) of
αr the semigroup property p r*p s = pt+s follows.



8 B. Kϋmmerer and H. Maassen

It remains to show the required continuity. Since {pr}r>0is a semigroup, it suffices
to prove that for all closed subsets E of Aut(MJ not containing id, we have

\impt(E) = Q.
tio

We may confine ourselves to E of the form

EXtδ = (αeAut(M,,)|tr((α(x) - x)*(α(x) - x)) ̂  δ}9 (xeMM, δ > 0),

and we shall use a version of Chebyshev's inequality.
We have for all αeAut(MJ,

Therefore we obtain for ί > 0,

Pt(Ex,s) = ί XEXtΛ(<*t(ω))dμ(ω) ^ - J tr((αf(ω)x - x)*(α,(ω)x - x))dμ(ω)

1
= -il/((at(x ® D) - x ® D)*(α,(x ® H) - x® 1)),

d

which tends to zero as ίj,0.
From (C) to (B): Conversely, let a weak*-continuous semigroup of measures

{pjt^o on Aut(Afn) be given. Then a left-invariant transition probability Πt on
Aut(MΛ) is defined by Πt(β, B) = ρt(β'lB\ where βeλut(Mn) and 5 is a Borel subset
of Aut(MJ. By the Kolmogorov-Daniell construction there exists a minimal
process {αt},^0 with values in Aut(Mn) on a probability space (Ω+,Σ+9μ+) with
transition probabilities {Πt}t^Q and initial value α0 = id. This process is unique up to
equivalence. We may realise Ω+ as

Ω+ = {ω:U+ -> Aut(MB)|ω(0) - id},

and αf:ί2+ ^Aut(Mw) by at(ω) = ω(t). Then time translation σr

+:(ί2+,μ+)->
(Ω + , μ + ):(σί

+ ω)(s) = ω(ί)~ 1 ω(s + t\ (t ̂  0), induces a semigroup of injective
*-homomorphisms σt

+ from L°°(ί2 + , Σ + , μ + ) into itself leaving μ+ invariant. This
shift σ,+ is uniquely determined by the requirement (iv):σr

+ (/°αs) = /°(αί~
 1 °αί+s). It

is well known that there exists a unique extension (Ω,Σ,μ) to negative times of
(Ω + , Σ1

 + , μ + ) on which σr

+ extends to a group σt of automorphisms of (̂ , ψ), where
ί? = Lco(Ω,Σ,μ) and ^ is induced by μ. Finally, define the sub-algebras #[s>ί] by

)}, (-00 <s^ t^ oo);

Let us now check the validity of the conditions (i)-(v) in Definition 1.2.1.
Condition (i) follows from the minimality of the process αt, while conditions (ii) and
(iv) are satisfied by construction. Condition (iii) is a consequence of the independence
of the increments αt and αί~

l α ί+s = (1l ®σt)°αs°(1l ® σ _ f ) together with the inva-
riance of φ under the time translation σt.



Dilations of Dynamical Semigroups 9

In order to check (v), put «fi/ [0 f f] = V {αs(Mw® 1)|se[0,t]}. Choose xεMn and a
pure state ξ on MΛ, and define as before fXtξ: Aut(MJ->C:αh->£(α(x)). Denote by p
the support projection of ξ, and let u be a unitary in Mn with the property

p + u*pw + (w*)2pw2 + . - + (u*)n ~ipun~1=ί.

Since p®1,M®1l and αs(x), (se[0,£]), are elements of j/[0)ί], the element
Λ - l

again is an element of [̂0,ί]. As the functions fXtξ generate U°(A\ιt(Mn),η), the
elements H ® / °αs are in eβ/[0>f] for all/eL00(Aut(M/J), η). Since also Mn ® H c ̂ /[0>ί],
condition (v) follows.

Finally, the bijectivity of the correspondence between pt and αt follows from the
observation that in the above construction from (C) to (B), pt is the image measure of
α f, so that it is regained in the construction from (B) to (C).

1.4. Proof of the Main Theorem, (a)o(b): Let (j/, $, T f;i) be an essentially com-
mutative minimal Markov dilation of (Mn, tr, Tt). We have constructed in Theorems
1.2.2 and 1.3.1 a weak*-continuous convolution semigroup of measures {pt}t^Q on
Aut(Mπ). Using the notation introduced in Sects. 1.2 and 1.3 we may now write, for
all xeMn and ί^O,

Tt(x) = P o t o f (x) = p(αf (x ® 1 ) ) = J «f (ω) (x)dμ[ω) = J α(x)dpt(α).
β Aut(Mn)

Conversely, suppose that Tr is of the above form. Then an essentially
commutative minimal Markov dilation of (Mn, tr, Tt) is obtained by the reconstruc-
tions in Theorems 1.2.2 and 1.3.1.

(b)=>(c):This part of the proof mainly consists of an application of a theorem by
Hunt [Hun 1]. In order to formulate it we need some notation.

Let ^n be the Lie algebra of Aut(Mw), to be represented by the skew-adjoint
elements in Mn with vanishing trace. We choose a basis {dl,...ίdn2-1} of J5? „ with

Let Cfc(Aut(Mn)) be the space of all fc times continuously differentiable complex
functions on Aut(MJ. The basis element dt induces a derivation on C2(Aut(MJ)
given by

α) -/(«)), (αeAut(Mn)), /eC2(Aut(MJ).
ί|0

In C2(Aut(Mπ)) there exists a function φ with the properties

(DiDjφ)(id) = δiJ; φ>0 on Aut(MΛ)\{id}. (1.4.1)

Note that for a measure v on Aut(Mn)\{id} the condition

J φ(α)dv(α) < oo
Aut(Mπ)\{ιd}

does not depend on the choice of φ. If a measure v satisfies the above condition, it is
called a Levy measure. Finally, we choose functions g ίeC2(Aut(MJ) with the
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properties

.̂(id) = 0; Digj(id) = δij.

In all the above formulae the indices i andy range between 1 and n2 — 1. For short let
us denote the integral J f(ά)dpt(oi) by pt(f\ /eC0(Aut(Mπ)).

Aut(Mn)

Theorem 1.4.1 (Hunt). Let {pt}t^0 be a weak* -continuous semigroup of probability
measures on Aut(Mn).

Then there exist real numbers ct (i= l,...,n2 — 1), a positive semideβnite sym-
metric (n2 — 1) x (n2 — l)-matrix b = {b^} and a Levy measure v such that for all
/eC2(Aut(MJ) the derivative (d/dt)pt(f)\t=0 exists and is given by

+ f (f(*)-m)-ΣgMDιf(ft))dv(*) (1-4-2)
Aut(Mπ)\{id} i = 1

Conversely, if {cf}, {by} and v satisfy the above conditions, then (1.4.2) determines
exactly one convolution semigroup {pt}t^Q of measures on Aut(MJ.

We now apply this theorem to the function f X ί ξ : Aut(Mn)-^
xeMn,ξeM*. Note ihatfXtξGC2, and therefore we easily find that

Pt(fx,ξ)= J ξ(oc(x))dpt(κ)
Aut(Mn)

{([-dl,x]X and

where [α, b~\ denotes as usual the commutator ab — baoϊa and b in Mn.
Since this is true for all linear forms ξ on Mn we find

A n2 — 1 n2 — 1

T(V)| = V r [ — d x~\ 4- Y b Γd Γd xllj, f v / I f —0 /_/ IL 15 J /„, ijL ι > L j j JJ
at i=l ij=i

+ J (θφc) — X + Z ^i(α)[^i5χ])^v(α) (1.4.3)

Aut(Mπ)\{id} i = 1

We first cast the second term on the right-hand side in its final form by
diagonalisation. Since {b^} is a real positive semidefinite matrix there exists an
orthogonal matrix {£//_/} such that

Λ = l

for some βk ^ 0, (k = 1,..., n2 — 1). Putting ak\— ̂ βkΣ Ukjdj and writing out the
j

double commutator, one obtains

Σ^ijC^i' IX/'χ]] = Σ(ajxaj ~ \(a]x + x^))

Next we shall discuss the third term in (1.4.3), which we shall call G(x), G being an
element of the space &(Mn) of linear maps Mn-^Mn. Let D denote the linear map
from &(Mn) to the space &(Mn,Mn',Mn) of bilinear maps Mn x MM-> Mn given by

D(L)(x, y) = L(xy) - xL(y) - L(x)y, (Le^(Mn); x, y eM J.
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The bilinear form D(L) was introduced by G. Lindblad [Lin 1] and is called the
dissipator of L. Obviously, D(L) = 0 if and only if L is a derivation, i.e. if L is real then
L(x) = i[h,x] for some self-adjoint element h of Mn,

Let tf denote the (non-closed) convex cone in J*(MM) generated by
(α — id|αeAut(MJ}. Since D is linear and continuous we have

D(G)= J £(α-id)dv(α).
Aut(Mw)\{id}

Now define the norm ||| ||| on &(Mn) by

=- £
nij=l

where {eί7 }"7 = 1 are the matrix units spanning Mn. Calculations show that the
function 0eC2(Aut(MJ) defined by

satisfies the conditions (1.4.1), so that φdv is a finite measure on Aut(Mπ). On the
other hand, for all oceAut(MJ and x,yeMn we have

D(α - id)(x, y) = (α(x) - x)(φ) - y).

As all norms on the finite dimensional vector space ^(Mn) are equivalent,

is uniformly bounded on Aut(Mπ)\{id}. Therefore the integral

D(G)= J
Aut(Mπ)\{id}

is well-defined and lies in D(jf). It follows that G = Gx -h i[/h, •], where G1 e Jf and
/τ1 = /ιfeMM. As JΓ is finite-dimensional there exist /eN, κ;t >0, (i = I , . . . , / ) and
unitaries w f (ί = 1, . . . , /) such that

/
GI(X)= Σ ίCίίwfxUf-x).

1 = 1

Finally, putting h = Σc^ΐ + /ii we obtain the desired conclusion.
(c)=>(b): Let Tt = etL with L as in (c). There exists a real positive semidefinite

matrix {bij}[^J^n2_{, such that

k n2- 1

Σ (ajxaj - ^(ajx + xaj)) = Σ btjldι> ίάp XΉ
7 = 1 U = l

Let us define, for a unitary ueMn, an element Adt/eAut(MJ by (Adt/)(x) =
w*xw. By the converse part of Hunt's theorem (cf. Theorem 1.4.1), there exists a
weak*-continuous convolution semigroup of probability measures {A}{>O with the
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property that for all /eC2(Aut(MJ),

Now let T't(x}\= J tt(x}dpt(a\ (xeMJ. In the proof of (b)=>(c) it was shown that
Aut(Mn)

Hence T't=Tt.
(c)o(d): Denote by Jf the cone generated by (α — id|αeAut(MJ} and let 3f be

its closure.
In order to prove the implication (c)=>(d) it suffices to show that x H» i[/z, x] and

x\-*axa — ^(a2x + xa2) are in tf for self-adjoint h and a in MnίxeMn. Indeed, we
have

i[/ι,x] - — (eiht-x e'iht)\t=0 - lim-(e i h t 'X e~ίht- x),
f 10

and

1 ίat _.at

no 2ί

To prove that (d) implies (c), let the linear functional τ on 3$(Mn9 Mn; Mn) be defined
by

_ 1 "

where {e^}^,^^ is a system of matrix units spanning Mn. Note that τ(D(α —id))
= φ(ot) for αeAut(MJ. Let ffl denote the hyperplane in &(Mn,Mn;Mn) given by

Then for all αeAut(MJ\{id} the ray {λD(α-id)|λ ̂  0} intersects tf in the
point D(α - id)/φ(a). As was noted in the proof (b)=>(c), the set :̂=
{jD(α-id)/φ(α)|αeAut(MJ\{id}} and hence #:=D(^)nJf = co(<?) is a bounded

set in ̂ (Mπ, MΛ; Mπ) forming a base for the cone D(Jf ). The closure ̂  = D(jf ) n J^
= D(e^) n ffl is a compact convex set now forming a base for D( Jf*). (Note that in
finite-dimensional vector spaces the image of closed sets under linear maps is closed).

Obviously it is enough to prove the assertion (c) for an element L on an extreme
ray of JΓ. Now either D(L) = 0, in which case L(x) = i[h9x] for some self-adjoint
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heMn and all xeMn so that (c) holds, or D(L)^0. Then, by multiplication by a
suitable positive number we may assume that D(L)e^, and hence that D(L) =:Ais an
extreme point of <$. As # is a subset of a finite-dimensional vector space, it is well

known that $ — ̂ o(^) = co(<?) = co(<?). Therefore we have Aeiί.
Let {αJιeN be a sequence of automorphisms in Aut(Mn) such that

{Dfai — idyφία,')}^ c= δ tends to A as z -> oo. By restriction to a subsequence we may
assume that {αf }/eN itself converges to some automorphism α0. Either α0 7^ id, then
At$ and hence L(x) = i[/ι,x] +(l/φ(α0))(α0 -id)(x) for xeMn, proving (c). Or
α0 = lim αt = id. Since

i->oo

4>(α) = τ(D(α-id)) = -!- f tr((α - id)(ey)*(α - id)(ey))

= 7- Σ tr((flΓ J - id)(ey)*(α- 1 - id)(ey)) = φ(α- 0,

for αeAut(Mπ), we obtain

>4(x, y) = lim (α, - id)(x)-(αi - id)(y)/φ(*j
i-> oo

= lim α,.((αf 1 - id)(x) (α(- ' - i
ΐ-* oo

= lim (αf J - id)(x) («Γ ' - i
i^oo

Therefore

A = lim D(^ - id)/φ(αi) - lim
i -> oo i -» oo

= lim

is the limit of dissipators of self-adjoint generators, i.e. generators L' satisfying
tϊ(xL'(y)} = tτ(L'(x)y) for x,yeMn. As the set of self-adjoint generators is closed in

n) it follows that A = D(L0) for some self-adjoint L0. It is well-known (see, e.g.,

[Kos 1]) that such an L0 can be written as L0(x)= Σ ajxaj~\(a]x + xaj) for

elements α,- = aJeMn, (1 ̂ 7 ̂  k,xeMn). Finally, L(x) = i[7ι, x] + L0(x) with heMn

self-adjoint and xeMn, which proves our assertion for this case.
Note that L, being mapped into an extreme point of if, even has to be of the form

L(x) = i[h, x] + axa — ^(a2x 4- xa2) for a single self-adjoint aεMn.
As the implication (b)=>(e) is trivial, we end the proof by showing (e)=>(d).

If τt = ̂ L, then L = lim (Tt - id)/ί. Assuming that Γteco(Aut(MΛ)), we obtain for
ίjO

each fixed ί>0: T r= ]Γ /l-α^ for some positive numbers λf with ^A t =1 and
i = l
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J. Hence (Tf-id)/ί = (l/ί) X A^ -id), which shows that L can be
i = l

approximated by elements in the cone jf.

1.5. Classification of Essentially Commutative Dilations. As was demonstrated in
the introduction there may be several convolution semigroups of probability
measures on Aut(MJ leading to the same dynamical semigroup {Tj on Mn.
However, there is a one-to-one correspondence between essentially commutative
dilations, convolution semigroups on Aut(MΛ) and certain forms of generators of
semigroups on Mn.

Theorem 1.5.1. Let dl9...9dn2-1 be a fixed basis of the Lie algebra &n o/Aut(Mw)
such that tτ(dfdk) = δjk. Choose functions gί,...9gn2-1EC2(Aut(Mn)) with the
properties g^id) = 0 and (D^ Xid) = δij9 where Dt is the derivation on C2(Aut(MJ)
induced by dt (compare Theorem 1.4.1). Let (Mπ, tr, Tt) with Tt = etL be a dynamical
system. Then there exists a natural one-to-one correspondence between

(a) essentially commutative minimal Markov dilations o/(MM,tr, T,),
(b) convolution semigroups {pt}t^Q of measures on Aut(MJ, such that

T,(x)= j x(x)dpt(a),
Aut(Mn)

(c) triples ( h 9 { b i j } l < i j ^ n 2 _ ί 9 v ) } where h is a self-adjoint element of Mn,{b{j} a real
positive semidefinite matrix and v a Levy measure (cf. 1.4), such that for all xeMn:

+ j (α(x)-x-t- Σ &(α)[d/,x])dv(α).
Aut(MM)\{ιd} ί= 1

Proof. The one-to-one correspondence proved in Theorems 1.2.2 and 1.3.1 leads to
the biunique correspondence between (a) and (b). From the converse of Hunt's
Theorem 1.4.1 any triple (h, {έ>ί; }, v) uniquely determines a semigroup {pt} such that

Tt(x) = \ a(x)dpt(oί). On the other hand we have shown in Sect. 1.4, (b) =>(c), that
Aut(MH)

every pt comes from some triple as in (c).

2. Discussion

In this chapter we discuss various aspects of the main result.

2.1. The Constituents of an Essentially Commutative Dilation. The generator in
Theorem 1.1. l(c) is built out of three different types of elementary generators of the
following forms:

Lx(x) = axa — ^(a2x + xa2\ (a self-adjoint);

L2(x) = w*xw — x, (u unitary);

L3(x) = i(xh — hx\ (h self-adjoint).
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The corresponding semigroups can easily be brought into the form
x H> j tt(x)dpt(a) as

Aut(Λf n )

<?Llί(x) - $e~ias'X eίa

/2πί

"" V 'V / ' / i \~" J "v "" ~Γ ° 5

For these elementary cases the construction in Sects. 1.2 and 1.3 reads as follows:

Since eL^ already is a group of automorphisms it is its own dilation.
For i = 1,2 we define (Ω^Σ^μ^σli {^} 0̂):
(ΩhΣhμi) is a probability space (i= 1,2):

{Xt}t>o is a Brownian motion inducing the measures e~s2/2tds on IR;
x/2πί

00 ^«

?}ί^o i§ a Poisson process inducing the measures ]Γ — e"^^ on f^l c IR;

:J}ίeR is a group of measure preserving transformations of (Ωi9Σί9μ^ such that
Xl

t + XgVσi (ί,s^0) and Σ1; is generated by {Jίjoσ^|ί ^0,se[R}, (i = 1,2).

Now we put % = L°°(βί5 Σhμt)9 define t/r f as the state on % induced by μ ί5 and define

Then (^j, ίAi,σ|) becomes in a canonical way a white noise in the sense of 1.2.
Moreover, define α/(x):= e\p( — iaXϊ) x exp(iaXϊ) and a2(x):= (u*)Xt -x uXt, then α|'
is a coupling of Mn to (% , ̂ f, σ{) which obviously yields an essentially commutative
minimal Markov dilation of exp(Lt ί) as in 1.2.2. Finally, we remark that the above
forms of the generators, the convolution semigroups of measures and the
constructed dilations correspond to each other in the sense of Theorem 1.5.1.

As a further step let L be a finite sum of generators of the above-mentioned three
elementary types. Then on the tensor product of the dilations of these components
we can construct a dilation of eu by a well known technique from perturbation
theory ([Fri 2]).

Therefore, even in the general case where the generator is of the form described in
1.5.1(c), containing infinite sums or integrals, the dilation may still be understood as
being composed of the constituents described above. In particular, the dilation
consists of a Brownian motion, a Poisson process, and a drift.

2.2. Dynamical Semigroups on (Mπ,tr) Admitting an Essentially Commutative
Dilation. A natural question in view of the main result in Sect. 1.1 is whether or not
all dynamical systems (Mn,tr, Tf) admit an essentially commutative dilation, or
equivalently, whether all generators L of dynamical semigroups on (Mπ, tr) are of the
form

k m

L(x) = i[h, x] + X (ajXaj - ^(ajx + xa2)) + X φfxu, - x),
7=1 1=1



16 B. Kummerer and H. Maassen

with /ι, aί,...,akeMn self-adjoint, ul9...,umεMn unitary and κl,...,κm positive real
numbers.

In the present section we show that this is not the case, and add a few remarks
discussing this result.

For ceMn we denote by Lc the generator given by

Lc(x):= c*xc — ^(c*cx + xc*c), (xeMn).
n

If c is normal and given by £ y^ for some system of matrix units {eί7 }"7 =ι of Mn
i=l

and complex numbers γh then one easily calculates that the dissipator D satisfies:

D(Lc)(eip ejk) = (yt - yj)(yk - y>ίk, (1 £ ij, /c £ n). (2.2.1)

Proposition 2.2.1. The following conditions are equivalent:

(a) T/ie semigroup etLc admits an essentially commutative dilation.
(b) The element c is normal and its spectrum lies either on a circle or on a straight line

in C.

Proof. (b)=>(a): Condition (b) implies the existence of complex numbers λ and μ
such that c = λb -f μ H with b either unitary or self-adjoint. Since Lc can be rewritten
as Lc(x) = ι[/ι,x] 4- \λ\2-Lb, where /i = (l/2i)(μlb* — μλb\ the assertion follows from
the main theorem.

(a) => (b): As D(LC) is on an extreme ray of the cone of dissipators, it follows from
the main theorem that D(LC) = D(Lh), where b is either a multiple of a unitary or self-

n

adjoint. We may write b= Σ &£« as above. It follows that D(Lc)(eii9ejj) = 0,
i= 1

hence Lc(ea) = 0, since Lc is a bounded derivation on the maximal commutative
algebra 3F generated by the projections eu,l^i^n. Therefore γ(c*cx-hxc*c) =
c*xc is positive on the positive elements x oί^, hence c*ce 3F . It follows that for all
ϊ, l ί g i r g n , there exists A t ^0 with c*eίίc = ̂ (c*ceii + eitc*c) = λieih hence
Now we apply (2.2.1) to both b and c and conclude that

Hence there exists an isometric transformation in the complex plane between the
spectra of b and c. As the spectrum of b is either on a circle or on a line, the assertion
follows.

Remarks. If the spectrum of ceMn lies on a line, the semigroup etLc admits a dilation
involving a Brownian motion (and a drift). If it lies on a circle, etLc can be dilated
using a Poisson process (and a drift). The approximation of a line in the complex
plane by circles thus corresponds to the approximation of a Brownian motion by
(compensated) Poisson processes.

If the spectrum of c lies neither on a circle nor on a line, etLc does not admit an
essentially commutative dilation. From the equivalence of (a) and (e) in the main
Theorem 1.1.1 it now follows that for some t > 0 (and this must be for t small) the
operator etLc does not lie in the convex hull of the automorphisms on Mn. It does not
seem easy to reach a conclusion like the latter by other means.

The equivalence of (b) and (e) in Theorem 1.1.1 can be looked upon as the
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solution of a lifting problem: every continuous semigroup in co(Aut(MJ) can be
lifted in a continuous way to a convolution semigroup of measures on Aut(MJ.

2.3. Dilations and the Detailed Balance Condition. Up to the present day dilations
have been constructed of dynamical semigroups (Mn, φ, Tt) only for the case where
{ΓJ^Q satisfies the detailed balance condition with respect to φ (cf., for
instance, [Kum 2, Fri 1]). This condition may be formulated as follows ([Kos 1]).
Let for any operator N on Mn the ^-adjoint N+ be defined by the identity φ(x*N(y))
= φ(N + (x*)y). The semigroup etL is said to satisfy the detailed balance condition
with respect to φ if L+ — L is a derivation, or equivalently if D(L+) = D(L).

Moreover, it was conjectured that only these dynamical systems possess a
dilation. The following proposition, in conjunction with Proposition 2.2.1, dis-
proves this conjecture.

Proposition 2.3.1. Let c be a normal element of Mn. The following statements are
equivalent:

(a) The semigroup etLc satisfies the detailed balance condition with respect to the trace
on Mn.

(b) The spectrum of c lies on a straight line in the complex plane.

Proof. Let {^j}?j=i denote a basis of matrix units in Mn on which c has the form

c = Σ Ί£n. Since D(LC

+) - D(LC*) and c* = Σi^ , we have by (2.2.1):

The detailed balance condition D(L*) = D(LC) is therefore equivalent to

(y ί - y / ) ( J k - 7/)eR, (i J, fc = 1,..., n).

This is the case if and only if the differences {y{ — y/}"^ i all have the same phase, i.e.
if the points γ1,..., γn lie on a line.

A consequence of the above proposition is that the semigroup eίLu, where u is a
unitary in MΛ, satisfies the detailed balance condition with respect to the trace if and
only if the spectrum of u contains only two points. Consequently, for n ̂  3, there
exist semigroups on (Mπ, tr) which do not satisfy the detailed balance condition and
still admit an essentially commutative Markov dilation.

A specific example (cf. also Sect. 2.6) is provided as follows: Put q\— e2πl/3 and
define unitaries in M3 as

M 3 :

3

Defining the generator L as L(x) = £ ̂ (ufxut - x), (xeM 3), then L is explicitly given
ί = l



18 B. Kummerer and H. Maassen

as

/ V Λ/ Λ/ \ /-vy A Γ\ \ /-»^ -y.
X12

31

and we obtain

(X33 ~~ X22

o

0

Assume now that ^(L — L+)(x) = i(xh — hx) for some self-adjoint element heM3.
Then we obtain heίj = eijh for the matrix unit etj (i^j\ hence also heti =
he^βji = βijhβji = eijββh = eith which contradicts the requirement i(elίh — he11)
= ^(e22 — £33)- Therefore L violates the detailed balance condition, as one already
expects when interpreting the generator L in terms of transition probabilities (cf.
Sect. 2.6).

2.4. Quantum Stochastic Differential Equations. Many Markov processes in con-
tinuous time satisfy stochastic differential equations. Also in the non-commutative
setting the Markov dilations known up to now satisfy certain quantum stochastic
differential equations in the sense of Hudson and Parthasarathy [Hud 1, Maa 1]. It
is not to be expected in general that the solutions of these equations exhaust the class
of all stationary quantum Markov processes. However, the results in this paper
show that at least in the essentially commutative case for semigroups on Mn this is
indeed so. To make this clear it suffices to indicate here how all three types of
dilations (Brownian, Poisson and drift) come out as special cases.

Consider the symmetric Fock space J^ over L2([R) with vacuum vector Ω. Let
{σt}teR denote the group of automorphisms of J^) induced by the right shift on
L2(1R). Hudson and Parthasarathy define a stochastic integration on Mn®&(3?}
with respect to dA*,dΛt and dAt, thereby giving a meaning to equations involving
these differentials and at.

Now let us consider a dynamical semigroup etL on Mn whose generator L is given
by

L(x) = v*xv — ̂ (v*vx H- xv*v)9 (veMn).

Then a C*-version of a Markov dilation

is obtained by putting

ί; = Adw f ° (1 l®σ f )

where [ut}t^Q is the solution with initial condition u0 = U of the quantum stochastic
differential equation

%v*v®] dt)u^ (2.4.1)
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for some unitary element w of Mn.
Now if we substitute w = U and υ = ia, we obtain

dut = (ia ® dBt - ^a2 ® ί dt)ut9 (a = a*eMn)9 (2.4.2)

where Bt:= Λf + At is isomorphic to classical Brownian motion with respect to the
state tr ® vac, where vac denotes the Fock vacuum state on <%(3F\ On the other
hand, putting v = λ(w — 1), (λ > 0) we obtain

t, (2.4.3)

where Nt = λBt + Λt + λ2tΛ is isomorphic to the classical Poisson process with
intensity λ2 with respect to tr®vac([Hud 1]).

On the other hand, it can be shown that the requirement that the von Neumann
algebra generated by Mn ® H and {ut}t >0 is of the form Mn ® Ή with # commutative
imposes the following restrictions:

either w = 1 and v* = eίθv, (θ e (R),

or υ = λ(w-^)9 (λeC).

Equations (2.4.2) and (2.4.3) yield dilations of etL with

L(x) = axa — ^(a2x + xa2\ and L(x) = Λ2(w*xw — x)

respectively. We note that in these cases tr®vac is TΓinvariant only in its
restriction $ to Mn®^ . In general the invariance of $ is not guaranteed in the
Hudson-Parthasarathy construction.

2.5. Tensor Dilations of Semigroups on L°°(Aut(Mn),^). Let Jf = L°°( Aut (Af „),*/),
where η is the Haar measure on Aut(Mw) inducing a state, χ say, on 38. Then to a
convolution semigroup {pt}t>Q of probability measures on Aut(Mn) there corre-
sponds in a one-to-one fashion a left-invariant dynamical semigroup {S,}̂  on
( J>, χ) given by

(Sf/)(α)= j f(*β)dpj(β), (αeAut(MB)).
Aut(Mn)

The (commutative) Markov dilation oϊ(&,χ,St) is closely related to the essentially
commutative Markov dilation of (Mπ,tr,Jαdpf(α)) which corresponds to {pt}
according to Theorem 1.5.1. In this section we shall indicate how.

In the part from (C) to (B) of the proof of Theorem 1.3.1 a probability space
(Ω, Σ, μ) was constructed with a group of measure-preserving transformations σr (we
realise Ω as (ω: R -> Aut (Af „) | ω(0) = id) and extend σt

+ to the whole ofΩ). This leads
to a white noise (#, ψ, σt) with coupling αt(ω) = ω(ί) to Mn9 where ̂  = L°°(ί2, U, μ) and
σtf =/°σ f, and ̂  is the state on ̂  induced by μ.

The Markov dilation of (β> χ, Sf) is now given by ( $ (x) #, χ (x) ι/^, ̂ r id (x) H ), where

(§tg)(β,ω) = g(β<φ>), σt(ω)\ (ge@®%, j?eAut(Mπ), ωeA ί ̂  0),

Note that this dilation is minimal, because the functions St(f ® H): (j?, ω) ι-> f(βa.t(ω))9
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(f eR), generate SP®<6. Hence we have here a minimal tensor dilation in the sense of
[Kiim 1] of a classical diffusion semigroup on Aut(MM).

This dilation is easily recognised as a stationary Markov process on Aut(MJ as
follows. Let Ω' be the space of all paths ω'\ R -> Aut(MJ, without the restriction that
ω'(0) = id. Then we may identify a pair (/?,ω)eAut(Mn) x Ω with the path
ωΈΩ':s\-+βω(s\ so that the transformation on Aut(MJ x Ω given by
(/?,ω)H-»(/?αr(ω),σt(co)) = (βω(t\ω(t)~lω(- + ί)) reduces to a straightforward shift
(σjω')(s) = ω'(s + ί) on Ω' and moreover S'tg = g°σ't. The measure η®μ on
Aut(MJ xΩ becomes a shift-invariant measure μ' on Ω' and ^(x^^L00^',//).

The probability measure μ' is the Kolmogorov-Daniell measure on the space Ωf

of all paths in Aut(MJ associated to the Markov process with transition
probabilities Πt(β9 B) = pt(β~ 1B)9 βεAut(Mw), B a Borel subset of Aut(Mw). The fact
that it is possible to construct a tensor dilation of (OS, χ, St) comes from the property
that St commutes with left translations on Aut(Mn). This means that the process
looks the same, independently of its starting point.

2.6. The Violation of Detailed Balance. One of the physical interpretations of an
essentially commutative Markov dilation of a dynamical semigroup on Mn is that of
an atom or molecule with n energy levels, coupled to a stochastic classical radiation
field ([Kύm 2], compare also [Maa 1]). Usually such a system is described by
means of the Schrodinger equation

^Wr(ω) = ί h + Σ EJ

t(ω)pj \ut(ώ).

Here pjβMn (j = 1,2,3) are the components of the dipole moment of the molecule
and h = /z*eMπ is its free Hamiltonian. The electric field Et: Ω -> 1R3 and the unitary
evolution ut:Ω -> U(n) c Mn are random variables on a probability space (Ω, μ). We
have seen that, for the evolution of the molecule in the Heisenberg picture to be a
Markov process, Et has to be a white noise, i.e. a sum of derivatives of Poisson
processes and Brownian motions.

Now, in the physical literature the point of view is widely taken that the
transition probabilities of such a molecule have to satisfy the detailed balance
condition. In the present context this condition means that for each pair of energy
levels i and j the probability per second of a transition from level i to level j equals
that from; to i. In Sect. 2.3 we have seen that this condition need not be satisfied if the
random field contains a suitable Poisson component. We gave an example of a 3-
level system which, far from obeying detailed balance, only performs transitions
from level 1 to level 2, from 2 to 3 and from 3 to 1, and none at all in the reverse
directions.

It is therefore an interesting question, whether such non-detailed-balanced
dynamical semigroups can indeed be physically realised. The following requirement
on the random field Et has to be met: the field has to consist of an exponentially
distributed sequence of δ-like spikes, taking place in very short time intervals
Δl9Δ29Δ39...,the duration | Δj\ of a spike being much shorter than v ~ 1

9 where v is a
typical transition frequency of the Hamiltonian h. This condition is needed in order
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that the jumps in Aut(MJ can have an asymmetric probability distribution. This
may be realisable by collisions with other atoms.
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