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Abstract. The cohomology theory of supermanifolds is developed. Its basic
properties are established and simple examples given. The Wess-Zumino term
in the Green-Schwarz covariant superstring action is interpreted as a
nontrivial class in the "supersymmetric cohomology" of flat superspace. A
quotient supermanifold with nontrivial topology reflecting this class is
constructed. It is shown that there is no topological quantization condition for
the coefficient of the Wess-Zumino term. The superstring differs from
conventional sigma models in this respect because its action is Grassmann-
valued and its group manifold (superspace) is noncompact.

1. Introduction

The covariant action discovered by Green and Schwarz for the superstring [1] is
not simply the obvious generalization of the supersymmetric particle action. In
addition to a kinetic term which does generalize the particle action, there is an
additional term which is necessary in order to obtain a somewhat mysterious local
supersymmetry. This supersymmetry is needed in order to gauge away unphysical
degrees of freedom and establish the equivalence with the light-cone gauge action.
Henneaux and Mezincescu, and independently Martinec, subsequently provided a
rationale for the extra term, showing it to be a Wess-Zumino (WZ) term in the
sense that it could be obtained by applying to the global supersymmetry (SUSY)
group the construction that yields the WZ term for sigma models on ordinary
group manifolds [2].

The identification of a WZ term in the superstring action raises further
questions. Normally such a term is expected only when the group manifold is
topologically nontrivial, specifically when the third homology group (for a two-
dimensional field theory) does not vanish. There is then a topological quantization
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condition for the coefficient of this term in the action [3]. Yet the group manifold of
superstring theory is flat superspace, which is generally assumed to be contractible.
How then can a WZ term exist, and should a quantization condition be expected?

For ordinary sigma models, cohomology theory is the appropriate tool for
investigating such questions [4]. To date, however, there has been no systematic
development of the cohomology theory of general supermanifolds. This is partly
due to the fact that previous investigations have shown that the simple (DeWitt)
supermanifolds of most interest in physics have no topological properties beyond
those of the spacetime on which they are based [5, 6]. In addition, one can show
that any closed differential superform on flat superspace is exact, so that the
cohomology is trivial [7]. In general, however, it is not clear how much topological
information is contained in the cohomology of superforms.

Rogers' definition of supermanifold [8] allows the most general possible
topology. The definition has the great advantage that a Rogers supermanifold is in
fact an ordinary manifold, so that one knows what is meant by its topology and
one knows how to measure it by the usual homotopy and homology groups. One
can then ask how the cohomology of superforms ("G°° cohomology") compares
with these more standard measures. This is the program pursued in the present
work. It is shown that there is a homomorphism mapping the cohomology of
superforms into that of ordinary forms. This result had been reported in [9],
Further, the G°° cohomology is invariant under continuous deformations
(homotopies) which do not alter the supermanifold structure. These two results
give the precise sense in which G°° cohomology contains topological information.
The theorem, proven by Kostant [5] within a very different formalism, that the
cohomology of a DeWitt supermanifold is essentially trivial is then rederived in the
present framework. Some simple examples are given of the behavior of the G°°
cohomology when nontrivial topology is present in the Grassmann directions.

With the topological meaning of superform cohomology now clear, the WZ
term of the superstring action is reconsidered. The topological content of this term
is due to the requirement of global SUSY. That is, although the WZ term is a total
divergence, it cannot be expressed as the divergence of a manifestly supersym-
metric 2-form. It therefore corresponds to a class in the third super symmetric
cohomology group of flat superspace, which is nontrivial. This difference between
the supersymmetric and ordinary cohomologies is only possible because super-
space is noncompact. Similar subtleties in the cohomological interpretation of WZ
terms should be expected in noncompact sigma models. The topology associated
with the requirement of SUSY invariance can actually be visualized. Taking the
quotient of flat superspace by a certain discrete subgroup of the SUSY group yields
a supermanifold M having precisely the nontrivial topology in question. This
topology resides entirely in the Grassmann coordinate directions of M, which are
compactified.

If superstring theory could be reformulated on M rather than flat superspace,
then a topological quantization condition for the WZ coefficient might be expected
by the standard arguments [4]. However, this is not possible. The reason is quite
simple. A WZ term is expressed as an integral over some 3-manifold whose
boundary is the string world sheet. The arbitrariness in the choice of this
3-manifold leads to a potential ambiguity in the value of the WZ term. Since the
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action appears in the path integral in the form elS, an ambiguity quantized in
multiples of 2π can be tolerated. This is the usual quantization argument.
Unfortunately, the superstring WZ term is actually Grassmann-valued. The
ambiguity is also Grassmann-valued and its exponential cannot be made equal to
unity. Therefore the WZ term cannot be consistently defined on M, but only on its
covering space which is flat superspace and where no quantization condition is to
be expected. There are also severe difficulties in defining the path integral for a
string moving in M, even without a WZ term.

Is the absence of a quantization condition for the WZ coefficient a Good or a
Bad Thing? The superstring action has local SUSY only for a special value of this
coefficient, and a quantization condition might have helped to understand this.
Unfortunately, this is not the case. A quantization condition on M would actually
have related the WZ coefficient to the dimensionless product 772, with Tthe string
tension and / the scale of compactifϊcation of M. Thus, any coefficient would be
topologically allowed if T and / were chosen appropriately. If the superstring is
indeed consistent only for one value of the WZ coefficient, the reason for this is not
to be found in topological considerations.

2. Supermanifolds and Their Cohomology

A supermanifold M is an ordinary real manifold equipped with an analytic
structure best described in terms of Grassmann coordinates [8]. In each
coordinate chart on a supermanifold there will be m even coordinates xμ and n odd
coordinates θα, taking values in a fixed Grassmann algebra BL having L
anticommuting generators vί9 v2, >.,VL. The Grassmann coordinates are related
to the ordinary real coordinates by expanding them in terms of the generators,

-... = x£vr, (2.1)
... = 0?»Γ.

Here the coefficients x$ and θ£ may be used as real coordinates. Γ denotes an
increasing sequence of distinct integers between 1 and L inclusive, or the single
integer 0. The supermanifold M therefore has real dimension 2L~1(m + n). The

factors ]/—1 appear in (2.1) where necessary to ensure that each Grassmann
coordinate ZA = ZAVΓ is real in the sense of being equal to its complex conjugate,
where complex conjugation by definition reverses the order of υt factors in a
product. The symbol vr denotes the product of all the vt whose subscripts appear

in the sequence Γ, including the J/— 1 where necessary, with v0 = l. It is easily

checked that vr contains ]/ — 1 precisely when the length of the sequence Γ has the
form 4fc + 2 or 4fc + 3.

The defining property of a supermanifold is that the transition functions
relating the coordinates in overlapping charts should be G°° functions (otherwise
known as superfields) in the Grassmann coordinates. Such functions are
polynomials in the θ coordinates,

F(x, θ) = f0(x) + /β(x) 0* + faβ(χ ) θ«θ* +.... (2.2)
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Furthermore, the coefficient functions in this expansion are required to admit
Taylor expansions about the body x0 of x in powers of the soul s(x) = x — x0:

f(X) = f(Xo) + s(Xκ)dμf(Xo) + ±s(Xκ)s(X

v)dμdvf(Xo) + ... . (2.3)

This series terminates if L is finite. The G°° conditions are very restrictive, since a
priori the transition functions could have had arbitrary dependence on the real
coordinates Zp. The effects of these conditions on the topology of M have been
explored in [10, 1 1]. A G°° function can be differentiated with respect to either the
real or Grassmann coordinates. By the chain rule these derivatives are connected
by

. (2.4)

Not all supermanifolds have proven useful in physics. One must require in
addition to the properties above that the body coordinates xg alone parametrize
an m-dimensional manifold called the body of M which can serve as the physical
spacetime in a theory based on M. M is normally assumed to be a vector bundle
over its body. Such an M will be called a DeWitt supermanifold [12]. For example,
the flat superspace with m even and n odd coordinates, B™'n, is a trivial vector
bundle over its body Rm. Furthermore, in physics the Grassmann algebra is
assumed to contain arbitrarily many independent elements, not merely L such
elements. In field theory, unitarity is violated for finite L because the Green's
functions with more than Lfermionic fields vanish identically. Therefore one either
sets L— oo directly or works with a sequence of supermanifolds constructed over
the algebras BL for L-> oo . Setting L = oo is awkward because expressions like (2.3)
and (2.5) below become infinite series for which convergence must be defined and
proven. To avoid this, the limiting procedure L-> oo will be adopted here. A careful
discussion of this limit has been given by Rogers [13] and will now be sketched.

The key observation is that the G°° functions over BL form a subalgebra of
those over BL+1. By Eqs. (2.2) and (2.3), a G°° function is determined by its
coefficient functions /α...σ(x0)> so each G°° function over BL can be identified with
the G00 function over BL+1 having the same coefficients. Furthermore, the flat
superspace B™'n itself is a subspace of l^+V (Rogers showed that curved
superspaces for different values of L are also nested, but this fact will not be needed
here.) This means that whenever a physical quantity threatens to vanish because of
cancellations in the algebra BL, one can enlarge both the superspace and the
function algebra to avert it. Physical Green's functions do not depend on the value
of L once this value is large enough to avoid accidental vanishing. This is evident
from the fact that standard path integral calculations depend only on the formal
algebraic properties of the fermion fields and never refer to their values.
Mathematically, this procedure is called a direct limit: the superspace and function
algebra for L= oo are defined as the infinite union of the nested superspaces and
algebras for all finite L. Each Green's function is computed using a sufficiently
large but finite L, and convergence questions do not arise.

Several different cohomology theories can be constructed for a supermanifold
M [9]. First, since M is an ordinary manifold, there is the usual de Rham
cohomology of real-valued differential forms. Such forms locally appear as
polynomials in the (anticommuting) coordinate differentials dzp with smooth real-
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valued coefficient functions. The differential operator is

(2 5)

The cohomology, denoted Hk

DR(M), is the group of closed (dω = 0) mod exact
(ω = dψ) fc-forms. The wedge product of forms defines a multiplication of
cohomology classes which makes the union of the Hk

DR(M) into a ring. Next, there
is the de Rham cohomology of Grassmann-valued forms. This is defined exactly as
above except that the differential forms have smooth BL-valued coefficient
functions. It will be denoted Hk

DR(M;BL). Both of these cohomology theories
measure the ordinary topology of M as a real manifold. Indeed, a £L-valued form
ω can be decomposed into real-valued forms ωr via ω = vrωr. ω is closed or exact
iff all the ωr are, so these cohomology theories contain exactly the same
information.

A cohomology theory which takes account of the supermanifold structure of M
is the cohomology Hk

G(M) of G°° differential forms. These forms locally appear as
polynomials in the Grassmann coordinate differentials dzA with G°° functions for
coefficients. Note that the differentials dθ" commute with each other but
anticommute with dxμ and with θβ. The differential operator here is

d=dz*-, (2.6)

which is different from the previous cases. A priori it is not clear that G°°
cohomology has any topological significance at all. The two basic properties of G°°
cohomology to be established here are its relation to de Rham cohomology and its
in variance under G°° homotopies (homotopies which preserve the supermanifold
structure). These results give the precise sense in which G°° cohomology contains
topological information. As a corollary, Kostant's theorem [5] (which he
expressed in a quite different formalism) that the cohomology of a DeWitt
supermanifold is just that of its body will be rederived in the present language.

The relation between the G°° and de Rham cohomologies of a supermanifold is
expressed by the existence of a map h : Hk

G(M)^Hk

DR(M; BL) which is a homomor-
phism of the cohomology groups (and of the ring structure as well), h is first defined
at the level of forms. From any G°° form ω one can produce a corresponding
#L-valued form hω by replacing each dzA by vrdzA. This map does not depend on
the choice of coordinates. If w = w(z) are G°° functions of the old coordinates, then

while
A B ^ZΓ B ̂ zA B dzA

and these expressions are indeed related by dw^-^dwf. Furthermore, this map
commutes with d:hd = dh on G°° forms. For example, for a 1-form ω = fB(z)dzB,

hdω = hdzA f^ dzB = vrdz$ ̂  vΣdzB

Σ, (2.7)
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While fir fir

dhω = dfBvΣdzj = dz* /| vΣdzB

Σ = dz*vr /f vΣdzB

Σ. (2.8)
OZp OZ

Equation (2.4) is the key to all these manipulations. Since h commutes with d, it
sends closed (exact) forms to closed (exact) forms and hence gives a map of
cohomology classes as claimed. Since h also preserves sums and products of forms,
it is a homomorphism of cohomology rings. It is not an isomorphism, however. As
shown in [9], h is an isomorphism for the zeroth cohomology groups, a one-to-one
map for the first cohomology groups, and need not be one-to-one or onto for the
higher groups.

The map h is used implicitly whenever one has a map /: W^>M from an
ordinary manifold (such as the world sheet of a string) into a supermanifold and
desires to pull back a G00 form on M to a BL-valued form which might be integrated
on W. One first applies h to get a £L-valued form on M and then pulls this back.

The basic property which gives topological significance to the de Rham
cohomology is its homotopy in variance: homotopy-equivalent manifolds have the
same cohomology. The G°° cohomology of a supermanifold is similarly invariant
under homotopies which preserve the supermanifold structure. This qualification
is important, because a single real manifold often admits many supermanifold
structures. The G°° cohomology is not an invariant of the underlying manifold, but
of its G°° structure only. The proof of this property is almost identical to the
classical proof for de Rham cohomology [14].

Lemma. For any supermanifold M, Hk

G(M) = Hk

G(M x££'°).

Proof. Let x denote a point of M and t the even coordinate of B\JQ. Then there are
natural G°° maps

π:Mχβi °->M,(x,ί)-»x, s:M^Mx££'°,x-+(x,0). (2.9)

The corresponding maps π* and 5* on forms can be used to pull back G°° forms
from M to M x B\^ ° or vice versa. (The choice of the slice t = 0 in the definition of 5
is arbitrary. Any constant ί slice could be used.) Now πs = 1, so s*π* = 1, but sπ φ 1
and π*s* φ 1. The plan is to find a G°° operator K acting on forms on M x B}j ° with
the property

F F J l-π*s*=±(dK±Kd). (2 !0)

This shows that 1 — π*s* sends closed forms to exact forms, hence sends every
cohomology class to the trivial one. At the level of cohomology, then,
π*s* = s*π* = l, so that π* and s* are inverse isomorphisms between the
cohomologies of M and M x B^Q.

A G°° form on M x ££'° can be split into pieces which contain at and pieces
which do not. Precisely, such a form is uniquely a sum of two types of forms,
namely (π*φ)F(x, t) and (π*φ)F(x9 i)dt, where φ is a G°° form on M and F is a G°°
function. The operator K will be integration over t:

K(π*φ)F(x, ί) = 0, K(π*ψ)F(x, t)dt = (π*φ) { F(x, u)du. (2.11)
o

The integral here is a contour integral within B1

L' °, depending parametrically on x.
It is independent of the path joining the endpoints [12]. Further, it is a G°° function
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of the upper endpoint f, so is completely determined once known for soulless
values of ί. For such values the contour may be taken within the body jR1 of β£'°.
At this point the classical calculation [14] applies to show that
1 - π*s* = (- l)fc ~ 1(dK - Kd) when acting on fc-forms, which completes the proof.

Definition. Let M and N be supermanifolds. Two G°° maps f,g:M-+N are G°°
homo topic iff there exists a G°° map F :M xB^^-^N such that F(x9 t) = f ( x ) for
ί0 ̂  1 and F(x, t) = g(x) for ί0 ̂  0.

Because F(x9 f) is G°° it is completely determined once F(x, ί0) is known.
Therefore a G°° homotopy is really just an ordinary homotopy by a sequence of
maps which are all G°°.

Theorem. Two maps f,g:M-+N which are G°° homotopίc induce identical maps
J*,g*:HG(N)^>HG(M) in G°° cohomology.

Proof. Let π be the projection of M x B^'° onto M as in the lemma. Let s0 and s^
map M to the slices t = 0 and ί = 1 of M x J3£'° respectively (Fig. 1). By the lemma,
s* and sf are both inverses to π* in cohomology, so they are equal. Hence the
induced maps /* = s?.F* and g* = s$F* are equal.

One says that two supermanifolds M and N have the same G°° homotopy type,
or are G°° homotopic, if there are G°° maps f:M->N and 0: JV->M such that /#
and gf are each G°° homotopic to the identity map. It follows from the theorem
that two such supermanifolds have the same G°° cohomology. Thus the G°°
cohomology is invariant under homotopies preserving the G°° structure.

Corollary (Kostant [5]). Let M be a DeWitt supermanifold, M0 its body, and M the
even Grassmann extension of the body (the canonical DeWitt supermanifold having
body MO and even coordinates only). Then

HG(M) - ff G(M) = HDR(M0 BL). (2.12)

Proof. The first equality is established by showing that M and M are G00

homotopic. This depends on Rogers' result that any DeWitt supermanifold has a
special atlas with especially simple transition functions [15]. If (x, 0) and (y, φ) are
the coordinates in overlapping charts in this atlas, then y depends only on x, not on
θ, and φ depends on θ only linearly. Given such an atlas for M, simply send
0->/(ί)0 in each chart, where /(ί) is G00 and /(ί0) is 0 for ί0 <£ 0, 1 for ί0 ̂  1, and
smooth in between. This is consistent across overlaps of charts and gives a G00

homotopy of M into M.
The second equality is true because G°° forms on M are in one-to-one

correspondence with BL-valued forms on its body. Given a G°° form on M, apply h

Fig. 1
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to get a £L-valued form and then restrict it to M0. Conversely, given a £L-valued
form on M0, a G°° form on M is obtained by replacing each dxg by dxμ and each
coefficient function by its unique G°° extension [8]. These maps on forms commute
with d and are easily seen to give the desired isomorphisms in cohomology.

Finally, a simple example will be given of the behavior of G°° cohomology
when there is nontrivial topology in the soul directions. Consider the cylinder CΓ

formed from B^' ° by compactifying a single coordinate direction xr into a circle.
As ordinary manifolds, the CΓ are all diffeomorphic to each other and are
homotopy-equivalent to a circle. Therefore Hk

DR(CΓ) = R for fc = 0,1 and is trivial
for k> 1. Similarly Hk

DR(CΓ; BL) = BL for k = 0,1 and is trivial otherwise. The closed
but nonexact form generating H^R is dxr. This is because the function xr on B\^ ° is
not periodic, so there is no corresponding function on the quotient space CΓ.

The various CΓ have different G°° structures and are not G°° homotopic. The
G°° cohomology may therefore distinguish between them. There is no global
function x = VΣXΣ on any of the manifolds because there is no function xr. Therefore
dx is not exact. However, cdx is exact if the constant c is proportional to vt for any
index i in the sequence Γ. The function ex does exist because multiplication by c
annihilates the troublesome term vrxr (no sum) in x. Hence H^(CΓ) = BL, but
HG(CΓ) is generated by a single element dx subject to the relations vtdx=Q for each
i in the sequence Γ. The map h in this example sends the generator dx in HQ to
vΓdxr (no sum) in H^R. It is one-to-one but not onto, since for example nothing
maps to the generator dxr of H^R in general. The fact that HQ is not freely
generated is the algebraic reflection of the fact that a particular real coordinate
direction has been compactifϊed rather than an entire Grassmann coordinate
direction. The reader may wish to study the G°° cohomology of various cylinders
and tori involving compactification in several directions.

3. The Green-Schwarz Wess-Zumino Term

Superstring theory may be viewed as a dynamical theory of maps from the two-
dimensional world sheet of the string into the flat superspace B™'n. Customarily
m=10 and n = 32. The spinor coordinates θ" are assumed to be Weyl as well as
Majorana. This can be viewed as a restriction on the allowed maps. For simplicity
only one set of 0α's will be used, corresponding to the N = ί heterotic string rather
than the N = 2 superstring. This is purely for convenience: none of the conclusions
below depend on specific properties of any particular superstring theory. The
image W of the world sheet in B™'n is an immersed 2-manifold representing the
path swept out by the moving string. It is natural to construct an action functional
by integrating some SUSY-invariant G°° 2-form over W. Here the SUSY group
acts on B%'n by

Q0/α) (x", 6>α) = (x» + iήγ»θ, θα + η«), T(α") (*", 6>α) = (xμ + a", 6>α). (3.1)

The group parameters rf and aμ are respectively odd and even bodyless elements of
BL, and the Dirac matrices are in the Majorana representation. Of course one
wants the action to be invariant under the full Poincare group also, but the above
transformations already close and will be of most interest. Some relations obeyed
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by the group elements are

Q(η)Q(X) = Q(n + X)T(iηγλ), Q(-η)Q(-VQWQ(X) = T(2iηγλ). (3.2)

The second equation is the analog for finite group elements of the fundamental
anticommutator of the SUSY algebra.

The SUSY-invariant G°° forms are not difficult to classify. The only SUSY-
invariant G°° functions other than constants are functions of the form
Vi2. L .L/C*) (at m°st one subscript missing), which are uninteresting and will be
ignored both because they have no body and because they do not survive the limit
L-κx). Up to normalization, the only SUSY-invariant G°° 1-forms are ω^^dθ*
and ωμ = dxμ — iθyμdθ. It is easy to see that any SUSY-invariant G°° form of higher
degree must be a polynomial in the ωA with constant coefficients: certainly any G°°
form can be written as a polynomial in the ωA, and if the form is invariant so are the
coefficients of this polynomial.

The kinetic or metric term in the covariant superstring action is [16]

Sι = -Hω**ωμ. (3.3)
w

Here the invariant 1-forms ωμ are restricted to W9 and * is the Hodge dual on W
which contains the dependence on the metric.

If X is a 3-manifold in B™'n whose boundary is the world sheet W then the WZ
term in the action can be expressed in terms of a SUSY-invariant 3-form Ω3

restricted to X:

S2 = jf Ω3, β3 = -i(Cyμ\βω
μω«ωβ = -ίdxμdθyμdθ, (3.4)

with C the charge conjugation matrix. Here boundary conditions are implicitly
chosen such that the world sheet is a closed manifold. One can question whether
such boundary conditions are appropriate for a string theory, but this issue will be
ignored here.

One normally expects the occurrence of a WZ term to be associated with
nontrivial topology - specifically a nontrivial H3 - in the space of values of the
fields. Here, however, this space is ££'", whose G°° cohomology is trivial by
Kostant's theorem. Indeed, Ω3 can be obtained as d of various 2-forms. However,
these 2-forms cannot be chosen to be SUSY-invariant. This is the formal version of
the familiar statement that when the Wess-Zumino term is expressed as an integral
over W it is SUSY-invariant but not manifestly so. Defining the supersymmetric
cohomology #SUSY(jB£'") to be the set of closed SUSY-invariant G°° forms modulo
those which are differentials of SUSY-invariant G°° forms, Ω3 represents a
nontrivial class in HjυsΎ(B^n).

The cohomology of invariant differential forms on a Lie group is a familiar
object in mathematics. For example, it is a classical theorem that the cohomology
of invariant forms on a compact connected Lie group is identical to the ordinary de
Rham cohomology of the group [17]. This theorem is relevant to the classification
of Wess-Zumino terms in ordinary sigma models with compact groups. There too
it is the invariant cohomology which is of interest for constructing invariant
Lagrangians, but by the theorem this need not be distinguished from the de Rham
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cohomology. Therefore the Wess-Zumino terms can be classified using the de
Rham cohomology of the group manifold. The critical difference for superstrings is
that the SUSY group is noncompact, so the theorem does not apply. Because HG

and ΉSUSY can be different, a Wess-Zumino term is possible despite the trivial
topology of BΪ>".

Is HSUSY only a formal algebraic construction or does it have a topological
interpretation? Suppose a supermanifold ML could be found such that the SUSY-
invariant forms on B™'n were in one-to-one correspondence with all G°° forms on
ML, this correspondence preserving the action of d. Then Hsusγ(β£'π) = HG(ML),
and the nontriviality of Hjυsγ(B™'n) could be visualized in terms of the topology of
ML. The natural way to construct ML is to take the quotient of B™'n by the SUSY
group. Unfortunately, any two points in B™'n having the same body coordinates
can be connected by an element of the group, so that this quotient space is just the
body Rm of B™'n, which is not a supermanifold at all.

Fortunately, the SUSY group has a discrete subgroup DSUSY which is
generated by the Q(η) and T(d) for which the components ηa

r and α£ are integers
[18]. Remarkably, for G°° forms invariance under SUSY and DSUSY are
equivalent. This is true because ωα and ωμ are the only DSUSY-invariant 1-forms,
and any invariant G00 form must be a polynomial in these with constant
coefficients. Intuitively, the point is that supersymmetries are translations along
soul directions, and superfields are polynomial functions of soul coordinates. A
polynomial which is invariant under integer translations automatically has
continuous translation invariance as well. Now, defining ML = B™' "/DSUSY gives
a supermanifold with the non-trivial topology reflected in the WZ term. ML is a
fiber bundle over its body Rm, but the fibers are topologically nontrivial [10]. This
is the simplest type of supermanifold which is less trivial than the DeWitt type.
Each fiber is in fact a torus bundle over a torus. A picture of the fibers in the lowest-
dimensional case m = n^=l,L=2is given in [10]. It is easy to see that ML embeds in
ML+1, so that the direct limit construction described in Sect. 2 defines a
topologically nontrivial limiting manifold (J ML. The subscript L will be
suppressed from now on. L

The ordinary translation group in Euclidean space has a one-parameter family
of discrete subgroups: the subgroups of translations by integer multiples of some
fixed length. One can see that these subgroups are all isomorphic by choosing units
in which the fixed length is equal to unity. Similarly, the DSUSY group contains a
scale parameter which was implicitly set equal to unity above. More generally one
restricts the components a$ to be integer multiples of a length /, while the
components rfr are multiples of /1/2. Then / is the scale of compactification of the
soul coordinates of M. For the present, / will be set equal to unity, but it will
reappear later.

Since the WZ term reflects the nontrivial topology of M, it is tempting to try to
define a theory of superstrings moving in M rather than in BJJ ". Supersymmetry
would be automatic in such a theory because every G°° form on M is SUSY-
invariant. The classical theory of closed strings on M splits into two sectors:
contractible strings, and strings which are not contractible because they wind
around the compactified soul directions of M. The contractible strings correspond
to ordinary closed superstrings in the covering space B™'n. Strings in M with
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nonzero winding numbers correspond to open strings in B™*n with an unusual
boundary condition: their endpoints must be related by a DSUSY transformation.
One might expect a topological quantization condition for the coefficient of the
WZ term in such a theory, as usual in nonlinear sigma models, whereas there was
no reason for such a condition in the theory on B™'n. It will be shown that there is
no consistent way to define the WZ term in the theory on M, hence no topological
quantization condition.

The usual quantization condition for a WZ coefficient is obtained by
demanding that the path integral be well-defined. This means that it must be
independent of the choice of the 3-manifold X with dX = W. The path integral for
the superstring has the form

--i J ωμ *ωμ+β J Ω3 + . .Λ. (3.5)
w x )

For the heterotic string there are additional terms in the action which describe the
left-moving bosonic variables [19]. The integral over all metrics on W has also
been suppressed. To understand whether the topological quantization argument
applies in this case one must carefully define the meaning of this path integral. In
particular, one might worry that the presence of the integrals over 0α(σ, τ), which
are Berezin integrals, could invalidate the argument. This is because a Berezin
integral depends more on the algebraic structure of the integrand than on its value,
so it may not be sufficient to make the exponential of the WZ term single-valued
by adjusting its coefficient.

A provisional definition of the path integral (3.5) is obtained by restricting σ
and τ to discrete values and integrating over finitely many variables xμ(σ,τ),
0α(σ, τ). The derivatives in the action are replaced by some discrete approximation.
This amounts to replacing the world sheet by a polyhedral approximation or
lattice, the integration variables being the locations of the lattice points. Eventually
the number of lattice points is taken to infinity. When the action is evaluated for
such a polyhedral world sheet, it will be a function of the lattice point locations.
The integration over the 0α is multiple Berezin integration, and the integration
over the xμ is contour integration in B™'n which is essentially equivalent to
ordinary integration over the bodies xg [12]. The WZ term makes sense if X is a
3-manifold whose boundary is the polyhedral world sheet. Note that X need not be
discretized.

Further discussion is in order concerning this definition of the path integral.
One is integrating over the space of all maps from the discrete set of lattice points
(σ, τ) into M. This space is itself a supermanifold, namely M x M x ... x M = Mk

with fc the number of lattice points. xμ(σ, τ) and θα(σ, τ) are the coordinates on this
supermanifold. The topological nontriviality of M should not complicate the
definition of the integrations, at least if W is contractible in M (a slightly stronger
assumption than W being a boundary, which was already assumed). For then a
single coordinate chart in M can be found containing W, and one need only
integrate over this topologically trivial chart. Consideration of this case is
sufficient for showing that a WZ term cannot be defined on M. If one wanted to go
further and try to define the path integral for arbitrary W, not necessarily
contractible, serious problems would arise in defining integration over the
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topologically nontrivial supermanifold Mk. It was shown in [15] that one can
integrate over a general supermanifold only when it has a covering by charts with
especially simple transition functions: the even coordinates must transform
independently of the odd ones. Intuitively this is because one uses Berezin
integration for the odd coordinates and ordinary integration for the even ones. To
define integration globally one needs some global distinction between even and
odd coordinates. This is not possible for Mk. Typical transition functions relating
overlapping charts in Mk have the form of DSUSY group transformations:

6T(σ, τ) = θα(σ, τ) + η«(σ, τ) , χ">(σ, τ) = x"(σ, τ) + iή(σ, τ)y"0(σ, τ) . (3.6)

These do not have the required form. In principle the transition functions might
take the necessary form in terms of some other choice of coordinates, but in fact
this bizarre possibility can be ruled out. One argument is that since M is the
quotient of B%'n by the DSUSY group, the parameters η* of this group must appear
in the transition functions. But these parameters carry a spinor index, so they can
only appear in the transformation law of the vector xμ in conjunction with another
spinor. Thus xμ cannot transform independently of θα. Evidently there are many
reasons why a consistent superstring theory cannot be constructed on M.

Now consider the effect of choosing two different 3-manifolds X and Y which
each have boundary Wand which together form a closed 3-manifold C. The action
changes by a multiplicative factor

e x p i Γ j f f f β g (3.7)
c

which is actually independent of the path integration variables which parametrize
the discretization of W. C may be any closed 3-manifold in M, and is not
discretized. Therefore the presence of Berezin integrals in (3.5) does not alter the
usual consistency condition for a WZ term: one must guarantee that the phase
factor (3.7) is unity for any C.

The mere fact that ί23 represents a nontrivial class in H^(M) does not imply
that the integral in (3.7) can be nonzero. If Ω3 is in the kernel of the map ft, then it
represents the trivial class in H^R(M; BL) and the integral over any C will be zero.
In this case the WZ term is well-defined on M with any coefficient, so there is no
quantization condition. If, on the other hand, Ω3 is not in the kernel of ft, it
represents a nontrivial class in H^R(M;BL). By the usual duality between
cohomology and homology, a 3-manifold C can be found which gives a nonzero
integral in (3.7). This integral will be a pure soul Grassmann number, because of the
two factors dθ in Ω3 which each contribute at least one factor vt. No adjustment of
the coefficient of Ω3 can make the phase equal to unity, since for a pure soul

Grassmann number q, eίq = 1 + iq — —- + ... cannot be equal to unity: the term in ίq

containing the fewest vt factors cannot be cancelled by any other term in the series.
Therefore there is no way to define the WZ term on M: its coefficient is
topologically quantized to zero. The best one can do is to return to the covering
space £™'π, where the WZ term makes sense but has no reason to be quantized.
Thus, whether or not ί23 is in the kernel of ft, there is no quantization condition for
the WZ coefficient on B™>n.
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In fact, ί23 is not in the kernel of h, so the WZ term does not make sense on M.
To see this one must show that hΩ3 cannot be expressed as d of any SUSY-
invariant 2-form, where this 2-form is no longer required to be G°°. Explicitly,

hΩ3 = - i(dx% + iVtVjdxfj + . . .) Mδ* + . . .)7μM0/ + ...)• (3.8)

The terms involving dx% are exact and can be dropped: there is a global function xg
on M since the body of M has not been compactified. Then

- dxμ

24dθίyμdθ3 + dxμ

ί4dθ2yμdθ3 + dx^dθ.y^θ^ + .... (3.9)

The invariant £L-valued forms are built from the 1 -forms ω/ί, where ωA = v
For example, ofr = dθ} and

cof. = d

These are complete in the sense that any invariant form is a polynomial in these
with invariant functions as coefficients. However, now that the G°° restriction has
been dropped, there are many invariant functions other than constants.

The only invariant 2-form whose differential could possibly yield the terms
displayed in Eq. (3.9) is

(3.10)

However, the differential of (3.10) does not reproduce (3.9). For example, the terms
involving dxμ

l2 and dx^ appear with the same sign in (3.9) but with opposite signs
in (3.10). Therefore hΩ3 is not exact, and in fact there exists a 3-manifold C over
which its integral is proportional to vί234.

Now that the absence of any topological quantization condition for the WZ
coefficient has been shown, what would the consequences of such a condition have
been? Could it have helped to explain the unit coefficient in the superstring action?
For dimensional reasons, the phase in (3.7) is proportional to βTl2, with β the WZ
coefficient, T the string tension, and / the compactification scale appearing in the
DSUSY group. This is the quantity which would have been quantized. Clearly, any
value of β is possible if T and / are chosen appropriately. Alternatively, given that
β = \ is correct, / becomes quantized in terms of T. This would have had
consequences for the spectrum of the string theory on M if such a theory were
sensible.

4. Conclusions

In this paper supermanifold techniques were used to understand the topology
associated with the Wess-Zumino term in the covariant superstring action. In
order to do this it was necessary to develop the cohomology theory of
supermanifolds. The precise sense in which the cohomology of superforms
contains topological information was explained. An important theme here was the
interplay between the topology as measured by superforms versus ordinary forms.
Although flat superspace is contractible and has trivial G°° cohomology, it is the
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supersymmetry-invariant cohomology which is relevant to the superstring, and
this is non-trivial. The quotient supermanifold M which was constructed allows
one to visualize the topology resulting from the requirement of SUSY-in variance.
The usual topological quantization argument for the coefficient of a WZ term
leads to radically different conclusions when the action is Grassmann-valued. The
topological quantization condition for the WZ term on M actually restricts its
coefficient to be zero, while on flat superspace there is no quantization condition at
all. Such a quantization condition would not have explained the unit coefficient of
the WZ term in any case. At most it would have quantized the compactification
scale of the soul directions on M in terms of the string tension.

The cohomological analysis of the WZ term differed from that in ordinary
sigma models in two respects. First, the superstring action is Grassmann-valued.
This meant that any phase ambiguity in the path integral was also Grassmann-
valued and could not be eliminated by adjusting the WZ coefficient. Second,
superspace is noncompact, unlike the group manifolds in most sigma models of
interest. This made it possible for the invariant cohomology to differ from the usual
de Rham cohomology and motivated the construction of the manifold M on which
the identity of these cohomology groups was restored. Much of this analysis would
apply to the study of WZ terms on noncompact sigma models. There too the WZ
terms are classified by the invariant cohomology while the quantization conditions
are determined by the de Rham cohomology, these being different in general. If a
compactified manifold M can be constructed whose topology reflects the invariant
cohomology, there may be interesting relations between the noncompact sigma
model and the corresponding model on M. In the present work, the construction
of M relied heavily on the polynomial behavior of superfields in soul directions. It
is not clear how M might be constructed for general noncompact sigma models.
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