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Abstract. The authors introduce a new concept of measure-valued solution for
the 3-D incompressible Euler equations in order to incorporate the complex
phenomena present in limits of approximate solutions of these equations. One
application of the concepts developed here is the following important result: a
sequence of Leray-Hopf weak solutions of the Navier-Stokes equations
converges in the high Reynolds number limit to a measure-valued solution of
3-D Euler defined for all positive times. The authors present several explicit
examples of solution sequences for 3-D incompressible Euler with uniformly
bounded local kinetic energy which exhibit complex phenomena involving
both persistence of oscillations and development of concentrations. An
extensions of the concept of Young measure is developed to incorporate these
complex phenomena in the measure-valued solutions constructed here.

Introduction

The Euler equations for an incompressible homogeneous fluid in n-space
dimensions are given by

g—lt)=—l7p, xeR", t>0, divv=0, u(x,0)=0vy(x), (1.1)

. . . . 1 .
while the Navier-Stokes equations <w1th Reynolds number E) are given by

Dv?
Dt

=—Vp*+edr®, xeR", t>0, dive*=0, v%(x,0)=v4(x). (1.2)

. . .. Dv ov ) .
Here v=v,,...,v,) is the fluid velocity, D—t=5?+v-l7v, is the convective

derivative and p is the scalar pressure. The structure of solutions of the Euler
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equations and the behavior of sequences of solutions of the Navier-Stokes
equations as ¢—0 are problems of wide current interest. The same comment
applies to other regularizations of the Euler equations through computational
vortex methods. Such problems are motivated by attempts to understand
turbulent structures in fluid flows. Numerical calculations [2-4] with smooth
solutions of the Euler equations in three space dimensions and with vortex sheet
initial data in two space dimensions [1, 13, 14] reveal increasingly complex
behavior as the numerical regularization parameters tend to zero.

In the context of the Navier-Stokes limit the importance of the concept of
measure-valued solution is illustrated by the following theorem proved in Sect. 5.

Theorem. Consider a smooth divergence-free velocity field v, in I*(R®) and let v, be
any (Leray-Hopf ) weak solution of the Navier-Stokes equations (1.2) with initial
data vy. Then as ¢ vanishes a subsequence has a limit which defines a measure-valued
solution of the 3-D incompressible Euler equations.

The motivation for the theorem is partly the following. For smooth initial data
there exists a fixed interval of time [0, T] on which the Navier-Stokes solutions v,
converge strongly in I? as ¢ vanishes; the limiting field v is necessarily a
conventional solution of the Euler equations. During this time interval the
associated measure-valued solution of the Euler equations reduces to a Dirac mass
at the point v(x,t). However, numerical evidence [2—4] indicates that the
complexity of the flow increases rapidly as time evolves. This suggests that beyond
some critical time the Navier-Stokes solutions v, converge weakly (but not
strongly)in I? due to the development of oscillations and/or concentrations. At the
level of the measure-valued solution the appearance of oscillations and con-
centrations corresponds to the bursting of the Dirac mass into a measure with
more complex structure. In this paper, we introduce a framework to study this
possibility.

In this paper first we identify through rigorous examples some new phenomena
that occur in solution sequences of the Euler equations including the persistence of
oscillations and the development of concentrations. Within the context of
sequences with uniformly bounded locally finite kinetic energy, the persistence of
oscillations in three space dimensions is discussed in Sect. 2 and the development
of concentrations in two space dimensions is discussed in Sect. 3.

With these examples as motivation, we develop a natural generalization of the
classical Young measure which provides a representation for both oscillations and
concentrations in arbitrary I function sequences. Then we introduce a notion of
measure-valued solution for the Euler equations under the single assumption of
locally bounded kinetic energy, see (1.13) and (1.14) below. This concept of
measured-valued solution is used in the theorem mentioned above. We recall that
the kinetic energy is the only positive definite conserved functional for fluid flows
in three space dimensions, so a theory with this generality is needed. The remainder
of the introduction is a summary of the developments presented below in this
paper.

Tartar [27, 28] first recognized the importance of the Young measure for the
problem of representing and analyzing oscillations. Some of the first applications
of the Young measure to evolution equations dealt with L®-bounded solution
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sequences to scalar conservation laws and systems of conservation laws in one
space dimension [5, 10, 27, 28]. In the context of L*, DiPerna [6] introduced the
concept of measure-valued solution to a system of conservation laws. In order to
study both oscillations and concentrations, an extension to I? is required. The
remainder of the introduction provides a discussion of some of the new
phenomena and concepts developed in this paper along with applications to the
Euler equations. Detailed proofs are given in the subsequent sections.

First, we recall the classical concept of the Young measure. Below, if G is a
locally compact Hausdorff space, M(G) denotes the Radon measures on G with
finite total mass, M *(G) the subspace of nonnegative measures and Prob M(G) the
subset of nonnegative measures with unit mass. The notation w,—w denotes weak
convergence in M or I? while w,—»w denotes strong convergence. Consider an
arbitrary sequence of vector fields (x, t) - v,(x, t) from Q CR" x R to R" satisfying the
uniform L® bound, |v,(x, )] = C, and converging weakly in I?, 1 <p < oo to v. The
parametrized Young measure theorem yields a fixed subsequence which we ignore
in our notation and the existence of a Lebesgue measurable mapping

(x,t)—> 7V, n¢ ProbM(R")
with supp¥,,, ,C{v: [v| £ C}, such that

8(v) =V, 8
for all continuous functions g: R"—R. Thus,
lim {f pg(v,)dxdt = [f $p<{V(, », g>dxdt for all ¢ in Cy(Q). 1.3)
Here the expected value of g with respect to {7V, ,} is denoted by brackets:
V00 8= g“ gV, - (1.4)

Furthermore, if p<co then
v,—v in I? iff ¥ reduces to a Dirac mass:

_ (1.5)
Vix,n = 5u(x,t) .

Thus the Young measure, V= {7 ,}, represents all composite weak limits of an
L*-bounded sequence and non-Dirac structure reflects the persistence of oscil-
lations in the limit process.

A conventional pointwise weak solution of the Euler equations is derived from
the conservative form of (1.1), namely

%v+divv®v+ Vp=0, divo=0,

through multiplication by suitable test functions and integration by parts. A
divergence-free velocity field v e L*(£2) is a weak solution of the Euler equations on
a space-time region Q if divo=0 and

g(¢,-v+ Vo: v®@v)dxdt=0, (1.6)
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for all test functions ¢ in C(Q2) with dive=0. Of course, the divergence-free
condition on v is also understood in the sense of distributions. Here v®v is the

matrix (v;v), Vo= (Zi) and A: B is the matrix product Z a;;

By extending the definition in [6] in a straightforward fashlon and using (1.6)
we say that a Young measure vis a measure-valued solution of the Euler equations if

—j;(\?,v} +div{y,v®v>+Vp=0 div{y,v)=0

for some distribution in p, i.e. if
j§¢t<‘7(x,t)’ vy+Vo: <‘7(x,t), v@uydxdt=0
for all divergence-free vector fields ¢ in C$ and also if
V- Vi, 0dxdt =0

for all scalar fields p in CJ(Q).
The Young measure associated with a sequence of conventional Euler
solutions provides an example of a measure-valued solution.

Proposition 1. If v, is a sequence of solutions of the Euler equation (1.1) such that
Vol o) = Cs

then the Young measure v constructed from this sequence defines a measure-valued
solution of the Euler equations.

Other procedures for generating measure-valued solutions are discussed in
Sect. 5.

In several of the applications to hyperbolic conservation laws [5, 10], the
Young measure has been used as a tool in conjunction with the compensated
compactness theory of Tartar and Murat [27, 28] to show that oscillations do not
persist in nondegenerate systems in one space dimension, ie. v, =06 if t>0
provided that v, o =0. The absence of sustained oscillations has also been
established in the context of the steady 2-D transonic equations by Morawetz [21]
under the assumption that the solutions in question avoid the vacuum and
stagnation states. The work of Lax and Levermore [16], Venakides [30, 31], and
Flaschka, Forest and McLaughlin [12, 20] on the zero dispersion limit of the KdV
equation provides the first nontrivial examples where oscillations persist. In these
cases the Young measure has a simple structure related to modulated families of
N-phase waves in different regions of space-time [6,20]. The recent work of
Roytburd and Slemrod [24, 25] and Rascle and Serre [23, 26] deals with very
special non-Dirac structure in degenerate hyperbolic systems of conservation laws
in one space dimension.

In Sect. 2, we present an example of an L*-bounded sequence of smooth
solutions of the 3-D Euler equations which exhibits persistence of oscillations; the
associated Young measure is not a Dirac mass. From Proposition 1, this Young
measure provides a nontrivial example of a measure-valued solution of the 3-D
Euler equations representing oscillations. The tacit assumption that v, is uniformly
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bounded in L* used in constructing the classical Young measure is too restrictive
for applications to incompressible fluid flow where the natural physical assump-
tion requires only a locally uniform bound on the kinetic energy, i.e.

Q!};R [v(x, )| ?dxdt < Cy (1.8)

with B,={x: |x| <R}.In Sect. 3, we present several examples of solution sequences
of the Euler equations which satisfy (1.8). These examples illustrate that the
classical Young measure (1.3), (1.4) is not adequate to describe the behavior of
quadratic functions like v,®v,.

In view of the structure of the Euler equations, the smallest class of functions
relevant to the study of composite limits consists of functions g with the form

g(v)=go(v) (1 +[v’) + g <ﬁ> [o]?, (1.9)
where g, lies in the space Cy(R") of continuous functions vanishing at infinity and
gy lies in the space C(S"™ ') of continuous functions on the unit sphere. The
coefficients (1 +|v|?) and |v]? are introduced for convenience. Clearly, the defining
functions v and v®v of the Euler equations belong to this class with g, =v/(1 +|v|?)
and gp=0®64.

In Sect. 3, we build several explicit solution sequences v, of the 2-D Euler
equations which develop concentrations. Intuitively, the energy in the limit
concentrates on a small set of measure zero in physical space while the mass of the
associated probability escapes to infinity in the state space. In more precise terms
the sequences v, have the following two properties. The locally uniform energy
bound (1.8) holds and for every g of the form (1.9) the composite weak limit is given
by

lim (v )dxdi=I'§ 40, e § Buas +{[fodxdi}gg©).  (110)

Here I' is a fixed constant and ¢ lies in Cg'. Thus the composite limit consists of two
terms which are singular with respect to Lebesgue measure. In contrast to (1.3) the
first takes the form

I'é(x) <V(x,t)s gu) >

where d(x) is the Dirac mass on the line x=0 and (x, ) v, , is a d(x)-measurable
map from R? x R to ProbM(S?) given by uniform measure on S*:

do
Vixary 8P = ij gH(H)E'

The second term takes the form dxdt®J, and is a classical Young measure. Thus, a
generalization of the Young measure is needed which incorporates this structure.
In Sect. 4, we develop such a generalization which includes both oscillations and
concentrations and we apply it to the problem of representing weak limits of exact
and approximate solution sequences of the Euler equations under the single
assumption of locally uniform boundedness of the kinetic energy (1.8).

The theory builds a generalized Young measure as a vector-valued measure v
with special structure, see Theorems 4.1 and 4.2 below. The action of v on functions
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in the class (1.9) and in other separable spaces admits a simple form described in
Theorems 1 and 2 below.

Theorem 1. Generalized Young Measure. If {v,} is an arbitrary family of functions
whose L* norm on a set Q C R" x R is uniformly bounded, then {v,} contains a sequence
with the following properties. There exists a measure y in M(Q) such that

v l?—~n in M(Q)),
and a p-measurable map
(x’ t)_) {v(lx, t)> V(2.>c,t)}
from Q to M*(R@ProbM(S" ™) such that for all g in (1.9),

8=t gop (14 fdxdt +<v?, ggydp, (1.11)
where f denotes the Radon-Nikodym derivative of u with respect to dxdt, i.e.

lm I @glodxdt =5 < 809 (1+ Nt + 5§ §<2, o 8>

for all ¢ in C.

Remark 1. If u=u,+ fdxdt denotes the Lebesgue decomposition of u into its
singular and absolutely continuous parts, then v{, ,, vanishes on the set where p, is
concentrated.

Remark 2. The triple (4, v}, v?) represents a canonical decomposition of a vector-
valued measure v which we shall call the generalized Young measure. It is naturally
defined on a class of functions which is somewhat broader than (1.9) and yields

gv)—<v, 8>
for all g in that class, cf. Sect. 4. The restriction of v to the class (1.9) gives
v=v'(dxdt+dp)+v3du. (1.12)

Definition. A generalized Young measure v is called a measured-valued solution of
the incompressible Euler equations if

[ 0> +Vh:{v,0@v)=0 (1.13)
for all divergence-free vector fields ¢ in C§ and
iV - <v,v>=0 (1.14)

for all scalar fields y in Cg.

Remark 3. Since the action of v in (1.13) is limited to the special class (1.9) we may
appeal to the decomposition (1.12) and express (1.13) in the following concrete
form

v vV
ifo. <v(1x,t)’m> (14 f)dxdt+Vé: V(ZJC’[),W du=0.

The general abstract structure is discussed further in Sect. 4
The following proposition is an immediate consequence of Theorem 1 and the
definitions above.



Incompressible Fluid Equations 673

Proposition 2. The generalized Young measure associated with any sequence of
conventional solutions of the Euler equations with uniformly bounded local kinetic
energy defines a measure-valued solution.

Examples. Every classical weak solution v with locally finite kinetic energy defines
a measure-valued solution through the following identifications:

du=|v|*dxdt,
1 2 -1
v(x, t) = 5v(x, t)» v(x,t) = 5B(x, t)gM(Sn ) H

where 6(x, t) =v(x, t)/|v(x, t)|.

The explicit 2-D examples mentioned above and constructed in Sect. 3 have the
form

p=Td(x), Vviy=0¢, V& ,=uniform measure on S*.

This triple defines a stationary measure-valued solution v=(u,v*,v?) which is
highly concentrated and exhibits non-Dirac behavior on homogeneous functions.

In Sect. 4, several properties of the generalized Young measure are established
which indicate its role in representing oscillations and concentrations. As a
corollary of that discussion we obtain the following theorem.

Theorem 2. Let v=(u,v',v?) be a generalized Young measure associated with an I*
sequence v,;—.
A) If v, = C, then u,=0 and the classical Young measure v is recovered from
the formula
Ve, n=(1+ [v]%)~ 1V(lx,r)(1 +f).

B) Weak continuity of the type

g(v,)—g()
holds for all g of the form g =g(1 + [v|?) with g, € Co(R") if and only if v* reduces to
a weighted Dirac mass,
v(lx, t) = OC(X, t)év(x, 1)

where 0L a <1 and satisfies (1 +|v)*)=a(1+ f).
C) Strong continuity holds, i.e.

v,—v in I?
if and only if u;=0 and a=1 almost everywhere.

In two forthcoming papers [7,8] we study the behavior of exact and
approximate solution sequences of the 2-D incompressible Euler equations
including regularizations of vortex sheet initial data. Under natural additional
hypotheses on the initial data it is possible to rule out oscillations so that only
concentrations arise. In this situation, statement B of Theorem 2 automatically
holds.

In the context of the 2-D FEuler equations the theory of concentration
compactness developed by Lions [17, 18] could be invoked under the additional
hypothesis of the form |V'v,|;: < C. With this additional uniform bound it follows
that =1 and that the singular part p, of 1 is an at most countable number of point
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masses. However, in the context of two space dimensions the natural estimate from
the dynamical point of view is an L' estimate on the vorticity, i.e. |curly,|;: < C (see
[7]). In this situation the theory of concentration compactness does not apply;
indeed several examples involving 2-D vortex sheets are presented in [ 7] for which
a<1 on a set of positive measure. Although the theory of concentration
compactness is not applicable it motivates a number of the theoretical construc-
tions in this paper and in [7, 8]. More examples from fluids with concentrations
are presented in [7].

In Sect. 4, we construct generalized Young measures in the form of vector-
valued measures acting on arbitrary continuous functions with at most quadratic
growth. The restriction of these measures to separable subspaces such as those of
the form (1.9) admits explicit representations as in Theorem 1.1.

In Sect. 5, we discuss the zero viscosity limit for Navier-Stokes in connection
with measure-valued solutions of the Euler equations and make several additional
comments. The concept of measure-valued solutions introduced here applies to
many other nonlinear equations of mathematical physics with natural I (energy
bounds) and nonlinearities that are bounded in I” such as the Yang-Mills
equations, Vlasov-Maxwell, and Vlasov-Poisson equations. This general theory
will be developed elsewhere by the authors (see [9]).

Persistence of Oscillations in Sequences of Smooth Solutions
for Incompressible Flow

To build explicit examples, we begin with the following remark. If 6= {0, (x, x,t),
(x4, X5, t)} is the velocity field for a solution of the 2-D Navier-Stokes equations,
then v={0,(xy, X,,1t), 05(x1,X,,1), U3(x1,X,,t)} is a solution of the 3-D Navier-
Stokes equations provided that v;(x,, x,, t) satisfies the scalar diffusion equation
with known coefficients ¢ given by

vy . Ovy , Ovg

D3 45, 2% 15,9 _ppp,. 2.1
ot " Tox, TPex, 0% @1)

In our explicit examples, we ignore viscosity and build oscillating sequences of
solutions for the 3-D incompressible Euler equation.
First we consider a family of exact steady 2-D solutions given by the shear

layers,
9= <v (% x2>, 0), 2.2)

where v(y, x,) is a given smooth bounded function with period 1 in y and mean
zero, ie.,

g u(y, x,)dy=0. (2.3)

The assumption (2.3) is made for convenience only. We let w(x,, x,,y) be any
smooth bounded function with period 1 in y. By following the principle in the first
paragraph of this section, we build exact smooth solutions of the 3-D Euler
equations with the explicit form,

t
—3 | SS——— O, - _’ t’ ) K] 2.4
v <v< . ,xz), w(x1 v< . x2> X, " )) (2.4)
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X X5\ . . . .
where vgzw(x1 —v(;z, x2> t, X5, f) is the explicit solution of the advection

equation,

ovs X, 0vs X,

— 4| —=,x =0, §,co=w\|x,X,—]).
5t & 2 0.761 3|t 0 1 2 e

Clearly, v* satisfies the uniform L*-bound
[v°]=<C. 2.5)

Below, we explicitly compute the Young measure, v, ,, defined in (1.3)~1.5) and
display this explicit measure as a smooth measure-valued solution of the Euler
equations in (1.7) which is not a classical pointwise solution of these equations as
required in (1.1) or (1.6).

The exact solution sequence in (2.4) defines a modulated one-phase wave with

phase function i;— If h(z, y) is a smooth bounded function of (z, y) € R* x R* whichis
one-periodic in y, then the Riemann-Lebesgue lemma implies that hé(z)=h <z, %)
has a weak limit A(z) given by averaging the fast scale, i.e. with h(z)= (})h(z, s)ds,

lim RIL (2 (2)dz = RJ"L P(2)h(z)dz (2.6)

for all ¢ € Co(R*). We apply the well-known principle in (2.6) to the exact solution
sequence from (2.4). First, from (2.6) we observe that v* from (2.4) satisfies,

t 1
VP —=1(x,, X5, 1) = <0,0,jw(xl—v(s,xz)t,xz,s)ds> as &—0. 2.7
0

We remark that even though o(x, x,, t) is a smooth velocity field, 7 is not generally
a smooth solution of the Euler equations. With

1
173 = g W(xl - U(S, xz)ta X25 S)dS (28)

and 7 given in (2.7), ¥ is a smooth solution of the Euler equations if and only if
003
ot
no x,-dependence. For g(v)=g(v,, v,, v3) an arbitrary continuous function of v, we
use (2.4) and (2.6) to compute that

lim [[(x, )g(v*)dxdt = [[ p(x, \gdxdt 2.9)

=0. This condition is never satisfied unless either v vanishes or w(x,, x,, y) has

with g given by .
8(x1, X5, )= | 8(0(s, X2), 0, w(xy — (s, X,)t, X5, ))ds . (2.10)
With (2.9) and (2.10) it is easy to compute the Young measure as defined in (1.3),
(1.4). For each point (xy, x,,t) we consider the curve V, ,: [0,1]—R? given by
Vx,t(s) = {U(S’ xz), 0, W(X1 - U(S, x2)t’ X2, S)} . (21 1)
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In a canonical fashion, the smooth map V, , induces a probability measure on R>,

V.., via the formula
Ve (E)=m(V;  (E)) (2.12)

for any Borel set E where m is Lebesgue measure on [0, 1]. The reader can check
that the measure 7, , defined in (2.12) is the Young measure with all the properties
in (1.3), (1.4). In particular, from (2.10),

1
17173()61, X25 t) = g U(Sa x2)w(x1 - U(Sa x2)ta X25 S)dS H (21 3)

and with 75 from (2.8), we compute explicitly that

ooy 0
—— 4+ —1,0;=0. 2.14
at + axl 0103 ( )
With © given in (2.7), we see that (2.14) is the only non-trivial equation to check to
guarantee that ¢ defines a non-trivial measure-valued weak solution of the

incompressible fluid equations as defined in (1.7)

Development of Concentrations in Smooth Solutions
of the Euler Equations with Uniformly Bounded Local Kinetic Energy

Our first examples of sequences of exact solutions of the incompressible fluid
equations exhibiting the phenomenon of concentration as described in (1.10) will
be constructed from steady rotating eddies for two-dimensional incompressible
flow.

It is well-known (see [15, 19]) that any smooth radial distribution of vorticity,
w(r), with r = (x2 4 x?)!/2 defines an exact steady solution of the 2-D incompressible
fluid equations via the formula

Ul(‘x) _ - x2 -2 r
<Uz(x)> = < X >r (j)scu(s)ds. (3.1)
Associated with the function w(r), we define W(r) and I" by the formulae,
2

W(r)= <(}) sw(s)ds> 2, r'=2n <0§ sco(s)ds) , (3.2)

where we assume sw(s)e L}([0, 00]) so that W(r) is absolutely continuous and
uniformly bounded. The remaining assumptions on w(r) needed for the
validity of our examples are summarized below. We consider the sequence of
velocity fields v%(x) defined by

X
e
vg(x)=log<%> " i (3.3)
(;)

with v,, v, defined in (3.1).
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First, we verify the local boundedness of kinetic energy for the sequence v* as
well as the explicit limit in (1.10) for functions g which are exactly homogeneous of

degree two, i.e.
v
g)=gn <m> lof?. (3.4)

Since the solution sequence in (3.3) is time independent, we only need to verify
(1.10) for test functions ¢(x)e CF(R?). By using polar coordinates, we compute

>|v£|2dx— llmjlog<1>_ 1 W(g) gH_¢(r)d log(r) (3.5)

8

hmj¢(x)gH <| g

with gy defined by
2n
gud(r)= | gy(—sin0, cosB)¢(r cos, rsind)do. (3.6)
0

Integrating by parts in (3.5) we obtain

11m j d(x)gy <| :|> |v°|2dx

= fim — Trog(2) w7 ogtisin |
{hm - j’ log <1>_1 W@ 1og(r)§5(r)dr} —(+{2). ()

e—0

Since W(r) is uniformly bounded and ¢ has compact support, it is obvious that
term {2} satisfies the estimate,

1\ -1
eyscrog (1)
We rescale term {1} by changing variables r— g, to get
(1) = lim { W'e)galor)ir
~ Jlog (%) W) log(gaPler)dr={1}4 + {1}, (38)

Under the mild additional assumption on w(r) that
sw(s)log(s) e L'([0, ), (3.9
we trivially obtain the estimate,
1 -1
[{1}?|<Clog (E) . (3.10)
By recalling the definition of g ¢(r) from (3.6), we see that

4 2n . de
{1}32=T$(0) | gu(—sinb, cosh)—. (3.11)
0 2n
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Clearly, if we choose gz =1 and ¢(r) = 0 so that ¢(r)=1 for r < R and ¢ vanishes for
r=2R, we obtain the uniform kinetic energy bound,

[ P<Cq (3.12)
[x|=R
while (3.5)«3.11) imply that
lim [ $(x)gy <IZ_I) [ve|2dx=r<50, | ng9> (3.13)
-0 St

with I' defined in (3.2). To verify the predicted limit in (1.10) including the
additional effect on nonlinear functions with less than quadratic growth at infinity
with the form g(v) (| + |v]?) with g,(v) € Co(R?) is much easier than (3.6)—(3.11) and is
left as an exercise for the reader. To summarize, we have the following

Proposition 3.1. Assume w(r) is a radial vorticity distribution with

ro(r) log(r) e LX([0, 00))

and | ra(r)dr £0, then v° defined from w via (3.3) is a sequence of exact solutions of
0

the incompressible fluid equations which exhibit the concentration phenomena
described in (1.10) of the introduction.

Remark. A detailed study of the phenomena of concentration for 2-D incom-
pressible flows is contained in the author’s two companion papers [7, 8]. Here we
use these examples to show that both oscillations and concentrations occur in
general sequences for 3-D fluid flows.

Examples with Time-Dependent Concentration

Next, we give explicit examples with extremely rapid temporal oscillation which
exhibit dynamic concentration like the phenomenon which we have just observed
in steady exact solutions. These exact solution sequences will be space-time
rescalings of the uniformly rotating Kirchhoff elliptical vortex (see [15]) which we
describe next.

We consider a constant patch of vorticity w(x,,x,) with an elliptical shape:

) ﬁ + ﬁ <1
@ pr T
(X, X5)= 2 52 (3.14)
0, S+35>1,

where & is constant. The velocity field corresponding to the vorticity distribution
o is constructed from a stream function y by the formulae,

— Py
v= ), Ady=—ow. 3.15
< e, > P (3.15)
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1 S .
If we denote the constant I' by I' = I @x area of ellipse, it is easy to determine the

behavior of v for |x|—co and in fact,

(x) —x2 F

v x; ) 1+]x?
for some constants C and >0. The velocity field v does not define a steady
solution of the Euler equations. However if we introduce the rotation matrix ¢(6)

with .
6(9)=< cosf sme)’ (3.47)

SC(+|x)~@*» (3.16)

—sinf cosf

then there exists a time period L (positive or negative) depending on & and the
ellipse ratio, b/a so that #(x,t) given by

i(x, t)=a(nL™ 't)u(cT(2rL™ t)x) (3.18)
is an exact time periodic solution of the 2-D incompressible fluid equations with
t(x,0)=vo(x). (3.19)

This solution is the well-known Kirchoff rotating elliptical vortex.

We generate an exact solution sequence for the inviscid Euler equations by
rescaling the Kirchoff elliptical vortex solution from (3.18). In general, if v(x,?)
solves the Euler equations, then fuv(ix, Aft) also solves the Euler equations for
arbitrary constants f§, . Motivated by the rescaled sequence of steady solutions
from (3.3), we consider the exact solution sequence for 2-D Euler given by

N2 [x 1\-12
ve(x,t)=(log(g>> £ 11)(;, log(;) £ 2t) (3.20)

with § any Kirchoff elliptical vortex solution as defined in (3.18). Since v, is a
-1/2
function of the fast time scale t= <log E) ¢ ?t, these solutions exhibit

extremely rapid temporal oscillation as e—0. However, we shall show below that
these rapid temporal oscillations time-average in an extremely simple fashion due
to the development of concentrations.
As in (3.5)+3.13), we explicitly evaluate
. v,
1133 [161()¢2(x)gn (—) |v,|*dxdt (3.21)

lv,|

with ¢, € C§(RY), ¢, € CP(R?). We use the dense class of sums of products as test
functions to clarify the discussion below. Next, we choose a radial vortex

d(r)e CP(R?) so that [ rd(r)dr=T. The corresponding velocity 6 is given by (3.1),
0
b= ( ‘x2> =2 | so(s)ds. (3.22)
X 0

1
From (3.16) and (3.22), we have the estimate
[v(x) = 8()| = C(A +[x))~ P, 7>0. (3.24)
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The following lemma is easily proved by straightforward estimates adding and
subtracting terms and using (3.24).

Lemma. Set 0(x,t)=0(2nL™ 1t)d(cT(2nL ™ 't)x) and define

1 -1/2 Cin X 1 —-1/2 -,
ﬁe—<logg> g v(;, <logg> g t),
Ve 2 b, 2)
X —Z N> —gul == | 16,)* | dx
g0 s a5

With the above lemma, we only need to compute,

© -1
lim | log (—1—) W(g) g1 P,()dlog(r) (3.26)

then

max
—o0 St<o

1 -1
=C <logg> . (325

e=>0 0

in order to evaluate the limit in (3.21). Here gz, ¢,(r) is analogous to formula in
(3.6) but also includes a time integral over rapid time oscillations, i.e.

o 2=
gu®192(r)=1m [ [ ¢,(),(rcosh, rsinb)gy(6, t)dbd, (3.27)
>0 —0 O
1\~ 12
254(0, t)=gH<—sin <0+2nL" ! (log;) e‘2t>,

1\~ 1/2
X COS <0 +2nL71 <logg) g 2t>> . (3.28)

The critical fact from (3.27) is that the dependence of gg¢,¢, on r occurs only
through the test function ¢, so that the argument in (3.5)3.11) can be repeated
without changes to yield

with

. v, R 2n © d0
lim {{¢,¢,8x (“—) |v)?dxdt=T¢,O)lim [ | ¢,()g5(6,0)5—, (3.29)
£—0 Ivgl e>0 0 —oo 2n

1 —-1/2

with I' the constant from (3.2). We consider the function G((log;) 3'2t>

defined by 27

G= [ gu(0,1)d6.

0

The function G(t) is a periodic function with period L; according to the averaging
lemma we have already used in (2.6),

2n ©

im [ [ ¢(0)gu(0,1)d0dt
e=»0 0 —
—lim | $,()G ((log1>_1/28'2t> dti= [ ¢,0) (1—}“0(1)&) dt
£=0 — o0 & - Lo

© 2rn . d@
= | ¢:0) | gu(—sin(0), cosd)5 . (3.30)
— 0 0 T



Incompressible Fluid Equations 681

With (3.29) and (3.30) we have verified all of the properties in (1.10) needed to
construct the explicit sequence v* defined from (3.18)+3.20) with both con-
centration and rapid temporal oscillation.

4. The Generalized Young Measure in L?

In this section we develop an extension of the concept of Young Measure as
described in (1.3), (1.4) to sequences u, satisfying a uniform I? bound of the form

if) lu(y)IFdy=C, (4.1)
where Q is a bounded subset of R™ and p > 1. The functions u, take values in R". In
the special case where the general theory is applied with p=2 to the algebra of
functions of the form (1.9), we obtain a generalized Young measure representing
oscillations and concentrations and having the properties listed in Theorems 1
and 2.

These theorems are connected with the concept of measure-valued solution for
the incompressible Euler equations as defined in the introduction. The construc-
tion of measure-valued solutions of the 3-D Euler equations as limits of Leray-
Hopf solutions of the 3-D Navier-Stokes equations is discussed in detail in Sect. 5.

The analysis splits into two parts related to the construction and refined
structure of the generalized Young measure. Theorems 1 and 2 follow from a series
of remarks and corollaries in the development presented next. The main tools are
elementary and include the Riesz representation theorem, the Radon-Nikodym
theorem and compactifications of R" associated with subalgebras of the space of
bounded continuous function on R". The theorems quoted below are found in
Chaps. 3,4, and 7 of the elementary text by Folland [11]. In particular the required
properties of compactifications and regular algebras are included in pp. 137-140
and the associated exercises.

Construction of the Generalized Young Measure

Given the uniform I” bound in (4.1), the largest class of nonlinear functions where
we expect to compute the weak limit

lim | ¢(y)g{u(y)}dy
e—0 Q

with ¢ € C,(L2) consists of functions of the form
8(u)=g(u) (1 +[ul”) (4.2)

with g in the space BC(R") of bounded continuous functions on R". A canonical
norm on the space of functions in (4.2) is defined by

18l = max [2(u)| =[], (4.3)

After passing to a subsequence the following general representation theorem holds
for functions in BC(R").
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Theorem 4.1. There exists a scalar measure ¢ in M*(Q) and a bounded linear

transformation T: BC(R")—L*(0)
such that
{1+u)P}dy—0c (44)
and
g{u(y)}dy—~T(@do. (45)

The mode of convergence in (4.5), (4.6) is weak-star, i.e.

lim [ {1 + "} dy =] pdo
lim | pg{u,}dy =] $T(@)do.

for all ¢ in Cy(£2) so that o and T(g) represent the composite weak limit.

Before proving this theorem we record a corollary that interprets (4.4), (4.5) in
terms of vector-valued measures. We recall that weak-star measurable vector-
valued measure v on £ associates to each Borel set E in Q an element v(E) of the
dual space X* of a Banach space X in such a way that v(E) is weak-star countable
additive: if E is a countable disjoint union of sets E;, then

WE)=w*— lim % V(E)) (4.6A)
N—-ow j=1
in the sense that
N
{W(E), g>=Ilim ,-;1 VE), g> (4.6B)

for each g in X.

If we denote this space of vector-valued measures by M(Q, X*) and if we set
X = BC(R") we identify the limit in (4.5) as an element of M(Q, X*). Combining this
with definition (4.6) yields the following consequence of Theorem 4.1.

Corollary 4.1. The scalar measure o and the linear transformation T from
Theorem 4.1 define a vector-valued measure v in M(Q, BC(R")*) through the formula

VE), g>= Ifz T(g)do, (4.7)
where E is a Borel set.

Thus if ge BC(R"), then all composite weak limits of the sequence u, are
represented by the vector-valued measure v.

Proof of Theorem 4.1. The space BC(R") is isometrically isomorphic to the space
of continuous functions on the Stone-Cech compactification of R" denoted by SR".
Here and below we shall ignore canonical isomorphisms between spaces of
continuous functions and say for example that g € C(fR") if § e BC(R"). We recall
that the set of all linear combinations of the form

d(x)gw), $eCo(Q), ZeC(BRT)
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isdense in Cy(Q x fR") and that SR" is a compact Hausdorff space. We shall prove
Theorem 4.1 by utilizing the Riesz representation theorem to express the dual of
Co(2 x BR™) in terms of the Radon measures on Q x SR",

Co(Q x PR* = M(Q x BR").

For each fixed &> 0, the function u, induces a unique element v, of M *(Q x BR") via
the formula . .
(oo 820 = [ dluddx = [ F) (1 41y,

for ¢ € Co(Q2), & € C(BR"). The uniform I? bound in (4.1) implies a uniform bound on

the total mass of v,,
[v(Q x BRM| < C. @.7)

Thus, weak-star compactness in M *(2x BR") and the Riesz representation
theorem lead to the following assertion for an appropriate subsequence. There
exists an element v of M *(Q x BR") such that

v,—v in M™*(QxBR" (4.8A)
and, in particular,
lim [ pg(u)dy=<v, 62> (4.8B)
for peCy(2), g€ BC(R"). The measure v yields the vector-valued measure in
Corollary 4.1.

Setting g=1 in (4.8B) shows that the scalar measure ¢ corresponds to the
projection of v onto R", i.e. (4.4) holds and

a(E)=vE x SR")
for all Borel sets E in Q. It follows from (4.7) and (4.8) that the scalar measure v,

defined on Q by
(v @) =<V, 08)

satisfies the inequality

I<vg P1= Cl3l, [1¢ldo, (4.9)

which implies that |v,(E)| < C|g|,,o(E) for all E, and therefore that v; is absolutely

continuous with respect to o. It follows from the Radon-Nikodym theorem that for

each g the measure v, admits a representation of the form v,(E)= | fdo, where
E

f € L}(0). The integrand f depends linearly on g and defines the transformation T
in the statement of Theorem 4.1. The boundedness of T follows from (4.9) and the
duality between L' and L. The proof of Theorem 4.1 is complete.

A similar argument applies to continuous functions of the form

u p
g)=gy <|—u~|> |ul?, (4.10)

where gg e C(S"™ ') and yields a scalar measure p with

[uP—u in M(Q).
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For functions of the form (4.10) the properties in Theorem 4.1 and Corollary 4.1
hold with u replacing . From the definitions we have o = u+ dy. Thus, there exists
a bounded linear transformation

F:C(S" " Hi—L*(w)
such that
lim § pgglu,) lu|Pdy = ¢S (gu)dp (4.11)

for all g5 in C(S"~ ') and ¢ in C(Q). For convenience in the study of composite
weak limits associated with nonlinear functions g of the form (1.9) we shall use u as
the basic reference measure.

Concrete Representations on Separable Subspaces

We begin with a simple construction which produces the family of measures
vk, €ProbM(S" ') in Theorem 1 of the introduction. We use the version of
Theorem 4.1 dealing with homogeneous functions of the form (4.10) as described in
(4.11).

Theorem 4.2 (Young measure for homogeneous functions). There exists a
u-measurable map

y»—»vy

from Q to ProbM(S"~ ) such that
lim f §g(u;)dy = ¢ <V, gurdpt

for all g of the form g=gglu|’ and all ¢ in C,(Q). Here the bracket denotes expected

value
<Vy’ gH>= _f ngvy'
sn-1
Proof. Choose a countable dense set of functions k;in the separable space C(S"~*).
From (4.11) there exists a set N with u(N)=0 so that

| o hi(y)| = Clhjlo (4.12)

if yeQ\N. The uniform boundedness of the functional which evaluates the
integrand #(h;) at a specified point y as in (4.12) is a direct consequence of the
boundedness of S as a map from C(S"~!) to L*(u). It is necessary to avoid only a
countable number of null sets in order to achieve (4.12) on a single null set N.
By the Riesz representation theorem there exists a unique element v, of

M™*(S"" ') such that
<vy’ h1> = y ° h](y) s

if ye Q\N. This yields the desired yu-measurable map from Q to ProbM(S"~!). We
see that v, is a probability measure by choosing h=1. This argument follows the
proof of the classical Young measure theorem as given by Tartar in [28].

The same proof yields a more concrete representation of the functions T¢ of
Theorem 4.1 if § lies in a separable completely regular subalgebra of BC(R"). We
recall that a subalgebra F is completely regular if it is closed in the maximum norm,
contains constants, and separates points and closed sets, cf. [11]. Examples are
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»=BC(R") and F,=Cy(R")u{constants}. Here Cy(R") denotes the space of
continuous functions which vanish at infinity. Notice that F is separable.
Associated with any completely regular subalgebra F of BC(R") is a compactifi-
cation SrR" of R". We recall that fzR" is a compact completely regular Hausdorff
space and that the subalgebra F is isomorphic to C(8zR"). Thus, each continuous
linear functional on F is canonically identified with an element of M(f;R"). The
special case f R" coincides with the one-point compactification of R" and hence

M(Br,R")=M(R"®{cd,,} , (4.13)
where
<5np31>=1 and <5np5g0>=0

for all g, in Cy(R"). Thus the measures on the one-point compactification of R"
admit a decomposition into a measure on R" and a Dirac mass at the “north pole.”
In general the following ordering principle holds:

FCF, = Bp,R"CBp,R".

Theorem 4.3 [ Concrete Representation for Separable Completely Regular Subal-
gebras F of BC(R")]. There exists a c-measurable map

Y,
from Q to Prob M(BpR") such that for every g in F
llfg [p8(u)dy=[p<v,, g)do (4.14)
for all ¢ in Cy(Q). Here
8= ﬂFjRn gdv,. (4.15)

The proof of Theorem 4.3 follows the same argument of Tartar in [28] that was
sketched for Theorem 4.2 and is omitted here.

We complete the proof of the generalized Young measure Theorem 1 by using
F,in Theorem 4.3. In view of the identification expressed by (4.13) and the defining
properties (4.14) and (4.15), we note that the piece v/, of the Young measure in
Theorem 1 is generally not a probability measure since some of the mass can leak
to infinity in the limit. This feature is made explicit in the following corollary of
Theorem 4.3 which is motivated by the fact that every v in ProbM(f, R") has the
form L
v=v'+(1—-0a)d,,,
where v e M*(R") and 0<a=v(R") 1.

Corollary 4.2. There exists a o-measurable function o with 0Sa =1 in terms of
which the measure v, of Theorem 4.3 takes the form

vyzv; + {1 _a(y)}énpa
where vy € M*(R") and v;(R")=o(y). Thus, if
g(w)=go(u) (1 +[ul") (4.16)



686 R. J. DiPerna and A. J. Majda

with g, in Co(R"), then
lim [$g(u)dy=[d<v;, go>do .

Refined Structure of the Generalized Young Measure

Next we establish the properties of the generalized Young measure which were
stated in a special case in Theorem 1.2 as well as the absolute continuity of v/, ,
stated in Theorem 1. For this purpose we appeal to the Lebesgue decomposi-
tion of the measure p in Theorem 4.3 u=u,+ fdy, where u,Ldy and feL(Q),
o=dy+pu.

Proposition. If g takes the form (4.16) with g, in Cy(R"), then

lim | pg(u)dy= | ¢<vy, 80> (1 + f)dy, (4.17)
where v, is defined in Corollary 4.2. In particular

for all g, in Co(R").

Proof. Takinginto account the fact that (4.17)is trivially true if g, vanishes outside
a ball of radius R, we consider the truncated sequence uX =yXu,, where yR is the
characteristic function of the set where |u,| < R. Thus, if g, vanishes for |u| > R, then

go(ud) (1 + [ug|?)=golur) (1 + lu|"),

and we may appeal to the classical Young measure representation (1.3), (1.4) to
deduce the existence of a family v} in ProbM(R") such that

lim | pg(ul)dy = | ¢<vyi, e>dy=[ ¢<vy, 80> (1 + )dy + [ $<vy, goddu,
for all g of the form g=g(1 +|u|?). Thus
[$<vy, 8ordu,=0 (4.19)

for all continuous g, which vanish for |u| > R. The desired property (4.18) follows

from the facts that (4.19) defines a continuous linear functional on Cy(R") if ¢ is

fixed and also that the class of g, vanishing outside a ball is dense in Cy(R").
An immediate consequence of (4.19) is the following.

Corollary 4.3. If [u|,<C, then u,=0 and v,=(1+ f)(1+ul")"'v, is the clas-
sical Young measure defined in (1.3), (1.4).

We conclude this section by verifying parts B and C of Theorem 2. Assume that
u,—u in IP(Q) (4.20)

with 1 <p< oo and that
g(u,)—gu) in M(Q) 4.21)
for all g with g=g,u) (1 +[u|?), go€ Co(R"). From (4.21) and Proposition 4.1 it
follows that (311802 ) = O &0 “2)
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for almost all y. The relation (4.22) implies that v, is a weighted Dirac mass a.e. with
respect to fdy. Thus, Corollary 4.2 implies that there exists a(y) with 0 <a <1 such

that

(1 +[ulP)=a(y) f(y) ae. (4.23)
Finally, u,—u in I? if and only if

[u P —u’ in M(Q) 4.24)

by the Vitali-Hahn-Saks theorem. By applying Theorem 4.2 with g5 =1 it follows
that (4.24) is valid if and only if

lulPdy = us+ fdy, (4.25)

ie. u,=0and f=|uf a.e.
The discussion in (4.20)4.25) applied to the case p=2 yields parts B and C of
Theorem 2 in the introduction.

5. Measure-Valued Solutions of the Euler Equations
and the Zero Diffusion Limit of the Navier-Stokes Equation

First we formulate an elementary proposition with the following intuitive content:
for the Euler equations, weak stability together with weak consistency implies
convergence to a measure-valued solution.

Proposition 5.1. Assume v, is a sequence of functions satisfying divv,=0.
A) Weak Stability: For any QCR"x R™ there exists a constant C(Q) such that

[[lo(x, t)Pdxdt < C(Q).
Q

B) Weak Consistency: For all divergence-free test functions ¢ in CP(L),

lim [{¢, v, +V¢: v,@v,dxdt=0.

£=0
If v=(u,v*,v?) is the associated generalized Young measure from Theorem 1, then v
is a measure valued solution of the Euler equations on Q.

Proof. 1t follows from the definitions that

0= linéjj ¢, v+ Vo :v,@v,dxdt
s <v3x,,), 1‘+E|W> (1+ )dxde + 7 (5, 0@0>du

We prove the theorem stated in the introduction as an immediate corollary of
Proposition 5.1. It is well-known [29] that for every v,(x) € L*(R?) with divo,=01in
the sense of distributions, there is at least one Leray-Hopf weak solution v,(x, t) to
the Navier-Stokes equations satisfying the kinetic energy inequality

max | |vx, 0)Pdx < | |uo(x)|%dx. (5.2)
R3

0=<t<+ o R3

Thus, in the high Reynolds number limit, v, satisfies the weak stability estimate.
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Multiplying the Navier-Stokes equations by the test function ¢, we have
[0, +Vd:0,Qu,)dxdt =¢ ([ Apv dxdt. (5.3)

Since |[{A4¢v;3| £ Clv,|2 < CTvol|?2, the identity in (5.3) implies that v* is weakly
consistent with Euler. The proof of the theorem is completed through an
application of Proposition 5.1 once we remark that the initial data vy(x)is assumed
in an appropriate weak sense (see [9]).

We conclude with a few additional comments. It is also possible to construct
measure-valued solutions of the 3-D Euler equations and verify Proposition 5.1 for
a class of 3-D vortex algorithms. This is interesting because most of the detailed
complexity in inviscid 3-D flows has been found computationally through these
numerical methods [3, 4]. Our ideas also apply to other interesting equations for
fluid flow like those with variable density or the Bousinesq approximation. The
machinery in this paper also applies to approximating sequences of measure-
valued solutions. In personal communication, J. Keller, W. Craig, and C. Foias
have remarked that statistical solutions of Navier-Stokes induce measure-valued
solutions of the Navier-Stokes equations in a canonical fashion. We plan to
develop all of the above ideas and other connections with turbulence theory in a
forthcoming publication (see [9]).
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