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Abstract. The possible ways of compactifϊcation of the E8®E8 Superstring
theory to four dimensions are reviewed. The phenomenological need for N = 1
supersymmetry is argued (on quite general grounds) to favour the choice of a
Calabi-Yau manifold for the compact internal manifold. The massless
spectrum after compactification is derived in full detail revealing, beside the
usual particles, others that may have great phenomenological impact. The
technical aspects of the construction of such manifolds are examined and the
methods of calculation of the relevant topological properties are given. A big
family of such constructions, giving rise to many new Calabi-Yau manifolds,
is presented and its relevance to the search of a phenomenologically acceptable
solution is discussed.

1. Introduction

The idea that the dimensionality of the space-time might be greater than 3 + 1 was
realized already 65 years ago by Kaluza and Klein [1]. Dormant for about half a
century, it got revived in the past decade [2] and proved to be extremely appealing
in theories that attempt to provide a framework for a consistent unified description
of both the gravitational and non-gravitational interactions [3,4]. Originally, the
only known non-gravitational interaction being the electromagnetic one, a 4 +1
dimensional (hereafter D4 +1) space-time seemed to provide a suitable framework.
The "extra" spatial coordinate is assumed to be highly curved and periodic (with
radius of curvature ~Mp/), ensuring its non-observability in experiments
performed at energies below MPl. This gives rise to a new compact symmetry of the
theory and thus a new charge, quantized and related to MPb - interpreted as the
electric charge.

Modern versions of this program [4,5] try to accomplish for the weak and
strong interactions, too, which are, together with the electromagnetic one and
ignoring gravity, quite successfully described by the "Standard" SU(3)C0SU(2)L
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(x)L/(l)y Yang-Mills theory [6]. To incorporate these in the program, more
"extra" dimensions are introduced to span the internal space. In most ap-
proaches, however, the internal space was considered to have high continuous
symmetries, giving rise to at least part of the non-gravitational interactions [4,5].

The most recent models of such unification [7] rely on Superstring theories [8]
which are believed to incorporate, for the first time, consistent finite quantum
gravity. The one that has recently attracted most attention [9] (known as
"heterotic") describes, in the limit when higher excitations of the superstring
decouple, an JV = 1 Supergravity with E8®E8 Yang-Mills interactions in D9 + 1
space-time, modified to account for anomaly cancellation [10]. Even though it is
only a theory of closed strings it has a Yang-Mills sector that emerges from its
peculiar construction. On the other hand, it has been shown [11] that this theory
may be a ground state of the D25 +1 bosonic closed string theory. The D9 +1
Yang-Mills sector is related only partially to the continuous symmetries of the Dl 6
torus. The completion to the full massless E8(g)E8 or SO(32) Yang-Mills sector is
obtained from a class of massless solitons which would not exist had one dealt with
a point-field theory [9, 11]. Thus, these theories provide a true unification of
gravitational and non-gravitational interactions in a (generalized) Kaluza-Klein
manner, providing a space-time-geometrical origin for all of them.

To make contact with the D3 + 1 world of the present day's experiments (real
world, hereafter), it was shown [12] that the internal six dimensions may be chosen
to span one of the complex manifolds with SU(3) holonomy, known in the
literature as Calabi-Yau manifolds (JίCΎ). It is also attempted in the literature [13]
to construct heterotic theories in dimensions lower than 9 + 1. Whether these
theories can yield phenomenologically acceptable models is still an open question,
and they are not going to be discussed here. Instead, with the above remarks in
mind, we return to the D9 +1 heterotic theory.

The choice of Calabi-Yau internal manifold was motivated by the requirement
of a surviving JV = 1 Supergravity in 3 +1 dimensions, since that is the only
framework known to be able to maintain [14] the huge mass ratio of the Planck-
mass vs. the weak mass-scale (MPl/Mw) ~ 1017. On the other hand, it also provides
a solution to the quadratic relation of the curvature and the Yang-Mills field
strength [12]:

which is a consequence of the choice of a vanishing modified field strength of the
supergravity antisymmetric tensor (identified with the torsion of the internal
manifold). Even though it is not the most general solution, it is going to be argued
in Sect. 2 that it seems to be the most desirable one, at least.

The other aim of this paper is to show the most necessary technical details of
the construction of these manifolds and to indicate some generalizations of the
examples presented in the literature [15, 16]. That these generalizations may
indeed be very helpful is suggested by the fact that the few manifolds with Euler
character χE = — 6 have been constructed by embedding not in simple CPn, but
rather in CPn x CPm. Thus a generalization of these constructions is done, yielding
many more possibilities at hand. Even though every construction has subtleties on
its own, some general features are noted that may provide considerable help.
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The paper is organized as follows: Further motivations for the choice of the
Calabi-Yau manifolds are found by reexamining the possibilities of compactifi-
cation to D3 +1 and their prospects, presented in Sect. 2. The analysis of the
massless spectrum is given in Sect. 3. The construction of the Calabi-Yau
manifolds given in the literature is reviewed and the technical details of the
necessary calculations are given in Sect. 4. Section 5 provides some generalizations
of the known constructions, presents some new classes of Calabi-Yau manifolds
and their possible application in construction of phenomenologically acceptable
models is discussed. Appendix A presents a detailed construction of a Calabi-Yau
manifold, illustrating most of the techniques sufficient for such constructions and
familiar to most physicists. Appendix B provides an algorithm for obtaining
generalizations described in Sect. 5 and tables of some them. Appendix C provides
a few explicit examples of Calabi-Yau manifolds constructed along the descrip-
tions of Sect. 5 and Appendix B. Throughout the paper, "topological" is used to
denote independence of smooth deformations, rather than topological in the
mathematically rigorous sense.

2. N=l Supersymmetry

The surviving N = ί supersymmetry of the D3 +1 theory was motivated by the
argument that all the dynamically generated mass-scales of the theory are bound
to be closely related to the Planck-mass (being the only mass-scale of the theory),
and the only known mechanism for maintaining a huge hierarchy needs N = 1
Supergravity. This argument was, however, built on the implicit assumption that
the lowest lying states of the matter vector of the Superstring theory are to be
interpreted as the quarks and leptons of the real world. In this approach, the
topological properties of the internal manifold link very tightly to the phenome-
nology of the real world, like the charges, the masses, the couplings of the observed
particles - and are all calculable at least in principle [17,18]. Various analyses [7,
19] have been made with the aim to construct a Calabi-Yau manifold that would
reproduce all these parameters of the real world, but to the best of my knowledge
not one has been found.

A slightly different approach has also been attempted in the literature [20],
where the massless particle spectrum of the Superstring theory is identified not
with the observed particles, but rather with their hypothesized constituents -
preons [21]. It has been shown that a phenomenologically successful model [22] of
this kind can be obtained with assumptions equivalent to those necessary in the
usual "quark-lepton" approach. It should, however, be noted that all preonic
models, in general, incorporate at least one stage of confinement, thereby
preventing a straightforward connection of the parameters of the theory above and
below the confinement scale. This may seem to lessen the predictability of such
theories due to difficulties in understanding the dynamics of confinement; on the
contrary, however, existing results show quite a good agreement [23] with the
phenomenology of the real world, provide testable predictions [24] and open
intriguing possibilities of understanding its structure. In order to avoid certain no-
go theorems [25] one is naturally led to the requirement of local supersymmetry
[22, 26], which is also very strongly suggested by tying together these and various
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Table 1. Possible holonomies and corresponding decompositions

[Holonomy] ( r e d u c i b i l i t y )

[SO(6)](6)

[SU(2)®1/(1)](4)

® [ ^ ( i ) ] ( 2 )

[t/(l)] ( 2 )®[ί7(l)] ( 2 )

Tangent vector

6
3 4 + c.c.
3 +c.c.

(2,2)0 + [(l,l) 2 + c.α]

(2;3)o + (l;0)2 + c.c.

(2,0,0)+(0,2,0)
+ (0,0,2) +c.c.

Tangent spinor

4 + 4*
3_2 + l 6 + c.c.
3 + 1+c.c.

(2,l)1 + (l,2)_1+c.c.
21 + l_1 + l_1 + cc.
(2;0)1 + (l;3)_1

(l,l,l) + (- l , - l , l ) + ( l , - l , - l )
+ (- l , l , - l ) + c.c.

other phenomenological facts that a preonic theory has to reproduce [27]. On the
other hand, by analysis of the /̂ -function for different possible preon-confϊning
(meta-colour) forces, [28] it is possible to argue that the supersymmetry ought to
be simple. Hence the conclusion that N = 1 Supergravity is strongly favoured by
composite models as well.

It has been noted already that the choice of Calabi-Yau manifolds is not the
most general one, and a search for other possible solutions has been attempted in
the literature [29-31]. In particular, Eq.(l.l) has shown to be a fruitful starting
point, yielding a large list of candidates [31]. This list is reproduced in Table 1, here
with the decomposition of the spinor as well (which will be helpful in the analysis
below).

In order to understand the importance of the results presented in Table 1, one
ought to recall [32-35] that the holonomy group is the group of all transforma-
tions mapping any vector, parallel transported along any closed curve, into the
original one. (Naturally, if there are spinors on the manifold, they are to be
included in the above definition, since they cannot be constructed from vectors.)
Observe now that it is only the case of SU(3) holonomy with respect to which the
spinor contains a holonomy-invariant component.

The latter four cases correspond to product spaces of DA and D2 factors (as
indicated by the reducibility). They are shown to lead to instabilities [36]; also, at
least one of them would have to be S2 with a monopole configuration to ensure not
more than N = 1 supersymmetry, yielding a positive contribution to the Gauss
curvature of the internal space. Since no D9 + 1 supergravity1 can have a
cosmological term [5] to provide cancellation, one expects the non-vanishing
curvature of the internal space to yield anti-de Sitter rather then Minkowski D3 +1
space-time. The known examples of the first two cases (S6 and CP3) share this fate.
Here we confine our attention to Minkowski D3 +1 space-time only.

Cases with non-vanishing torsion with a Freund-Rubin type of ansatz have
been found [30] to require D9 +1 cosmological term and lead to anti-de Sitter
D3 +1 space-time. Recently, possible solutions with non-vanishing torsion have

1 Here we assume that the superstring theory has a meaningful point-field theory limit with
perturbative corrections [37]
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been studied [38] (revealing much greater complexity than the vanishing torsion
case), but whether phenomenologically acceptable solutions can be constructed is
still an open question.

The criteria for surviving JV= 1 supersymmetry were analyzed in [37] as well.
There a manifestly supersymmetric formulation of string corrections to the point-
field theory is achieved. Along this analysis, one obtains equations that generalize
those of [12] in a way that identically vanishing torsion (Npqr = 0) is a solution
stable under first order string corrections. Vanishing torsion, however, implies
Calabi-Yau manifolds for the internal space, since all the equations to be solved
reduce to those of [12]. For what it is worth, note also that Npst, having no D3 +1
indices and dependence on space-time coordinates, represents a scalar with
internal degrees of freedom. The problem of its background value is then
essentially a Landau-Higgs problem and for the renormalizable part of the
effective potential was shown [39] to favour SU(3) for the internal space in half of
the region of the coupling parameters (treating Npst as an independent field, rather
then the modified field strength of BsV since the latter never appears explicitly). We
shall thus proceed assuming that the internal manifold is of the Calabi-Yau type.

3. Massless Spectrum

Let us now see how to determine the massless spectrum upon compactification.
The massless bosons of the D9 + 1 theory are: g(MN), B[MN], Φ and A%, while the
fermions are: ψM, λ and χΘ, where M and JV are D9 +1 vector indices, spinor indices
are suppressed, and Θ is the index of the adjoint representation of E8®E8 or
SO(32).

Upon compactification, the SO(9,1) transformation properties split into parts
[40] describable by SO(3,l)®[SO(6)-S[/(4)]. The Yang-Mills group is also
assumed to be broken to ^®SU{3)YM, where ^ is E8®E6 or SO(26)® l/(l)g l o b a l

Since the fields to be interpreted as matter are invariant under the E8 in the first
case, one may safely drop it from further consideration. The fate of C/(l)global is
discussed in [12,41]. We also assume that the holonomy of the internal manifold is
spanned by the diagonal subgroup SU(3)H of the space-time SU(3)D6cSO(6) part
and SU(3)YM part [42]. This will lead to the same results as the identification of the
corresponding connections which is suggested by Eq. (1.1), but is more general.
One now has to analyze the entire field content and determine its transformation
properties under SO(3, 1)®^®SI/(3)H. The fact that the transformation prop-
erties under the holonomy originate from both the space-time and the Yang-
Mills sector is indicated in Table 3 by the Kronecker product SU(3) represen-
tations. In discussing the fate of the states coming from the D9 +1 supergravity
multiplet, the Yang-Mills labels are trivial and thus omitted.

Using the fact that the fields transform in D3 +1 and the internal D6 space as
(R, r), finding D3 +1 massless states that transform as R translates into looking for
D6 harmonic forms2 transforming as r. This is what we now turn to discuss.
Actually, the existence of a covariantly constant spinor (necessary for JV = 1
supersymmetry) implies [43] that the internal manifold is Kahler, Ricci-flat and

2 An s-form ωs may be represented by its tensor coefficient antisymmetric in all s indices
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with the holonomy in SU(3). Also, the spinors are equivalent to (0,g)-forms (see
below), and so one can use the theorem [34]:

If F(ωs) is positive semidefinite, a harmonic ωs is covariantly constant.
If F(ωs) is positive definite, ωs cannot be harmonic.

F(ωs) is defined to be:

where Rtj and Rijkι are the Ricci and the Riemann tensors of the internal manifold,
and for Calabi-Yau manifolds the Ricci tensor vanishes. It is useful to note that
using SO(6)~SU(4)-+SU(3)D6 the Dβ forms decompose [35] as:

ω 0 —1 ~>ωo,o ~1>

ω1~6 —>ωi,o + ωo,i —3 + 3*,

ω 2 ~15 ~>ω2,o + ω i , i + ω o , 2 —3*+(l + 8) + 3,

(3.2)

Note also that, since the SU(3) holonomy implies vanishing background Ricci
tensor, the background Riemann tensor is traceless and therefore transforms as 27
of SU(3)H. Thus from Eq.(3.1), F(ω)oz{p + q-\)Ίv{2Ί®ω®ω*\ and it is clear
that it is zero for every term in Eqs. (3.2) except for the 8 and 6(6*). One cannot,
however, apply the above theorem for 8 and 6, because positivity is not ensured in
general. In fact it will indeed turn out that there may be harmonic forms of this
type.

Since the D6 tangent vector splits into:

Vm = vμ®vμ vμ = Vμ + iVμ+3 vμ = ϋμ=Vμ — iVμ+3

» = i , . . . , 6 , ' , = i , 2 , 3 , ' μ = u 3 , ' ( 3 J )

and by complex conjugation the number of harmonic fields transforming as r is the
same as those transforming as r*, the number of harmonic s-forms of the D6 real
space (known as Betti numbers) decompose:

=2bU0,

= 26?, o + M . i + * > ϊ f i >

where the boldface superscripts denote the irreducible representation (irrep) of
SU(3)H. Here bpq are the Hodge numbers (in the mathematical literature usually
hp'q), the refinement of bs, satisfying p + q = s.Their existence and invariance under
smooth deformations of the internal manifold is guaranteed by Hodge's theorem
[35].

However, the (1, l)-form can be decomposed as the 1 part, corresponding to the
Kahler form (J) itself, which is covariantly constant, and the 8 part is its
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orthogonal complement. This, in turn, is used to decompose higher forms (known
as Lefschetz decomposition) into "./-trace" and ./-traceless parts3 (the latter ones
usually called primitive [35] or effective [33,34]). This is done by defining [33, 35]
L(ω) : = ω /\J> and A, the adjoint of L. Writing out the tensor coefficients explicitly,
it is manifest that in the product of forms by«/, L, antisymmetrizes all indices while
A contracts two of those of the form with those of J. This decomposition is
essentially topological (in its rigorous sense [35]), so it is also independent of
smooth deformations of the internal manifold. This refinement of Hodge numbers,
denoted by br

p φ can be defined, denoting the number of (p, g)-forms transforming
under the holonomy as r [hereafter (p, g)Γ] that are harmonic. That this refined
decomposition of forms is equivalent to the decomposition under the action of
U(n) [in our case Sl/(3)] was shown in [44].

Using the facts that: blo = boo = bo, by Poincare duality bo = b6 and that
b6 = l, since b6 is the number of compact and connected Dβ linearly independent
submanifolds, we rederive b J s 0 = 1 Further, by the arguments given in the previous
section, blt0 = bίt0 = bQΛ = 0. Now, since εμvρ and εJίVQ are invariants of SU(3)H, it
follows that: fco,o = *o,o = ̂ 3,o = ̂ o,3 = *3,3 = 1 a n d b3

ίi0 = bli0 = b2^ = b0Λ=b0a

= b13 = b2i3 = b3Λ = b3 2 = bί=0. One can now obtain:

b\Λ = b2-b\Λ=b2-\, b6

U2 = ̂ b3-ί-bZ2=^b,-\. (3.5)

The second equalities can be derived by using the fact that [33-35] bs — bs_2 equals
the number of jMraceless s-forms (es) and applying both Hodge and Lefschetz
decomposition of forms. Then:

Since there can be no (0, l)6-forms, all (1,2)6-forms are effective, and precisely the
opposite is true for 3*, thus:

bV,2 = bV,i=0 => bU2 = b*U2. (3.7)

The argument for b\Λ is the same as the one for b\*2, yielding of course,
b\Λ = bls 0 = 1, for the unique Kahler form and for the unique covariantly constant
spinor implying JV = 1 supersymmetry in D3 + 1 as discussed in Sect. 2. Moreover,
note that bτ

pq changes only with r, rendering thus the Hodge decomposition
[middle column of Eq.(3.2)] inessential. In order to keep the contact with the
literature, we shall not drop the p, q labels.

The D9 + 1 gravity supermultiplet can now be decomposed and its field content
is given in Table2. Apart from the N = ί, D3 + 1 gravity and two scalar
supermultiplets, one finds b2 + ̂ b3 — 2 massless scalar supermultiplets of both
chiralities, the number of which can be also recast in the form 2b2 — \χE — 1. Note
that at the first massive level all the states in Table 2 are present, and D3 + 1 , N = 4
supergravity is manifest.

When dealing with the Yang-Mills sector, the convention of [17] is followed,
treating the 3 as a (1,0)3-form4. Owing to the fact that the transformation property

3 Note that J is defining the Kahler metric used to "take traces"
4 This just defines the embedding of SU(3)H<=SU(3)YM®S£/(3)D6
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Table 2. Decomposition of the D9 +1 gravity supermultiplet

Superfield type

(2,3/2)±

(3/2,1)±

(1, l/2)±

(1/2,0)±

SU(3)H

(0,0/

(0,l)3*

(θ', I)3*
(0,1)3*

(0.0)1

(1,1)'
(1,D8

(0,2)3

N° of massless states

El,
The superfields are denoted by the spins of the physical

particles, and the + subscript denotes ± helicity

Table 3. Decomposition of the E8®ES

Superfield type E6 SU(3)H

Yang-Mills D9 + 1 supermultiplet

N° of massless fields

78 (0,0)(g)l = (0,0/ fcj,o = l
27 (0,0)(g)3 = (l,0)3 b3

uo = 0
27* (0,0)(x)3* = (0,l)3* &? o = 0
1 (0,0)®8 = (l, l) 8 blί = b2

78 (l,0)®l = (l,0)3 b\ 0 = 0
27 3* 6 ^ '
27*

The superfields are denoted by spins of the physical particles and the + subscript denotes ±
helicity

under the holonomy of these fields is found in the tensor (rather than the wedge)
product of their SU(3)YM irrep and the SU(3)D6 irrep, the result need not be
representable by a form. This shows up in Table 3, where one finds fields
transforming as 15 of SU(3) as well. Since 15® 15*®2791, F(15)φO, and one
cannot conclude AΓ°(15) = 0 for 15 not being holonomy-invariant [again, positivity
of JF(15) is not ensured]. 15 cannot be represented by a form, consequently, this
representation does not occur in Eq. (3.2), and one cannot relate N°(15) to any of
the Betti (or Hodge) numbers.

Utilizing D3 +1 hermitian conjugation, all the scalar superfields are recast into
positive-chiral (left handed) ones, obtained the known result:

JV(27): = iV°(27) - iV°(27*) = 1 + b2 - ±b3 = = \1E ,

£(27): = min {JV°(27), iV°(27*)} = (usually)JV°(27*) = b2.
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In addition, there appear to be Ns(ί) massless Yang-Mills singlet chiral superfϊelds
and Nv(ϊ) massless Yang-Mills singlet vector superfϊelds:

2,

Nv(l) = b2-1 = H b + ) 2

as well. The fate of some of these was discussed in [18] and we return to this
question after briefly examining the £0(32) case.

In the SO(32) case the analysis carries over almost completely. One can simply
replace 27 by (26+2 + l_4) and correspondingly the complex conjugate states in
Eq.(3.8):

4) l + b 2 ϊ b 3 l χ E ,

(5(26+2) = (5(1 _ 4) = (usually)JV°(26 _ 2 +1 4) = b2.

This verifies the discussion of massless chiral superfϊelds in the S0(32) case in [20].
The number of Yang-Mills invariant vector superfϊelds in Eq. (3.9) increases by one
since there is now a would-be gauge superfield of the U(l)glohal in ^ for the <S0(32)
case. It was shown in [41] that this vector superfield acquires mass via the Chern-
Simons form and the same mechanism works again making the U(l) into a Peccei-
Quinn like global symmetry.

Note, however, that this superfield transforms under holonomy as (0,0)1, while
the other b2 — \ Yang-Mills invariant vector superfϊelds transform as (1,1)8. For
most of the Calabi-Yau manifolds considered in the literature, b2 = 1 and so this
problem did not occur. For manifolds with b2 > 1 these superfields would imply a
[(/(I)]*2"1 new-born gauge symmetry contradicting the fact that Calabi-Yau
manifolds have no continuous symmetries. Fortunately, B[MN] contains
b2 — 1 (1, I)8 chiral superfields as well and the mechanism of [41] combines them
into massive vector superfields and only the vector superfields gauging E6®E8

(SO(26)) appear in the massless spectrum. (That there are no massless superfields
transforming as 8 under the Yang-Mills SU(3) and having no D6 indices was
concluded in [18] on grounds of vanishing of dimί/°(EndT).)

The chiral superfields that remain massless are (in the E6®E8 case) as follows:
U, V, and W transforming as 27, 27*, and 27* under E6 and as (1,2)6, (1,1)1, and
(1,1)8 under SU(3)H; Yang-Mills invariant C~(l,2)6, φ~(0,0)\ σ~(l, I) 1 from
the D9 +1 graviton supermultiplet and <p~(291)6*, φ'~ 15 from the D9 +1 Yang-
Mills supermultiplet. Their number can be read off from Table 2 and Table 3 that
agrees with the earlier results [12,17,18,42]. In addition, using the fact that the φ
fields found in:

[(l,0)®8]a n t i s y m m.9(2,lΓ, (3.11)

where (1,0) stands for a holomorphic D6 index and 8 for the transformation
property under SU(3)YM, can be represented by a form, the number of harmonic D6
fields of this type was related to b12. As noted earlier, the number of φf chiral
superfields cannot be related to the Betti numbers. (This result is consistent with
that of [18], where φ, φf and the (2,1)3 fields were treated jointly, relating their
number to dimiί1(EndT) that cannot be related further to any Betti number.)

Originating partially from B[MN], which appears only with derivative cou-
plings, φ and σ cannot appear in the superpotential to any order in perturbation
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theory [18]. Whether they could successfully play the role of the inflation field or
some other "dark matter," remains as a subject for future study. The most general
superpotential is now easily determined since it has to be Yang-Mills and
Holonomy invariant. To the lowest order, it contains the following terms: t/3, F 3 ,
W\ C3, φ\ φ'\ UVφ, UWφ, UWφ', WWV, φ'2φ, and φ2φ'. To summarize, the
number of U, C, and φ is b\ 12 = (b2 ~ixE\ there are one V, φ, and σ,b*tl = b2 —
and JV°(15) φ' chiral superfields.

4. The CP"| { fα β 0 } Constructions

We now review some of the constructions presented in the literature [15] studying
the details of the calculations that will prove to be necessary for generalizing these
results. It is useful to realize that most of these examples are complete intersections
of hypersurfaces in CPn defined as non-singular intersections of solutions of n — 3
homogeneous analytic polynomial constraints5, denoted by ^(n qj, where
ql9 ...,qn-3 are the degrees of homogeneities of the constraints on CPn. Some
examples [16] are constructed which are analogous subvarieties in CPn x CPm,
and it is therefore natural to explore the possibility of similar constructions in
spaces of the type CPnι x ... x CPnk, which is going to be done later on. It is,
however, useful to note that these constructions, and in particular the one of
9(4; 5) in [12] is closely following the analysis of the K3 surface as given in [32].

Since the knowledge of Chern classes is of utmost importance, note that while
constructing Jicγ as a submanifold of some complex manifold (Jί\ one has the
relation [32]:

where F and Jί denote the tangent and the normal bundles, respectively. It
follows that the total Chern class is:

clΓ(J0\jtcτ] - c\_2Γ{Jίcγ)] • c\JT{MCY)-\ .

For CPn and for analytic, homogeneous polynomial constraints /(z) = 0, where
zeCP":

(4.1)

(4.2)

where / is homogeneous of degree q and x represents the Kahler 2-form. Thus:

The powers of x represent its wedge-products, and so it should be regarded
nilpotent of degree 3 (i.e. xm = 0, Vm>3). As it stands, Eq. (4.3) is applicable to

; 5) (also K3 with n = 3, q = 4, and x being nilpotent of degree 2) only:

(4.4)

Usually called analytic subvarieties
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The vanishing of cγ (the first Chern class) is guaranteed since q = (n +1). For n > 4,
and consequently, a set of n — 3 constraints, this is easily generalized [12]:

(\

n-3

and the vanishing first Chern-class restriction for the g's reads: Σ #β = (w
a=l

Apart from being analytic and homogeneous, the set of constraints need to
satisfy also:

dIίA...AdΓ~3Φ0, VzeCPV-o}, (4.6)
where the superscript a enumerates the constraints. This inequality ensures non-
singularity of the hypersurface (non-vanishing volume of the normal bundle at

5

every point). For the case of < (̂4; 5), one of the simplest choices, / = Σ zf = 0

1 5

fulfills the requirements, since dl= - Σ zfdzl = 0 would require z—OφCP*.
5 i = i

[/' = zίz2z3z4_z5 = 0 would e.g. not satisfy relation (4.6), since the solution of dΐ = 0
can be parametrized by z5 = z4 = 0 and zγ>2,3 that easily satisfy J' = 0 and the
projectiveness of CP4, leaving thus a singular complex line in the would-be Calabi-
Yau manifold.]

The volume element in relation (4.6) is:
dl1 A ... AdF~3 = diI

1...djΓ~3 dzι A ... Λdzj

= d^1... dnΓ -3'dzιA...Adzj, (4.7a)

by the antisymmetry of the wedge product, where dt = d/idz*). This is equivalent to:

•y 1 . . .^/"" 3 ^, (4.7b)

since dzl A ... Adzj are independent (taking into account that indices are

totally antisymmetrized). Thus Eq. (4.7b) contains ί j = ί

= ~-(n2 — l)(n — 2) independent equations in addition to the (n — 3) constraints
themselves and the n projectiveness equivalence relations, whereas there are 2n
homogeneous coordinates. Thus, one generally expects that the two systems,

(n-3 )

{Ia = 0}α = ! „_ 3 and < /\ dla = 0 >, have no common solution in CPn, for being

overdetermined. However, when constructing an explicit example [where the set of
constraints is typically invariant under some discrete group, turning some of the
equations in Eq. (4.7b) equivalent] one has to verify this important property.

As is shown in Sect. 3, the Euler character (χE) of the manifold is twice the
difference of the number of massless "left-handed" and "right-handed" (matter)
chiral superfields in 3 +1 dimensions, thus very important for building physical
models. Note, however, that the derivation of this result relied on the assumptions:

1. vanishing torsion: Npqr = 0 (actually, this condition can even be weakened as
shown in [30] still leading to Calabi-Yau manifolds, but anti-de Sitter D3 +1 see
however [38] also) and
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2. the holonomy group is identified as the diagonal subgroup of the groups
spanned by the background Yang-Mills and D6 spin-connection.
A more general analysis in this respect can be found in [29] (without, however,
requiring supersymmetry), but we adopt the above assumptions throughout this
paper.

In order to calculate the Euler character of the manifold, one needs to integrate
c3x

3, taking into account the contributions of all Riemann-sheets of the set Jα = 0.
This becomes simple if one notes that, embedded in the initial CPn, x is nilpotent of
degree n, and the integration becomes weighted by the Chern class of the set of
constraints:

XE= ί c[_JίCΎ-\= J ξ c[^r c y] = K c[^rc y]],3, (4.8)

(4.9)

JtCγ CPn

where ξ denotes the Chern class of the set of constraints:

α = l

5and [/(x)]^s denotes the coefficient of x in the expansion of f(x). Equation (4.8)
can be manipulated into a more suitable form:

\ Γ «-3 Ί π-3

z*=τ (*+i)- Σ Ϊ J Πία, (4.10)
a=1 I α = 1

recovering easily all the values in [12].
In order to know the exact number of both the left- and right-handed massless

chiral superfields under the above assumptions, one has to compute the Betti
number b2 or b3 (actually b\^ x and b\ 2) and iV°(15). The latter is important only for
determining the total number of Yang-Mills invariant scalar superfields as well.
Unfortunately I do not know of a general method of computing these numbers.

The Euler characters of the manifolds considered so far are too big to yield any
phenomenologically acceptable model. However, it is possible to generate new
manifolds via dividing out the free action of a discrete group 3). The resulting
manifold will have:

I _ AisL^llJ (411)
CY number of elements of 3)'

and may be more realistic. In addition, Jtcγ, is multiply connected, making a
simultaneous Yang-Mills symmetry-breaking possible, and changing the content
of massless chiral superfields as well [12,17,7]. In order to illustrate the procedure
of constructing a Calabi-Yau manifold an example is given in Appendix A. All the
necessary technical details are given there.

5. Generalizations

Guided by the constructions of [16], let us examine the possibility to define
analytic sub varieties in CPni x ... x CP"m. In particular, if all the nr are the same, an
interesting possibility emerges. The commonly utilized discrete symmetries (shown
in Appendix A) are either the (cyclic) permutation of the homogeneous coordinates
or their multiplication by different roots of 1. Having MCΎ embedded into a space
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like the m-fold direct product of copies of CPn makes it possible to find suitable
discrete symmetries in Sm, the group of permutations of these copies.

It is clear in this case, Eq. (4.3) generalizes to:
m

cVJίCΎΛ = ξ-y Π (i+xr)
nr+1 (5 la)

r = l

m

- Γ 1 - Π ( l + x r ) " + 1 , (5.2a)

with the total Chern class of the constraints being:

ξ= Π 1+ Σ far) (5-lb)
a=l \ ι =l /

mn — 3 / m \

- Π 1+ Σ far (5.2b)

Here the indices r and a enumerate the copies of CPn and constraints, respectively.
The degree of homogeneity of the ath constraint with respect to the homogeneous
coordinates of the rth copy of CPn is qr

a. From now on, only m-fold direct products
of copies of the same CPn are going to be considered.

To ensure vanishing of the first Chern class, this matrix has to satisfy:

mn-3

c\=(n+ί)- Σ € = 0, Vr. (5.3)

On the other hand, to achieve irreducibility of JίCΎ, for every copy of CPn there has
to be at least one constraint that couples its coordinates with the coordinates of
another copy of CPn. Also, a linear constraint would reduce the corresponding
CPn to CPn~1, bringing us out of the scope of the present paper. Thus:

m

Σ qr

a^2, Vα. (5.4)

Summation over the free index in both Eqs. (5.3) and (5.4) leads to the inequality:

(5.5)

Substituting m = 1 it follows that n ̂  7, which is the limit already obtained in [12].
Note the fact that Eq. (5.5) is satisfied for any m > 3 when n = 1 it can, however, be

Table 4. Number of necessary constraints
possibility existing, and m take an arbitrary

n j 1 2 3 4

for a
large

5

Calabi-Yau manifold. The dashes denote no
value (see however text below)

m

6 7 8 9, and so on...

1
2
3
4
5
6
7

—
_
-
1
2
3
2

—
1
3
5
—
—
_

—
3
6
_
—
—

1
5
—
—
—
_
_

2
7
-
—
—
—

3
9
-
_

—
_

6, and so on.
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proven that for m > 9, n = 1 and m > 6, n = 2 no new Calabi-Yau manifold can be
constructed in this way6. This analysis is beyond the scope of the present paper and
will be presented elsewhere [45]. Nevertheless, some of the constructions may be
technically more advantageous and Table 4 displays the number of constraints for
various m and n.

For all cases in Table 4, the number of homogeneous coordinates is m(w +1),
the number of constraints mn — 3 and the number of projectiveness equivalence
relations n. Thus it is always possible to solve these equations. On the other hand,
the equation dl1 A ... AdImn~3 = 0 is equivalent to:

3[iJ
1Λ...S/IJ

mi|-3 = 0, (5.6)

with dt being the derivative with respect to any of the m{n+\) homogeneous

variables. The number of independent equations in Eq.(5.6) is

I. This gives an (m + 3)th-order polynomial in (mn+1) that, for

growing m, grows much faster than the number of homogeneous variables. Thus
we conclude that there should be no obstruction7 in general to the constructions
listed in the Table 4, but note that - as mentioned earlier - the m > 9, n = 1 and
ra>6, n = 2 cases are just different embeddings of those obtained for lower m,
same n.

To explicitly construct a particular manifold, one chooses certain m and n and a
corresponding qr

a matrix from the Appendix B (or constructs one for higher m
according to the algorithm given there). The symmetries of qr

a imply a set of discrete
symmetries with respect to which the constraints can be chosen to be invariant.
Factorizing the value of the Euler character, one obtains possible values for the
order of the discrete group the free action of which is to be divided out (bearing in
mind that the resulting Euler character must be an even integer). Checking
Eq. (5.6) is usually a tedious but straightforward task, where the recognition of the
discrete symmetries may provide short-cuts. Instead of explicit verification it is
possible to use some theorems [16], but this requires much more familiarity with
the underlying mathematics.

As noted above, usually one looks for cyclic permutations or multiplication by
growing powers of a nontrivial root of unity. This will yield (products of) cyclic
groups Zn. Instead of just cyclic permutations one may of course try quotienting
any subgroup of (or even the full) permutation group. To verify non-singularity of
the resulting manifold one enlists the fixed points and makes sure that they do not
satisfy {Ia = 0}. If some of the fixed points do satisfy {Ia = 0}, one can proceed the
construction in the manner of [19], leaving the singularities and obtaining
"orbifolds" instead of manifolds. To obtain manifolds, one has to apply the
"blowing up" procedure [12, 15, 16, 35]. The latter not only removes the
singularity but also annihilates the multiple connectedness caused by dividing out
the action of a discrete symmetry; thus one would apply this method only
combined with dividing out free actions [16]. The counting of massless fields
however appears to be the same for both procedures.

6 I wish to thank P. Green for pointing this out to me
7 This question is addressed again in Appendix C
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For some special numbers of variables, one may utilize other discrete groups, in
particular some non-abelian ones [15]. Finally, in the case m > 1 one may combine
these symmetries with (a subgroup of) the group of permutation of the copies of
CPn.

The Euler character of these manifolds can be calculated as before, relying
merely on the knowledge of the matrix <fa. Expanding Eq. (5.2a) in powers of xr and
making use of Eq. (5.3) one readily obtains:

tmn-3 ~| Γ

βΣ (td*~ (» + l)δyj, cf = 2ψk Un

+ l)δiJk-
mn - 3

with the numerical factors:

(0

: = { ! / 2

[1/6
:= 1/2

Li

otherwise

otherwise

if i=j = k,

if only two

if all three

are

are

equal,

different.

To calculate the Euler character, one needs

Σ fa)]
(5.9)

[ mn-3 / m \~]

xixpk Π ( l + Σ qraχra=l \ r = l /_U?...x#,

[ mn-3 / m \~|

XiXjXh Π Σ for
a=ί \r=l Jjxγ...x*

since only the highest terms contribute in Eq. (4.8). It is clear that a closed formula
of the type Eq. (4.10) is not available in general, since one ought to interchange the
summation with the product.

Now we come to the question how to choose the degrees in the qr

a matrices. It is
clear that two matrices that differ by a permutation of rows and/or columns are
equivalent. So, to obtain all the possible constructions in a particular choice of m
and n, one has to enlist all the corresponding inequivalent matrices and thus every
entry in Table 4 determines a class of constructions. It should be cautioned that
different constructions do not imply necessarily topologically distinct Calabi-Yau
manifolds. A way to prove that two particular constructions yield distinct
manifolds would be to compute one of their topological invariants to be different.

Listings of inequivalent qr

a matrices are given in Appendix B for the few low-m
classes together with their Euler characters. For the higher-m classes one might
want to generate qr

a by a computer, since their number tends to grow
uncomfortably.

To summarize, very strong motivations in favour of the compactification on
Calabi-Yau manifolds are found both in schemes where quarks and leptons are
identified with elementary fields of the D9 +1 supergravity theory believed to be
the massless level of the "heterotic" superstring theory, as well in schemes where
these elementary fields are identified with subconstituents of quarks and leptons.
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The full spectrum of states appearing in the low-energy limit after compactification
is derived. Beside the fields analyzed in the literature, compactification yields some
Yang-Mills invariant chiral and vector superfields, only a subset of these chiral
superfields remaining massless. The influence of these fields on the phenome-
nology requires more study.

The constructions of Calabi-Yau manifolds embedded into CPn for n = 4,5,6,7
are reviewed and the technical details shown in order to provide a background for
generalizations. A big family of classes of such generalizations is constructed,
possibly useful for do-it-yourself Unified model building. These constructions may
be helpful in finding the manifold that would lead to a phenomenologically
successful Unified model with either quark-lepton or preon identification of the
fundamental fields. On the other hand, they might shed some light on the (as yet
non-existent) classification of Calabi-Yau manifolds. At this stage one still does not
know how the dynamics of the D9 + 1 theory chooses the ground state, and hence
the feeling that by enlisting different possibilities one may gain a better insight.

Appendix A

Here an explicit example is given, showing the procedure of finding a set of
constraints that are invariant under a discrete symmetry and checking the non-
singularity of the set of solutions to the vanishing of the constraints. Throughout
the construction the symmetries are employed to reduce the problem.

Let us consider ^ ( 5 ; 3,3) with χE = —144 in this illustration. One defines this ty
by imposing the vanishing of two cubic polynomials in the homogeneous complex
variables (z1? ...,z6) of CP5 which are subject to following relations:

|z|Φθ, zk^λzk VλeC\{0}. (A.I)

Six coordinates in Eq. (A.I) suggest that it is natural to look for order-6 symmetric
polynomials. A straightforward choice is:

S:zk^zk + 1 => Z s

6, T:zk^zkβ
k => Z£, for β* = l. (A.2)

Since the polynomials are cubic, it will be impossible to make them invariant under
S or Γ, but that is actually not necessary as it is sufficient for them to transform with
an overall phase or into each other (up to an overall phase), the solution - the
Calabi-Yau manifold - will remain invariant.

To find suitable polynomials it is useful to classify the cubic terms in zk

according to the power of β with which the whole term transforms, and then
assembling all terms transforming with the same power into one polynomial. This,
of course yields three pairs which are interchanged by S and thus offer three
possibilities. They are:

J ( 0 ) = zίz3z5 + u.ι(z\ + ...) + oc2(z2

2z5 + ...) + α 3(z 2z 3z 4 + . . . ) ,

)

) ( A 4 )
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where "..." are two more terms obtained from the preceding one by applying S2

and S4 [note that all cubic terms are listed in Eq. (A.3-5)]. It is easy to verify:

S :/(M)^J(M) for μ = - , 0 , + ,

and

{ J with β6^- (A 6)

Any of the three sets {I{μ) = Jiμ) = 0} is a candidate. To proceed, one needs to
examine the fixed points of Z%®Z\.

A fixed point is defined by the relation:

zk = λ&(zk), VλeC:\λ\ = ί, (A.7)

where Θ is any operator of the respective symmetry group. It is easy to verify that
ST—T'S is identity [up to an overall phase which is irrelevant because of
Eq. (A.I)] and thus S and T commute on any complex projective space. For this
reason they span a direct product Z\®Z\ and & can be written in the form SpTq;
for the corresponding fixed point the notation (pq} shall be used. Now since
S6 = τ6 = ld, the order n of Θ (for which #n = Id) can be 1,...,6, and the
corresponding (pq} is a 6/rc-parameter subspace of <& (noting that n = 4,5
= n=-2, -1).

This leads to 36 fixed points, but not all of them have to be examined. It follows
that 1-parameter subspaces have to be subspaces of 2-, and 3-parameter ones and
therefore do not require analysis on their own. So the following ones remain: <30>,
<33>, <03>, <20>, <40>, <02>, <04>, <22>, <24>, <44>, <42>. One can verify that
<(6 — p) (6 — q)} are the same as (pq} explicitly, or showing that there is an & that
transforms one into another. By straightforward calculation one finds e.g.:

<20> = (zl9 z2, z^\ z2β
4n, z,β2\ z2β

2n) * <40>|m= _n9

and similarly for the other pairs. (When deriving the expressions for (pq) it
becomes manifest that |Λ| = 1.) Thus the relevant fixed points are:

<30>+=(z1?z2,z3, ±zl9 ±z 2 , ± z 3 ) ,

<03>1>2-(z1,0,z3,0,z5,0),(0,z2,0,z4,0,z6),

<33>+=(z1?z2,z3, ±izl9 +fz2, ±iz3),

<20>M = (z1? z2, z^ 4 ", z2β*\Zlβ
2\ z2β

2n), (A.9)

<02>π = (z1? 0,0, z4,0,0), (0, z2,0,0, z5,0), (0,0, z3,0,0, z6),

One can simplify the task even more by noting that if <03> + is excluded from ®l by
the most general S- and T-invariant constraint-polynomials, so is <03>_. This,
however, means that one has to examine only one of each type of the fixed points
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given above. This becomes obvious after observing that there is always a linear
transformation:

fT00S(O or
( A 1 0 )

But then note also that <22>2 = <42> _ l9 and so only six fixed points would need to
be examined.

By Eq. (A. 10), if it is possible to avoid <02> and <03> all the others are
avoidable. There is, however, a subtlety to this conclusion, namely that the linear
combination of the coordinates induces linear combinations of the parameters αf,
and one wishes to verify that all the fixed points are avoidable for a certain choice
of αf. In general, one can argue that this happens since the α-space is ten complex-
dimensional; for avoiding every fixed point there will be one relation to be avoided,
yielding two ten complex-dimensional subspaces of which at least one is open; the
allowed region of the α-space is then the intersection of these pairs of subspaces,
quite unlikely to be empty. We shall, however, explicitly verify this.

Note that <03> cannot be avoided in any of the choices of Eq. (A. 3-5) and one is
forced to take their sum:

This reduces Zτ

6 to ZΎ

2 and the relevant fixed points are: <30>+, <03>l5 <33>_, and
<20>3 «23> and <43> are subspaces of <20». Substituting these into Eq.(A.ll)
one obtains relations of the same form for the first two:

.) = Azxz2z3

and slightly different for the third one:

/(f.p.) = Az1z2z3 + B{z\ + iz\ + z\)

(A.I 3)

and J are proportional to I or vanish identically. The coefficients A, B, C, D are
given as:

<30>+ <03>! <33>_

A= (l+3α 3) 1 - ϊ ( l - 3 α 3 ) ,

B= (α!+α 2) OLX - O i - α 2 ) , (A.14)

D= (α7 + α8 + α9) α8 ( α 7 - α 8 + α9).

Using the fact that αf are z-independent and imposing the non-vanishing of A, B,
C, D, Eq.(A.13,14) can be fullfilled only if each z-term vanishes. That, however,
leads to z = 0, φ CPn. [It should be cautioned that "irrelevant" fixed points in Eq.
(A.9) lead to expressions similar but not necessarily same as the "relevant" ones.
<30) _ would lead, e.g., to a relation of the type of Eq. (A. 12,13), with (1 + 3α3) for A
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and some different signs but the same argument will apply as for the <30> + . The
(1 — 3α3) term is obtained already in the analysis of <33>_ and hence manifestly
irrelevant. Note, however, that even a new relation would only split the allowed
region of α3, leaving still at least one open subregion.]

The fourth fixed point yields:

i)z? + (α2 + α3 + α4 + α6 + α7 + α 9 )z |]z 1 ,

If say z2 = 0 but z1 Φθ, then the vanishing of / is avoided by imposing:

oc1 + oc5 + (x8+ — j . (A.I 6a)

If both zγ and z2 are nonzero, one needs to impose:

^ 2 2 (A.16b)

Thus, for generic αf such that no A, B, C, D in Eq. (A. 14) vanishes and that
Eq. (A. 15,16) hold, & contains no fixed points of Z\®Z\.

By using dk: = d/dzk, Eqs. (A.2) and (A.6) one shows:

S:(diidjj=djidij) => (di+ίidj+1j=dj+Ίdi+ίj). (A.iη

To prove non-singularity of Of [i.e. that Eq. (4.7b) is fullfilled for no point of ^ ] one
needs to verify only that δ [ 1 /3 ι ] Jφ0, ί = 2,3,4; the rest of verification of non-
singularity of ®J is guaranteed by Eq.(A.17). To do so, one can even reduce the
parameter space to α1? α5, α8 only. Their values are constrained only by:

α i + 0 , cc5 + 0, α 8 φ 0 , a i + a 5 + a 8 + -\.

With this reduction, d[1Id3]J = 0, but the other two yield:

i z
2 + a5(z2 + 2Zίz5) + a8(z§ + 2z1z3)]

oc5(zl + 2z2z6) + a8(z§ + 2z2z4)] = 0,

[z3z5 + 3a^? + a5(zl + 2ziZ5) + a 8 (z | 2^j\

x [z2z6 + 3 a i z
2 + oc5(z2

6 + 2z2z4) + a 8 (z | + 2z4z6)] = 0.

Choosing say the right-hand side (odd-subscripted z) bracket to vanish, this
implies z1 = z 3 = z5 = 0 for generic αf and thus z = <03>2, which was proven to be
put of <W. Similar argument implies for any other solution to Eq.(A.18), showing
non-singularity of <&. Dividing out the free action of @ = Zs

6®Zl from <3/9 a 3)-
multiply connected χE = —12 Calabi-Yau manifold is obtained. Its b2

 = b\Λ+b\Λ

is known [12] to be one, and so apart from the gravity and E6®E8 gauge JV = 1
supermultiplets there are chiral multiplets: seven 27's, one 27*, and seven C, seven
φ, one φ, and iV°(15)φ/ gauge-singlets.

The fact that non-singularity was provable for a very restricted set of α's is
suggesting that further discrete symmetries may be found with free action and thus
lead to a Calabi-Yau manifold with χE= — 4 or —6.
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Appendix B

This appendix presents an algorithm for generating the matrices of the degrees of
homogeneity of the constraints that define the algebraic subvarieties discussed in
Sect. 5. They are explicitly constructed for cases of embeddings in the products of
up to four CP"'s.

Matrices of degrees of homogeneity for the constructions are generated most
easily by using the observations that led to Eq. (5.3,4). Arranging degrees with
respect to a constraint in a column, the rows can be (mn — 3)-digit numbers
(hereafter simply "numbers"), with the sum of digits being n + 1. To obtain
inequivalent matrices one can start assigning the top row the highest number, the
next-to-top row the next-to-highest number and so forth, provided that the sums
of entries in every column satisfy Eq.(5.4). To prevent doubling that comes from
permutations of columns, after all possibilities of a certain number in the first row
(by changing numbers in lower rows) have been exhausted, one prevents using any
permutation of that number in any of the further cases (obviously a computer may
be of great help). Some doubling may still occur, but that can easily be resolved
upon calculating χE and checking cases where it is equal.

Now we tabulate the degrees of homogeneity for the few low-m cases. The
notation will be:

With this notation, the ^(n

(4 | |5)_ 2 O O ,

(6 || 3 2

and those of [16]:

n q™ ... q™rι

a) manifolds of [12] become:

(5 || 4

2)_ 1 4 4 ,

2)_ 1 7 6 )

(7 || 2

(5 || 3 3)_ 1 4 4 ,

2 2 2)_ 1 2 8 ,

37-162' 17-24

Note that the last example is embedded in CP3 x CP4, which is not covered by the
generalizations presented here. Embeddings in direct products of unequal-
dimensional CP's can be listed and analyzed using similar methods as here. In
particular, note that a linear constraint on CP" reduces it to CP"~ι. With this in
mind, it is clear that:

0

2 - 2 4

0

2 17-24

This generalization may lead to, at least partial, classification of the Calabi-Yau
manifolds - a task far too ambitious to be addressed here.

In the case of two CP's, we find nine more possibilities:

0

2

1

17- 120 - 4 8

1

17- 128
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2 1 1

1 2 1/ 106

2 1 1
0 2 2/

2 2 0 0 1

0 0 2 2 1/ - 3 2

104

1 1 1 1 lλ

1 1 1 1 V-ioo'

In the case of three CP's we find:

2 0 2

0 2 2/ -128

2 0 1 1 1

0 2 1 1 1 / - 8 8

3 0 0

2 1 0

0 1 2

3 0 0

1 1 1

1 1 1

-144

-108

2

2

0

1

1

1

0

0

2
5

- 9 6

2
2

2

2 1 0

1 2 0

1 0 2

2 1 0

1 1 1

0 1 2

- 9 6

- 6 6

3 0 0

2 0

1 0 2

0 0

1 1 1

2 1

2 1 0^

2 0 1

1 1 1

2 1 0

1 1 1

1 1 1

2 1 0

1 0 2

0 2 1

5

-144

5

- 3 6

2
2

2

2

2

2

3
1

0

2

2

1

0
2

1

1

1

0

0
0

2

0
0

2

'-120

- 9 6

- 4 8

and 1 1 1 1 0 0\

1 1 0 0 1 1

0 0 1 1 1 1 /_ 72

In the case of four CP's we find:

(1 1 1 1 | |2 2 2 2)_ 1 2 8 ,

where the transposed form is used for convenience, and:

2 1 0 0 0\

1 1 1 0 0

0 0 1 2 0

0 0 0 1 2/_,

- 3 6

-132

2 1 01

2 0 1

0 2

2
2

2

2

2

2

2
1

0

1
1

1

1
1

2

1
1

1

0
1
1

1

1

1

' - 8 4

- 8 4

- 9 0

2
2

2

2

2
1

0

0

1
1

0

0

0
1
1

1

0
0
1

1

0
0

1
1 _ 2 4

2 1 0 0

1 1 1 0 0

0 0 1 1 1

0 0 0 1 2/_8

2 1 0 0

1 0 2 0 0

0 1 0 1 1

0 1 0 1 i/_ 2 4
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and

0
0
1
1

0
0
1
1

?

- 7 2

2
2
2
2

2 1 0 0
0 1 2 0 0
0 1 0 2 0
0 1 0 0 2/_1 2 8

-128

2 1 0 0 0
0 1 2 0 0
0 0 2 1 0
0 0 0 1 2 -128

It should be noted that in general the procedure of Appendix A is applicable to
every example and that each degree of homogeneity matrices may correspond to a
set of different Calabi-Yau manifolds, provided one finds inequivalent sets of
polynomials that have the same degrees. Also, dividing out free actions of different
discrete subgroups one obtains distinct Calabi-Yau manifolds, the universal
covering space of which is the original manifold.
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Finally, let it be remarked that examples with the same Euler characters may in
fact be the same manifold, embedded in different bigger spaces; in such a case all
other topological invariants would have to be the same. However, from the point
of view of a Unified theory model builder this is not so relevant, since the new
embedding could make easier the analysis of dividing out the free action of a
desired discrete group and thus simplifying the construction of a certain manifold.

Appendix C

In the lack of a conclusive proof of existence of Calabi-Yau manifolds for every
choice of m and n in Table 4 and every of the corresponding matrices of degrees of
homogeneity, a few brief examples are presented. Note that the first two examples
have Euler characters not obtained before, to the best of my knowledge.

1. We start with CP3xCP3:

3 0 1\ 1 3 , 1 3 3

/* = — y x J'= - Y v L' = y x v2 ( c i )
L8 ^ r = 0 2 r = 0 r = 0

For notational convenience we define X: = (xnyr), i.e.:

\yr K =

Then
d I = ( χ 2 ? 0 ) 9 d J = ( 0 ? y r ) 9 d L = {y29 2 X r y 2 } 9 ( Q 3 )

and the volume-form tensor VRST: = d[RIdsJdT]L becomes:

-(χϊyϊ-χbϊ)yt, R,s=o, 1,2,3, r=4,5,6,7,

-2xrysyt(xs-xt), R = 0,1,2,3, S, T=4,5,6,7.

Observe now that at least two x's and two /s have to be nonzero for a point in
CP3 x CP3 to be a solution of Eq. (C.I), i.e. in the manifold we are constructing.
Thus we have to examine three cases:

(a) JVΦO Vr. But then, by Eq. (C.4):

(*rhrf = (XM2 => Xr + 0 Vr, S , Xr = Xs = IX . (C.5)

But then / = | χ 3 = 0 => x = 0, that cannot be in CP3.
(b) yo = 0, j/i, y2, y3φ0. Using Eq. (C.4) one gets:

o => χ 0 = o , (c.6)

But then, similarly, 7 = x3 = 0 => x = 0, that cannot be in CP3.
(c) yo — y3 = Q> yu 2̂ + 0- Analogously as before, one obtains:

z— X2 —-'. X .
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Again, J=fx 3 = 0 => x = 0, that cannot be in CP3. This completes the proof.
2. For the next example let us select:

1 2 0 1 :I:=\Σ x?, J:= Σ xryί, L:= Σ ytf• (C8)
0 1 2/_ 3 6

 2 r =°

In a notation similar to that above, we have:

# = (*,, 0,0), dJ = (yr

2,2xryr,0), ί/L = (0,zr

3,3yrzr

2). (C.9)

Now the volume tensor becomes:

-(x ry
2-x sy

2)z r, i?,S = 0,l,2, 7=3,4,5,

3(xrys-xsyr)ytz,, R = 0ί,2, 5 , 7 = 3 , 4 , 5 , ^ ^

jLXy\X<,ygZ-ζ tJtS ) ? •J^ ' ' 9 9 9 9 9

6x rx 5Wt 2, # = 0,1,2, 5 = 3,4,5, Γ=6,7,8.

Note again that at most one xr may be nonzero in order for / = 0 to be solvable in
CP2. Again, by enlisting the possible forms of solutions to VRST = 0, and it can be
easily shown that not one of them satisfies / = J = K = 0in CP2 x CP2 x CP2. This
concludes the proof and thus defines a Calabi-Yau manifold with χE= — 36.

3. The third example:

1 2 1 2 2

• T— - y Ύ2 /•— - v v 2 r _ y Y V 7 3 c π i ^

-144

is in fact so similar to 2. that the proof of non-singularity even coincides in some
steps and can be quickly obtained. This however defines a Calabi-Yau manifold of

2
2

2

3
1

1

0
2

0

0
0

2

In all these examples the constraints exhibit huge symmetries. Example 1
possesses a discrete symmetry 5 4 (all simultaneous permutations of xr and yr) and a
Z 2 : yr^>( — )ryr. Clearly, the action of these cannot be free, since if it was, dividing
the original manifold by the free action would yield a multiple connected one with
\χE\ <; 1! (This is manifest since the elements of S4 do not commute with those of Z 2

and the combined group has more than 4! -2 = 48 elements.) The constraints of
Example 2 are invariant under a Z 1 2 defined as follows:

Z: xr^xre
irπ, yr^yre

irπ/2, zr->zre-irπ/6. (C.12)

But if it acted freely, dividing out its free action would lead to a manifold of
χE = — 3, which is odd and leads to contradiction. Adding terms to the above
constraints may ensure free action of a subgroup and thus a consistent
construction of a Calabi-Yau manifold with a phenomenologically interesting χE.
For the purposes of the present paper the demonstration of constructions suffices.
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Note added in proof. The terms of the D3 +1 superspotential discussed in Sect. 3 are all volume-
integrals over the internal Calabi-Yau manifold. In addition to these, there will in general also
exist analogues of surface-terms, integrated over submanifolds of the internal manifold.

The argument concerning the fixed points of order-3 operators in the Appendix A is not
complete and the space of solutions indeed contains these fixed points. However, these are
isolated tori and are easily "blown-up"; the corresponding analysis will be presented elsewhere.




