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Abstract. Let Hy be the quantum mechanical Hamiltonian for a neutral system
of 2N charged particles, each of unit charge. The Hamiltonian H, is assumed to
act on wave functions  in L*(R®Y) which satisfy Bose statistics. It is shown that if
the kinetic energy of y is sufficiently small, then (/| Hy|¢> = — CN7/ for some
universal constant C.

1. Introduction

In this paper we are concerned with a Hamiltonian acting on a system of 2N
particles which interact via a Coulomb potential. We assume that N of these
particles are negative with charge — 1 and located at positions x,...,xyeR3. The
other particles are positive with charge + 1 and located at xy,,...,x,yeR>. We
may write the quantum mechanical Hamiltonian for the system as H,, where

2N N _ N _ N _
Hy= Z(_Ai)+ z |xi_xj| L+ Z |xi+1v—xj+1v| T Z |xi_xj+N| L
i=1 i<j=1 i<j=1 ij=1
(1.1)

Here A, denotes the Laplacian in the variable x;,1 <i < 2N.

We consider H acting on wave functions ¥/(x;,..., x,y) in L*(R%") which are in
the domain of the unique self-adjoint operator corresponding to Hy. We shall
assume that these wave functions satisfy Bose statistics, and hence that y is invariant
under permutations of the sets (x,,...,xy) and (xy41,...,X,y). Our result is the
following:

Theorem 1.1. Let A be a cube in R® and suppose that y(x,...,x,y) is infinitely
differentiable with compact support in A*N. Let y,, be defined by

Nv2 2N

% = -; Y, — A, (1.2)
where L is the length of a side of A. Then if y, < N3 there is the estimate

W Hyy>z —CNTP, (1.3)
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and C is a universal constant.

We shall prove Theorem 1.1 by using the techniques developed in [1]. In fact one
has just to note some straightforward extensions of the estimates of [ 1] to obtain our
theorem. However this paper is written so that it can be read independent of [1].

Theorem 1.1 is in some sense the natural result one can expect to obtain from the
methods of [1]. The basic assumption of the theory developed there was that most
particles are in low momentum states and that the creation and annihilation
operators corresponding to these states can be approximated by multiplication
operators. By definition of y,, one can say that in the wave function i most particles
are concentrated in momentum states k with |k| < y,. The number of such states is
about y;, and hence if y, « N'/? there are on average many particles in each k state.
Thus the creation and annihilation operators for these states can be approximated
by scalar multiplication operators.

We show how the main theorem of [ 1] can be obtained from Theorem 1.1 above.
Let us assume ¥ is a product wave function:

(X1, Xon) = P(X s X)) Py g 1505 Xow), (1.4)
and that ¥ has constant density on the box A. Then there is a well-known lower
bound on the potential energy, P.E.,

P.E.> — CN*3/L, (1.5)

where C is a universal constant. Now if y, < N'/? then Theorem 1.1 implies the result
of [1] that (1.3) holds. Otherwise we have a lower bound on the kinetic energy, K.E,,

N5/3

K.E.> (1.6)

L2
Taking (1.5) and (1.6) together implies that (1.3) continues to hold provided we make
the constant density assumption of [1].

The motivation in obtaining Theorem 1.1 was to prove (1.3) independent of
restrictions on . The idea was that in the case when y,>N'* one should
decompose the cube A into smaller cubes and then apply the Fourier analysis
methods of [ 1] to these smaller cubes. In order to do this one would need to be able
to prove the analogue of Theorem 1.1 in the case when y satisfies Neumann
boundary conditions. However the methodology of [1] breaks down when the
boundary conditions on ¥ are changed.

2. Proof of Theorem 1.1

Here we shall show how the proof of Theorem 1.1 follows from some lemmas. In the
next section we shall give the proofs of these lemmas.

Our first task as in Sect. 3 of [1] is to approximate the Coulomb potential 1/|x|
by a potential ¢ ,(x) which is periodic on a cube Q , containing A. The cube Q ,is
concentric with A but with side which has 4 times the length of a side of A. Let us
define ¢,(x) by

N1/5/L

)= [ e "du, 2.1)
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where L from now on is the length of a side of Q ,. We consider the Hamiltonian Hy ,
which is defined like Hy in (1.1) but with the Coulomb potential 1/|x| replaced by
¢x). It is easy to see then that

CN 2NS»

 ERE = —C'N", (2.2)

Y. Hy )2

where C and C’ are constants. We may therefore replace the Coulomb potential in
our future considerations by the potential 1/|x| — ¢,(x).
Next we state a lemma which is analogous to Lemma 3.7 of [1].

Lemma 2.1. For xeQ , with|x| < L/2, the potential 1/| x| — ¢,(x) may be expanded in
a Fourier series

VIx| = @00 = 3 valkje? ™, (2.3)

keZ
where v (k) satisfies the inequality
0 < vy(k) £ 1/mL(|k|* + 1). (2.4

Now we wish to represent the expected value (1.1) with the Coulomb potential
replaced by (2.3) in the second quantised form. Let g, be the Boson annihilation

operator which acts on the variables (x,, ..., Xy) and corresponds to the normalised
wave function L™ 32 exp [2nik-x/L] on L*(Q ,). Similarly let b, be the operator acting
on the variables (xy . ,...,X,y). The 2N particle kinetic energy Ky is then given by
4n? 5
Ky=—5 Y k’[afa, + bib,]. (2.5)
L keZ3
Let A, be the operator
A= ZZ (@ sk, — by iy ]. (2.6)
neZ3

Then if Hy ; denotes the Hamiltonian Hy of (1.1) with the Coulomb potential
replaced by (2.3) we have for the wave functions iy in Theorem 1.1 the representation

Y Hy g = ¥, Ky ) + kzzava(k)[ﬁﬁlz‘li"/‘lk!w —2N]. 2.7)

Let keZ3 and m = (n, + 1) be in Z* x Z,. We define the norm of m as |m| = |n| and
operators Sy ., T, for |m| < |k|/4 by

S =a:<an+k if m=(n9 1)>
BT by i m=(n, —1),
ata,_, if m=(n1)
Tem= .
bbb, if m=(n, —1). @8)
It is evident from (2.6) that
Ak = Z [S;(k\m + Tk.m] + Bk’ (29)

I < 4
where the operator B, contains only products aja,, b}b,, where both |p| and |g|
exceed |k|/4.
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We obtain a lower bound on the kinetic energy of  which is analogous to the
inequality (2.10) of [1]. We have the following lemma:

Lemma 2.2. Let 6 >0 and y be a positive number with 1 <y < N3, For keR? let
C () be defined by

0

Ck(l// Z 2r(3 +9)

ISEnSem+ T Timl>. (210)

r-ﬁ'l_l)y

@ -1y im<
Then there is the inequality
WIKNY) 277 2 KClY), 2.11)
! N LZ |k|§4v ’

where C; is a positive constant depending only on 6 > 0.
We define a function I,(e,y) similar to (4.17) of [1] by

L(e,y) = eCy(y) + Y| A% A, 1> — 2N. (2.12)
Then we have
W Hy 0> = —2N Y vk)+ Y v, (k) I(Csk?/NL?v,(k), 7). (2.13)

Kl <4y Ik|> 4y
From Lemma 2.1 we have
2N Z v (k) < CNy/L, (2.14)
<4y

for some constant C. From now on we take y = y,, as defined in Theorem 1.1. Since it
is evident that

Ny?/L?— CNy/L= —C'N, (2.15)

for some constant C', it is only necessary for us to find a lower bound on the second
sum in (2.13) in order to complete the proof of Theorem 1.1.
We define N(u) by

= Y (Ylara, + bib, . (2.16)

In|>u

The following lemma is analogous to Lemma 4.1 of [1].
Lemma 2.3. For meZ?® x Z,,let
Ylagalyy if m=(n, +1),
N = 2.17
" [<w|b:<b,,|¢> it m—(n— 1) 17

Let a,,, |m| < |k|/4, be the positive roots of the polynomial in u,

) . [ Ny + N ]+1=0, (2.18)

340 344
r=0 0" —p<im <@t -1y ENm/2r( ) — H eNm/Z" )+ H

where the double sum in (2.18) is only over m with |m| < |k|/4. Then I,(¢,y) satisfies the
inequality

L)z S Y [ <1+2,(3+(,)> ] IN(kI/4)  (2.19)
@ —tyim<@ -1y

r=0(
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Now we have by definition of .

N(u) £ Ny*/u?, and hence (2.20)
Y. vi(kIN(lk|/4) = CNy/L, (221
ki > 4y

for some constant C. In view of (2.15) it is sufficient for us to bound below
appropriately the sum in (2.19). This is accomplished by the following lemma.

Lemma 24. Let J,(¢,y) denote the sum on the right in (2.19). Then J, satisfied the
inequalities
Jile,y) 2 —2N, (2.22)
Ji&,7) = — CsN(y3fe) /B, g > y3, (2.23)
where C; is a constant depending only on 6 > 0.
Lemma 2.4 is analogous to Lemma 4.2 of [ 1], but is a weaker estimate for large ¢.

However this estimate is still sufficient to prove Theorem 1.1. We need only to
estimate

Y v (R)T(C k2 /N LA (k) ). (2.24)
k| >4y
and by (2.23) this is bounded below by
— C;N*(y/L)*, (2.25)

where C; is a constant depending on 6. Now since
N(y/L)? — CsN*"#(y/Ly*'* = — CsN7P3, (2.26)

for some constant Cj depending only on 4, we have completed the proof of
Theorem 1.1.

3. Proof of Lemmas
Here we turn to the proof of Lemmas 2.1 to 2.4.

Proof of Lemma 2.1. For u> 0 and éeR3 let

I _ L/2 p—ulxl g
(u, 6) = E‘; Wé’ X. (31)

It is easy to see that I is given by the formula

I(u, &) 4—”{1 _ e—“m[coslm/z + (uL)W] } (3.2)

TR IE1L/2
The coefficient v (k) in (2.3) is given by
1 /NY3 2nk
vaz(k) - FI<_L_’ T)s (33)

and it is easy to see from (3.2) and (3.3) that the inequality (2.4) holds. Q.E.D.

Proof of Lemma 2.2. First note that the sum in (2.10) is finite since S, ,, and T, , are
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defined only for |m| < |k|/4. We have
4n? . «
K> =301 T Klata +bEbI)

4n

LzN[(lﬁlZa*a kKafagyy + <t//le*bmk2bZ‘bk|l//>]- (3-4)

Now we have

[k|?
Za*a kzakak Za Am m+k)2 m+kam+ ;;T Z arﬁamarﬂ;+kam+k

m| < k|/4
[k|? 1
EZ 4 (3+5)r(m)a ol G Y
k I < ki/4
LT o o is
_Z 4 Z 2(3+a)r(m) [Sk.m k,m_am+kam+k]> ( . )
k i < [ki/4

where
rmy=r if Q2 -1y ml<@F1—1)y. (3.6)
The last expression in (3.5) gives an inequality for the kinetic energy of the desired

form except for the terms in a*,,a,,,,. These are negligible since y> < N. This
follows since

[kI® L . 2
— ———a < ————|t|*a*a,, (3.7
. 4 b 2(3 oy A4 kO = ZIMI;W 2(3 T 8)r(m) I | a; a, ( )
and from (3.6) it is evident that
1
;W <Cy?, (3.8)
for some constant C; depending only on J > 0.
By similar argument we therefore obtain an inequality
2
= k*C 3.9
WK 2575 T G - (39)

where C,is a positive constant depending only on ¢ > 0. The inequality (2.11) clearly
follows from (3.9). Q.E.D.

Proof of Lemma 2.3. We apply a Bogoliubov transformation to the operators
Si.m> Tym With |m| < |k|/4. Let M be a matrix which is in the block form

%
M=[W V}, (3.10)

and satisfies the matrix identity

fr o] [I1 o
M[O _I]M—[O —1]’ (3.11)
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where I is the identify matrix. The matrices M, V, W are assumed to be real with
adjoints denoted by M’, V', W’. One can see that (3.11) holds if and only if

VV-WWw=I VW=WV. (3.12)
Further, it is clear that M ~! is given by the formula
Vv —-w
M“:[_W, V’]‘ (3.13)
From (3.13) it follows that, as well as (3.12), one has
—-WW' =1, VW =WV" (3.14)
Now let ¥V, W be matrices with the same dimension d as the number of elements m

with |m| < |k|/4. We write I, in (2.12) as

Im|<d

+ < Y [SE+ T,,,]+B>*< Y O[S+ Tm]+B>|¢>—2N, (3.15)

Im|=d |m|<d

where the S, and T, denote S, ,, and T, ,, as defined by (2.8). Now let us denote by o
the sum,

o= i, -(3.16)

and A,,, [m| <d, be arbitrary positive numbers. We make a transformation on the
Sms T bY

Sy = AmFm— B*/e, (1 +20), T, =2,G,,— Ble,(1+20). (3.17)
Then (3.15) becomes

Im| =d

+< ) &m[F::+GmJ>* < > xm[F::Jer])m—zN

Iml<d Iml=d

1 * *
+m<l//|(l + 0)B*B + o BB*|Y/)

B*, 2, F 5] + [F s B . 3.18
(1+2)<whéjﬁ ] + LA, Bl1W) (3.18)

We obtain a lower bound on the last term in (3.18). Indeed it is the same as

B*, Blly >, (3.19)

" (1+2)2[

Iml<d
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and since the first expression in (3.19) is identically zero this is the same as

20 N
WWIEB , Blly ). (3.20)
It is easy to see that
yI[B* BIlY > = —N(lkl/4), (3.21)

and this yields the lower bound on the third term in (3.18).
The second expression in (3.18) is evidently positive and so we are reduced to
estimating the first expression which we shall write as

Je,y) =Yl Y endmlFiFy+ GG,

Iml<d
+< > AulFi+ G,,J>*< > AnlFi+ Gm]>lt//> —2N. (3.22)
|m|=d |m|<d

Our next goal is to find an accurate lower bound on J, by using Bogoliubov
transformations. To do this we write J, in matrix form as

U C *
s =l o |[ &7 oS|G | Z swiatem a0y -2, 629
Im|=d

where F and G are vectors with entries F,, and G,,,, |m| < d, respectively. The matrices
C and D are given by

C=(Anh), D= (esA70ym)- (3.24)

Next we choose a Bogoliubov transformation M given by (3.10) which
diagonalizes the matrix in (3.23). Thus

%o

[c+p ¢ .
M[ c C+D:|M— % |- (3.25)

Hence if we define the transformation
F* ,7*
[G}—M[CJ, (3.26)
we have J,(g,y) given by

Je,y) =<1 Y ol + 0ilnl — X endalFo, FRIW ) — 2N, (3.27)

Iml=d |m|<d

We conclude therefore that

Jie. ) Z <Y1 Y el 1] — emhnlF s FRIY > — 2N. (3.28)

Iml<d
We need to estimate the commutators in (3.28). To do this we see from (3.13) that

n=VF—-WG* {(=-WF+VG, (3.29)
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and hence we have
Hm = z Vn,an - Wn,mG: = Zj'r: 1[Vn,msn - Wn,mTrT]
B* 1
— —(V,
T e U
Thus the right-hand side of (3.28) is

= Wom) (3.30)

<¢‘ Z amliz/ln_l(Vn,mSn_ Wn,mT:‘)’Z’{n—l(Vn,mS:f— Wn,an):l_Zsm[SmasrTl]lw>

Im|<d n

. —0 1 1 2
— 2N + <¢|B ’B:”lp>|:(1 + 20_)2 + (1 + 20_)2 Iméd(xm[;a(l/n,m - Wn,m):| :|
(3.31)

We wish to bound below the last expression in (3.31). The last sum in (3.31) can be
written in matrix form as

o)

KV —W) o, |(V—W)h, (3.32)
where h is the vector with entries h,, given by h,, = 1/4,.¢,,- The expression (3.32) is
clearly bounded in absolute value by

%o %o
2KV oy Vi+ W oy W'> h. (3.33)
One can see from (3.25) that
%o %o
vV oy V+w oy W =C+D. (3.34)
Thus (3.33) is

2[WCh + WDh] =2[6* + o]. (3.35)

It follows then that the coefficient of (y| B¥*, B]|{ > in (3.31) is bounded in absolute
value by 1/2.
We need now to consider the expression

Hk(89 y) = <¢I Z o‘mlizin_ 1(Vn,mSn - Wn,mT;lk)’

|m|<d

Z)‘n_ 1(I/n,mS;ll< - Wn,an):| - ng[Sma S;':l] | l//> —2N. (3'36)
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This is the same as

Hy(e,y) =<yl 3 am[z&i 2V’ S, S = 20 2(W, [ T, Tif]}

Iml<d n

— Y e[S, SEIY > — 2N. (337)

To proceed further we need to explicitly compute the commutators involved in
(3.37). First we introduce a slight change of notation from the definition (2.8) for the
Sn,and T,,. Let meZ3® x Z, and m = (n,0), o = + 1. Then if ke Z> we define m + k by
m+ k= (n+k,a). For m=(n,a) we define a,, by

ap=a, if a=1,
=bh, if a=-1. (3.38)
Thus from (2.8) we have
Sim =00 1, Tym=oaka,_,, if m=(no). (3.39)
From (3.39) it is easy to calculate the commutators involved in (3.37) as
LSt Stml =aka, —ak 1msrs [T Thnl =aka, —ak_ia, . (3.40)

Thus (3.37) is the same as

Hk(ga ’Y) = <¢| Z aml:zin_z {(Vn,m)2 - (Wn,m)z}ar’ran]

mi<d
—;(1 + en)anan|V > — N(Ik|/4) + Pyle, ), (3.41)
where
Pye,) = |<%W<WIar’r+kan+klw>|:8n - ;amlrf 2(V,.,m)z]
T lat sty T W (3.42)
From the matrix ident‘intl;l(l/3.34) it is clear that
Y (V) S 421 + &) (3.43)

It follows therefore that
P(e,7) = — N(|k|/4). (3.44)

Finally we consider the first expression in (3.41). If we let 4, — {(W¥|afa,|y> =N,
and use the identity (3.14), it is clear that this expression converges to

Y[ty — (1 +&,)N,1 (3.45)

and this is exactly the sum on the right in (2.19). Equation (2.18) which determines
the roots «,, is just the characteristic polynomial for the matrix diagonalization
problem (3.11),(3.25). The polynomial is explicitly computed in [1]. The lemma now
follows easily from the estimates we have made. Q.E.D.
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Proof of Lemma 2.4. The inequality (2.22) follows since the «,, can be arranged such

that

‘xm > SNm/zr(m)(:«S +6)'
Now define n,,r=0,1,2,...,by
n,= Y N,.,

.
@ —1p<im <@ -1y

and let §,, r=0,1,2,..., be the positive roots of the equation

o n
! 1=0,
=Z |:Csn /2"6”’ ,u+Csn,/2’(6+‘”y3+u]+

where C is any positive constant which satisfies
1 g C23r’})3

@ —1ysim<@ -1y

Then we see by the argument of Lemma 4.2 of [1] that

& Ce
Jk(e y g Z |: ( 2r(6+5),y3 >nr:|~

By definition of y we have
n, < C'N/2%,
for some universal constant C'. Thus if we define #,,v by
n,=C'[2%,v=¢/y’,

we have J,(¢,7) bounded below as

i Cv
Jk(B’ y) ; Nr;ol:ﬂr - <1 + W)nr:'a

where f3, are the positive roots of the polynomial equation

S ly y
1=0.
EO[Cvm/z'“’“” PRRGTNLTE u] *

Now let f; be the root of (3.54) which lies in the region

Cvnr- 1 / Cvnr
2(r—1)(6+6) ﬁ" 2r(6+6)'

We bound S, below by

Cwy, . v
ﬁ"——zr(6+6) if Jr(6+9) =L

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

If the restriction on v in (3.56) is violated we proceed differently. Consider a

particular B, such that v>2"6*9 Then it is clear that

2m(6 +9) 2r(6 +4)

3 Mo ,

m<r

(3.57)
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for some universal constant C'. Similarly it is easy to see that

#(6 +0)
2

r—2 Nm
mgvanm/Z'"“”’—ﬁLéC v (-39

for some constant C’. Thus there is a positive constant C’ such that f, satisfies the
inequality

’,’r_ L 77 C/2r(6 +9)
Cvn_ 20 D& g ¥ e prera gt

The inequality (3.59) is a quadratic inequality in /5, and it is not difficult to see that as
a consequence we must have

C C/2r(6 +4)7]—-1
m>—J@;+[1+—~7——} 7, (3.60)

+120.  (3.59)

= Hr6+5)
for some constant C’ (which may differ from the constant in (3.59)). From (3.60) we
obtain a lower bound on g, if v > 21¢*9 a5

: CW1, C/2r(6+5)
ﬁrgzr((;.“;) +r]r_ Ure (361)

v

We shall find a lower bound on J, in (3.53) by using the estimates (3.56) and (3.61)
on the .. We have

Clzr(6+(5)
JezN Y +N Y zN )} -n+N Y ———n,
vézr(6+¢§j v>2r(6+6) v§2"6+‘” v>2r(6+5) v
> _ CNMe), (3.62)

for some constant C'.
The inequality (3.62) completes the proof of the lemma. Q.E.D.
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