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Abstract. We prove exponential localization in the Anderson model under very
weak assumptions on the potential distribution. In one dimension we allow any
measure which is not concentrated on a single point and possesses some finite
moment. In particular this solves the longstanding problem of localization for
Bernoulli potentials (i.e., potentials that take only two values). In dimensions
greater than one we prove localization at high disorder for potentials with Holder
continuous distributions and for bounded potentials whose distribution is a
convex combination of a Holder continuous distribution with high disorder and
an arbitrary distribution. These include potentials with singular distributions.

We also show that for certain Bernoulli potentials in one dimension the
integrated density of states has a nontrivial singular component.

1. Introduction

The Anderson tight-binding model is given by the random Hamiltonian H =
- Δ + v on /2(ZV), where (— Δ)(x9y) = - 1 if \x - y\ = 1 and zero otherwise, and
v(x\ xeZ\ are independent identically distributed random variables with common
probability distribution μ.

In one dimension the spectral properties of this random Hamiltonian have been
fairly well understood for absolutely continuous μ with a "nice" density (see for
example the year old reviews [1,2]). In higher dimensions the first results towards
localization were due to Frόhlich and Spencer [3]. These were followed by a proof of
localization for a hierarchical version of H by Jona-Lasinio, Martinelli and
Scoppola [4] based on the methods of [3], and by a short proof of the absence of
absolutely continuous spectrum for Anderson's model at high disorder or low
energy given by Martinelli and Scoppola [5], again based on [3]. Subsequently
proofs of localization for the multidimensional Anderson model in the same region
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of the parameters were given by Frohlich, Martinelli, Scoppola and Spencer [6],
Delyon, Levy and Souillard [7], and Simon and Wolff [8], again using the results
of [3].

In all these papers the potential probability distribution μ was required to have a
bounded density; the inverse of the bound of the density being taken as a measure of
the disorder.

In the one dimensional case Delyon, Levy and Souillard [9] and Simon and
Wolff [8] were able to extend their proof to any μ with a nontrivial absolutely
continuous component.

The approach followed in [7,9] and [8] uses the results of [3] and ideas
introduced by Carmona for the one dimensional case and subsequently developed
and exploited by Kotani [10]. In [6] the work of Frohlich and Spencer [3] is
substantially improved following the pattern of the proof of localization for the
hierarchical model [4].

In this paper we considerably relax the assumptions on the potential probability
distribution μ. In one dimension we allow any probability measure that is not
concentrated on a single point and possesses some finite moment. In particular, we
solve the longstanding problem of localization for Bernoulli potentials (i.e.,
potentials that take only two values). For arbitrary dimension we prove localization
at high disorder for potentials with Holder continuous distributions and for
bounded potentials whose distribution is a convex combination of a Holder
continuous distribution with high disorder and a small amount of an arbitrary
distribution. These include potentials with singular distributions.

We also show that for certain Bernoulli potentials in one dimension the
integrated density of states has a nontrivial singular component. This had been
conjectured by Simon and Taylor [11].

We thus need a way of proving localization that does not depend on the absolute
continuity of μ (or of a component of μ). A close look at the proof in [6] reveals that
the absolute continuity of μ is only used to prove a key probabilistic estimate needed
to control, in a probabilistic sense, the small divisors appearing in the finite volume
Green's functions. If μ has a bounded density, this estimate is easily obtained from
Wegner's [12] uniform bound on the expectation of the density of states in a finite
volume by a simple use of Chebyshev's inequality [3]. But in [7] and [8], the
absolute continuity of μ, in addition to having been used in [3], is also used, and in a
fundamental way, in order to implement the so-called Kotani's trick.

In this paper we prove that key probabilistic estimate for a large class of potential
distributions. When the potential distribution is not absolutely continuous, this
estimate is very subtle and requires a fine analysis of the finite volume Hamiltonians
corresponding to typical configurations of the potential.

Such an estimate has also been proved in one dimension by Klein, Martinelli and
Perez [13] under hypotheses on μ that allow for singular continuous distributions.
They use the methods of Campanino and Klein [14] to prove a uniform bound on
the expectation of the Green's function in a finite volume from which the desired
estimate follows by Chebyshev's inequality. Thus they also obtain localization for
some singular potential distributions.

This paper is organized as follows: In Sect. 2 and 3 we state our results for the one
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dimensional and for the multidimensional case, respectively. In Sect. 4 we briefly
review the strategy of [6] and recall the key probabilistic estimates. We also state the
probabilistic estimates we prove, which, combined with the methods of [6], give our
results on localization stated in Sect. 2 and 3. The proofs for the one dimensional
case are in Sect. 5. This section contains an Appendix where LePage's result [15] on
the local Holder continuity of the integrated density of states is extended to the case
where the potential is no longer assumed to be bounded. Section 6 contains the
proofs for the multidimensional case. It includes an extension of Wegner's bound on
the density of states. In Sect. 7 we show that some of our estimates fail for the
Anderson model on the Cayley tree and briefly discuss the consequences in the case
when the potential v can be either zero or infinite (quantum percolation).

2. Statement of Results in the One Dimensional Case

Our result on localization is

Theorem 2.1. Let v = 1. Suppose the support of μ is not concentrated in a single point
and §\v\ηdμ(υ)< oo for some η>0. Then the spectrum of H is pure point with
probability one and the corresponding eigenfunctίons are exponentially localized.

Some comments are in order. In the one dimensional case an important
ingredient in the Frδhlich, Martinelli, Scoppola and Spencer method [6] is
Furstenberg's theorem, which gives the strict positivity of the Lyapunov exponent
for probability distributions μ like in Theorem 2.1. This strict positivity gives the
initial step in the inductive construction of singular sets which was introduced in [3].
The lack of a theorem a la Furstenberg in higher dimensions is the reason for the
extra assumptions of higher disorder or low energy. This strict positivity of the
Lyapunov exponent was generally considered to be sufficient for the almost sure
existence of a dense set of eigenvalues with exponentially decaying eigenfunctions
and no other type of spectrum. In particular, as early as 1974 Pastur [16] gave a
simple argument to show that it implied the non-existence of absolutely continuous
spectrum for almost every potential. Nevertheless, as we have already mentioned,
the proofs of nonexistence of singular continuous spectrum and the exponential
decay of the eigenfunctions required the absolute continuity of μ [17,18,6,7,8,1,2]
(or of a nontrivial component of μ [8,9]).

The situation is even worse in the continuous case of the Schrόdinger operator,
i.e., H = - A + v on L2(^). Indeed, the independence assumption on the potential
does not have an analog unless the potential is taken to be piece wise constant.-
Exponential localization has been proved under very restrictive conditions (see the
review [1]). Surprisingly, the situation is somewhat better for the problem on the
half-line. Kotani [10] has proved exponential localization for almost every
boundary condition at the endpoint if the Lyapunov exponent is almost everywhere
positive. But the situation for the whole line, or for the half-line with a preassigned
boundary condition is not so simple.

Consequently the case of potentials with singular distributions was a challeng-
ing open problem. The special case of Bernoulli potentials, i.e., μ = pδ(v — a) +
(l—p)δ(v — b) with 0 </?<!, α,ί?e^, aΦb, was particularly puzzling. In the
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continuous case, when the potential v(x) is taken to be constant on the intervals
(tt,n+l), and the v(n\ πeZ, are independent identically distributed Bernoulli
random variables, the solution is known. A proof was first given by Carmona [19] for
the part of the spectrum above the supremum of the potential. This proof was
completed by Kotani [20] (see the comments in [1]), who also pointed out that the
proof applied to the whole spectrum because the change of variables which is crucial
in the proof can be performed when the energy is above the potential in a bounded
interval. Since this always happens with nonzero probability, an ergodicity
argument gives the exponential localization for the whole spectrum. But this proof
cannot be extended to the lattice case.

After proving Theorem 2.1 and thus obtaining exponential localization for
Bernoulli potentials, we take on the problem of the regularity properties of the
corresponding integrated density of states and prove a conjecture of Simon and
Taylor [11], who gave a very appealing heuristic argument.

Theorem 2.2. Let v = 1, μ = pδ(v) + (1 - p)δ(v - b\ with 0<p<landb>0. Then the
integrated density of states has a nontrivial singular component for b large enough.

3. Statement of Results in the Multidimensional Case

We will say that a probability measure μ is Holder continuous of order p > 0 if

^inf sup |fe-flΓ'μ([fl,&])<oo.

In this case we will call δp(μ) the p-disorder of μ.
If μeί/ for some 1 ̂ p< oo, it follows that μ is Holder continuous of order 1/p

and [<51/p(μ)] ~ 1 ̂  Kp \\ μ \\p for some constant Kp<ao which depends only on p. If
1 ̂ p^2, Kp^ 1. In particular, if μ is absolutely continuous with a density in I?,
1 < q ̂  oo , it follows that μ is Holder continuous of order 1/g', where l/q + l/qf = 1,
and [<5 w(μ)] ~ * ̂  || dμ/dv \\ q. Thus if μ has a bounded density our notion of disorder
coincides with the one used by Frόhlich and Spencer [3].

It is worth mentioning that there are singular continuous μ which are Holder
continuous of some order p > 0 [21,22].

We will prove for such μ an estimate similar to the one obtained from Wegner's
bound on the density of states for μ with a bounded density. As it will be explained in
Sect. 4 this will imply that the results of [3, 6] hold with the hypothesis of μ being
absolutely continuous with a bounded density replaced by μ Holder continuous of
some order p>Q. In particular we will have

Theorem 3.1. Let v be arbitrary and suppose μ is Holder continuous of order p > 0,
i.e., δp(μ) > 0. Then the spectrum of H is pure point with exponentially localized
eigenfunctions, with probability one, provided δp(μ) is large enough.

We will also prove localization for μ which contain an arbitrary component.

Theorem 3.2. Let v be arbitrary. Suppose μ = pμ1+(l—p)μ2, where 0<p^l and
μ l 5 μ2 are probability measures with compact support such that μί is Holder
continuous of order p > 0 and μ2 is otherwise arbitrary. Then the spectrum ofH is pure
point,with exponentially localized eigenfunctίons, with probability one, provided δ^μj
is large enough and p is sufficiently close to one.



Anderson Localization for Singular Potentials 45

4. The Road Map to Localization

In this section we will briefly review some of the main aspects of the proof of
Anderson localization given by Frohlich, Martinelli, Scoppola and Spencer [6],
state the probabilistic estimates we prove, and show how Theorems 2.1, 3.1 and 3.2

then follow.
For each positive integer / we will denote by Bl the cube in Zv centered at the

origin with sides of length 21 parallel to the coordinate axes. By dBt we will denote its
(inner) boundary, i.e., dBl = {yeBl such that there exists xeB] such that \x — y\ = l}.
For each energy E (real or complex) GBl(E\ x, y) will denote the Green's function of

the restriction HBl of H = - Δ + v to /2(B,) i.e.,

for x.
The basic estimates needed in [6] in order to prove localization in a

neighborhood of an energy E0 are:

(I) Let E0eσ(H). There exist

a = a(E0)<l9 δl = δ(l,E0)>Q, O^ε, = ε(v,/,E0)^ 1,

such that

P{ Σ I GBl(E; x, y)\ < a for all |x| ^ 1/2} £ 1 - β, (5.1)
y^dBl

for all EE[EQ — δl9E0 + <5J, all /, and fy->0 as /-> oo.
(II) Let E0eσ(H). There exists τ = τ(E0) > 0 such that for any 0 < β < 1 and σ > 0

there exists /0 = IQ(EQ, β> σ) and α = tt(EQ, β, σ) > 0 such that

for all \E-E0\<,τ and /^/ 0 .
In the one dimensional case (I) is a consequence of Furstenberg's theorem (see

[6]; see also Klein, Martinelli and Perez [13] where (I) is derived from a bound on
the averaged squared modulus of the Green's function obtained by a rigorous
replica trick method).

In higher dimensions the proof of (I) is usually quite hard. The work of Frohlich
and Spencer [3] shows that, using (II), there exists ε0(v)>0 such that if

ε(v,/,£0)<^o(v) f°r some 'o> then ε(v,/,ε0)^ CΓk for some constant C and k>0 as
/-» oo. The number a = a(EQ) < 1 can be even chosen depending on / as a = a(ΐ) —
e~ml for some m > 0. In their work [3] they show that for large disorder the starting

scale /o can be chosen equal to one, if we have a slightly stronger version of (II):

P{dist(E,σ(HBl)) ̂  e~σlβ} ^ δ^e'^

where δ depends on the disorder and <5-> oo as the disorder goes to oo, and α is
independent of the disorder. For the case of low energy this has been extended by
Holden and Martinelli [23], who showed that for E0 close to the left edge of the
spectrum of//, provided the latter is finite, the scale /0 can be chosen proportional to
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The main result of [6] is:
// (I) and (II) are satisfied for some E0eσ(/f), then in a neighborhood of E0 the

spectrum of H is pure point with exponentially localized eigenf unctions with
probability one.

In one dimension it also follows from [6] that the rate of decay of the
eigenfunctions with energy in [E0 — δ, E0 + (5] can be bounded from below by
%y(EQ)9 provided δ is small enough. Here y(E0) is the Lyapunov exponent for E0. This
fact will be used in Sect. 5 in the proof of Theorem 2.2.

The strategy of the Frόhlich, Martinelli, Scoppola and Spencer's proof is as
follows. Using (I), the lattice /Zv is decomposed into two disjoint subsets:

such that for all blocks B^x) = x + Bh xeSc

0, the event described in (5.1) for x = 0
occurs. Since ε(v, /, £0) -> 0 as / -> oo , it follows that for / large enough the set S0(£0, v)
does not contain an infinite cluster of nearest neighbors sites with probability one.
Using simple perturbation expansions closely related to the random walk expan-
sions for the Green's function of — Δ + v on /2(ZV) (see [3]) it is shown that, for /
large enough, the Green's function of the restriction oϊH to the union of an arbitrary
number of blocks Bt(x) with xeS0(E09v)c decays exponentially uniformly
in £e[£0 — δ(l9E0)9 £0 + <5(/,E0)]. This in turn implies that any generalized
eigenfunction (i.e., any polynomially bounded solution of (H — E)φ = 0) with energy
in this interval is exponentially localized on the blocks Bt(x) with xeS0(E, v). In order
to control the global localization properties of such eigenfunctions one has therefore
to study the tunneling among the blocks in S0(E0, υ). This is the heart of the proof.
Using (II) it is shown that with probability one the configurations of the random
potential satisfy certain non-resonance conditions which are sufficient to prevent
tunneling over too large scales. The basic deterministic argument behind the analysis
of tunneling and which illustrate the mechanism leading to localization is the
following (see [2]):

Let A, B be two subsets of Zv such that
(i) AuBc:Λ,dist(A,B)^L;

(ii) (diam A) v (diam B) ̂  L4/5;
(iii) for every EelE0-δ,E0 + δl <5>0, \Gλ^E;x9y)\^e-^-^ with m>0;

Then if there exists an eigenvalue of HΛ in [£0 — δ, E0 + δ~] the corresponding
eigenfunctions are exponentially localized either in A or in B. Using (II) with β = ̂ ,
σ = 1 one finds that (iv) occurs with probability greater than 1 — e~Λ^L.

It should be emphasized that (II) is the only place in the proof where the
smoothness of the potential probability distribution μ played a role. It was originally
derived in [3] from a result of Wegner [12] that required μ to be absolutely
continuous with a bounded density.

In this paper we will prove (II) for a wide class of potential probability
distributions μ. In view of the previous discussion Theorems 2.1, 3.1 and 3.2 will then
follow from Theorems 4.1, 4.2 and 4.3, respectively.
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Theorem 4.1. Let v = 1. Suppose the support ofμ is not concentrated in a single point
and J I υ \ ηdμ(υ) < oo for some η>Q. Let I be a compact interval. For any 0 < β < 1 and
σ > 0 there exists /0 = /0(/, β, σ) and α = α(/, jδ, σ) > 0 swc/i

for all Eel and I ^/0.

Theorem 4.2. Let v be arbitrary and suppose μ is Holder continuous of order p>0 i.e.,
δp(μ) > 0. Then for 0 < δ < δp(μ) we can find η = η(μ, δ)>0 such that

P{dist(E, σ(HBl)) g ε} ̂  <Γ I2"(2l + l)v(1 +<V

for all EelR and for all ε > 0 and I such that ε(2l + l)v < η.

Theorem 4.3. Let v be arbitrary. Suppose μ = pu1+(l — p)μ2, where 0 < p ̂  1 and
μ1 , μ2 are probability measures with compact support such that μ1 is Holder continuous
of order p>0 and μ2 is otherwise arbitrary. Let 0 < δ < δ^μj and suppose εz > 0 are
such that ε"(2/ + l)v < 1 for some 0 < α < ̂  and all I large enough. Let us fix E0 > 0.
Then for all\E\^E0 there exists Og/?(v)^ 1 such that for all I large enough we have

P{dist(E, σ(HBl)) < ε,} g δ ~ *2'(2l + l)v(1 +^ε? + ef

for some α = α((5, p9 a) > 0 0πd rf = rf(p) > 0 for p(v) < p ̂  1,
0 < p(v) < 1 for v ̂  3. Moreover d(p) -> oo as p ->• 1.

Theorem 4.1 is proven in Sect. 5 and Theorems 4.2 and 4.3 are proven in Sect. 6.

5. The One Dimensional Case

Most of the problems encountered in the one dimensional case can be reformulated
in terms of properties of random matrices. Indeed, if we consider the eigenvalue
problem

- u(n + 1) - u(n - 1) + v(n)u(n) = Eu(n) (5.1)

for a fixed energy E, the solution for n ̂  0 can be expressed by means of the
propagator or transfer matrix

(5.2)

via the formula

with a similar formula for n ̂  0.
Since we restrict ourselves to random potentials given by a sequence ι;(n),neZ,

of independent identically distributed random variables, the sequence Tj,£), πeZ, of
random matrices is also independent identically distributed. The asymptotic
properties of products like those appearing in (5.3) have been known for a long time.
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In particular, for each fixed energy £, the subadditive ergodic theorem tells us that

Km ^logllΓ^.-Γfll
n-»±oo \n\

exists almost surely and defines a non-random number y(E) called the Lyapunov
exponent of the problem (5.1). Moreover, Oceledec multiplicative ergodic theorem
gives, for each energy £, the almost sure existence of a (random) unit vector x^" in
(R2 such that

lim ^log||Γ<£>...7f>x||
n->±oo \n\

equals — y(E) if x and x^^" are colinear and y(E) if not. In view of (5.3) this raises the
question of the positivity of y(E). This is given by a famous theorem due to
Furstenberg as long as the common distribution of the v(n) is not concentrated on a
single point. These results have been very important in the understanding of the
localization phenomenon in one dimensional disordered systems and are part of the
folklore of the subject. We refer the interested reader to the reviews [1,2,24] for
complete statements, proofs and references. Part B of [24] is a very helpful source of
information on the relation between asymptotic properties of products of random
matrices and spectral properties of random Schrόdinger operators on Z.

Our objective is to prove Theorem 4.1. To prove the desired estimates in finite
intervals we will have to go first to the infinite volume limit to get smoothness and
then return to finite intervals where the smoothness was not available due to the
singularity of the distribution of the potential.

We start with a Lemma whose idea and proof are borrowed from Lemma 3.1 of
[15] (see also Proposition BIII2.2 of [24] for a similar estimate). As before μ denotes
the common probability distribution of the v(n)'s.

Lemma 5.1. Suppose μ is not concentrated on a single point and there exists η>0 such
that

$\v\ηdμ(v)<oo. (5.4)

Then, for each compact energy interval I there exist oί1 =α1(/)>0, δ = δ(I)>0 and a
positive integer n1 = n1(/) such that

for all Ee/, n ̂  n1 and unit vectors

Proof. As we already pointed out, γ(E) > 0 under the above hypotheses. Moreover,
it is a continuous function of the energy E(y(E) is actually locally Holder continuous
and we will use this fact later). Thus y = yf = inf {γ(E); Eel} > 0. Using the inequality
ey ̂  1 + y + y2ely[ we obtain
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Since || Γf || = ||[Γf Γ1 1|, we always have

nog ιι r<£>...rf x i ι ι g log i i rf ιι + ... + log ιι rf ιι.
We can thus use Holder's inequality to obtain

+ <52n[E{(log || Γf || )4}]1/2[E{

which is finite by (5.4) if we choose 0 < δ ̂  η/2. It follows that

E{ || Γf Γf x || - *} g 1 - 5E{log || Γf Γf x || } +

for some finite constants C1 = C^/), C2 = C2(/).
Since we know that

Hm^E{log||Γf.. Γfx||} =

and that, as remarked in the proof of Lemma BII4.8 of [24], this convergence is
uniform in Eel and x in the unit sphere of R2, we can pick n0 = n0(I) such that

for some ε > 0 provided δ is chosen small enough. We now use the fact that (5.5) is
independent of the unit vector x. If n is any positive integer, then n = kn0 + r for some
integer k ̂  0 and 0 ̂  r < n0. Then

+1] ~ ' - TO - * I I 4 }E{ || Tβ... Tfx |Γ *}

τ(£)J ( f c - l ) n o
fcno "' L (k - l)πo + 1 || T(E) T(E)^ II

II A (k-l)no '" L 1 X II

'(£) T(£)Y II -<5 I < C(\ — p\P{\\ T(£) T<£)γ II ~*\ΓF(\\ ΓTί^)!"1 ll*//2~l«o
(/C-DMQ *• 1 X H f = M1 ε)U\\\ 1 ( fc-l)no ^ 1 X II / L ^ U I L ' 1 J II J

by (5.5), where C = sup [£{ || [7γ>] "1 Γ/2}]M° < oo by (5.4).
£e/

Repeating the above argument we get

for all n ̂  n± and Eel, for some α t = α^/) > 0 and nx = n^/).
This concludes the proof of Lemma 5.1.
The next lemma is the second ingredient in the proof of Theorem 4.1. Its proof is

reminiscent of Simon's version of an old argument of Halperin (see the Appendix of

[ii]).
Lemma 5.2. Suppose μ is not concentrated on a single point and (5.4) holds. Then for
each compact energy interval I there exists p = p(I) > 0 and C = C(I) < oo such that
for each Eel and 0 < ε < 1 we have

P {there exists Efe(E - ε,E + ε) and φ'e/2(Bj), \\φ' \\ = 1,

such that (HBl-E')φ' = Q and [|φ'(- l)\2 + |φ'(/)|2]1/2 ^β} ̂ c/εp (5-6)
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Proof. The integrated density of states N(E) of the operator H on /2(Z) is locally
Holder continuous. This result was proven by LePage under the extra assumption of
boundedness of the potential (see [15; Proposition 3.2]). As explained in [24], the
proof relies on the so-called Thouless formula (whose proof usually requires the
boundedness of the potential) and the local Holder continuity of the Lyapunov
exponent (whose proof requires only the μ-integrability of log (1 + |u|)). We show in
the Appendix to this section that both Thouless formula and the local Holder
continuity of the integrated density of states still hold in the present situation.

Thus there exist p = p(l) > 0, C±(ϊ) < oo such that

\N(E) - ΛΓ(£')I ^ Ci |£ - E'\p (5.7)

for all £, E' at a distance from / not larger than two.
Now let us fix Eel and /, and for each i = 0, 1, 2, . . . let A{ = A^E, /, ε) denote the

event that there exists at least one eigenvalue, say Ei9 of the operator HBl(i(2l + 3))

such that

lE-E^ε, (5.8)

and such that at least one of the corresponding eigenfunctions, say φi9 with
||<P;| | = 1, satisfies

l\φl{i(2l+3)-l)\2+\\φί(i(2l+3) + [)n1'2^ε. (5.9)

We denote by p = p(E, /, ε) the common probability of the events Ar Notice that A{ is
the event in the box #z(ΐ(2/+ 3)) described in (5.6) for the box Bl9 and hence p equals
the left-hand-side of (5.6).

Now let il9i2,...ike{Q9l9...9n—l}9 be distinct and such that Aij9j=l9...9k9

occur. For each such j let φj be the function on Z which is equal to φtj on
Bt(ij(2l + 3)) and zero elsewhere. Then {φl9...9φk} is an orthonormal system
satisfying

(i)

because of (5.8) and (5.9), and

(«) < Φj> HK(l,n)Φj' > = < Hκ«,n)Φp HK(l,n)Φf > = 0

for jΦj' by construction. Here

and HK(ιtΛ) is the restriction of H to 12(K(1, n)).
According to Simon's version of Temple's inequality (see Lemma A3.2 of [11]),

this implies the existence of at least k distinct eigenfunctions of HK(l π) with
corresponding eigenvalues in [£ — 2ε, E 4- 2ε]. Thus #{/e{0, 1, . . . , n — 1}; Ai

occurs} ^# {eigenvalues of HK(lfn) in [£ — 2ε,E + 2ε]}. If we divide each side
by n and take the limit as rc^oo, we get p^(2l + 3)[JV(£ + 2ε)- A/r(E-2ε)],
where we used the fact that N(E) is continuous. But then, by (5.7), we have
p ̂  (21 + 3)Cί2

pεp ^ Clεp for some C = C(I) < oo.
This finishes the proof of Lemma 5.2.
We are now ready to prove Theorem 4.1. Let /?, σ > 0 and the compact interval /

be fixed. For each positive integer / we set nt = [τlβ~] + 1, where [r] denotes the
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integer part of r and τ > 0 is to be chosen later. Let δ = δ(I) and α t = 0^(7) be the
constants given in Lemma 5.1, and let K = mJ2δ. For each Eel and θ > 0 we set

where x0 = ί Λ y 0 = L

Using Chebyshev's inequality and Lemma 5.1 we have

(5.10)

and similarly for [Bjf >ί)]c, provided / is large enough.
We can write

P{dist(E,σ(HBl))<e-°'P}

^P({dist(E,σ(HBί))«Γσ/V Π
\E'-E\<e~σlβ

(J
\E'-E\<e~σlfi \E'-E\<e~alβ

+ P WJ) = W + (ϋ) + (iϋ) + (iv).

Let us assume that the event whose probability is (i) occurs. Then we must have
either

IT*-1'2** (5.11)
or

for each E'e(E — e~σlβ,E + e~σlβ\ because for each positive integer n and every
energy E' we always have

where ψE,(n + l) is the first component of the vector T(

n

EΊ - Tf Ίx, and we
assumed that the event A(^ occurs.

Similarly, we must also have that either

|G[1_n,,1](£';/,/-Wί)|^2e-
1/2κ"ί (5.13)

or

|G[/_,I+1>l](£';U-n/ + l)|^2e-1/2'rf' (5.14)
.β

If \E' — E\<e~ and Er is an eigenvalue of HBl with φ' a corresponding
normalized eigenvector, then, depending on whether (5.11) or (5.12) holds, we use
either the formula

or

to estimate φ'( — /)• In either case we obtain
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Similarly, using either (5.13) or (5.14), we get

\φ'(l)\^2e-1/2κlβ.

Thus

(i) ^P{there exists Efe(E-e~σlβ,E + e~σlβ) and φ'e/2(£j), | |φ' | l = l, such that
(HBl - E)φ' - 0 and

^ Cl(e~σlβ Λ 2^2e~ll2klβγ (5.15)

by Lemma (5.2).
Now let us suppose that the event whose probability is (ii) occurs. Notice that

where

There exists £' with \E - E\ < c~"f such that the event

[4% "]c

occurs, so we have

e1/ω^||T<fί'+π,...T<f?x0||

^lir<fi+ n,...T<f)X o | i-"'f
fe=l

where 7" denotes the double sum above. Thus Γ ^ \eκl if / is large enough. Using
Chebyshev's inequality and the inequality (Σ \ai\)Λ> ^ Σ \at\

δ' with δ' = 1 Λ η, we
obtain

-MMl + 1]

where
M = M (/) = sup E{ || Γf f } < oo

Eel

by our assumption on μ (i.e., by (5.4)). Thus, if we choose τ small enough, we get

(ii) ^e~«2lβ (5.16)

for some α2 = α2(/, σ,β)>0 and all / large enough.
Similarly, we get

(5.17)
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Thus the Theorem follows from (5.10), (5.15), (5.16) and (5.17).
This concludes the proof of Theorem 4.1.
We now turn to the question of the regularity properties of the integrated density

of states N(E). As it was already discussed, N(E) is locally Holder continuous. In
addition, Kotani and Souillard [25] have shown that N(E) is absolutely continuous
if μ possesses an absolutely continuous component. We will show that for some
potential distributions μ N(E) has a nontrivial singular component. Our result can be
proven for μ concentrated on finitely many points under some extra conditions, but
we will restrict ourselves to the Bernoulli case as stated in Theorem 2.2.

So we now turn to the proof of Theorem 2.2. We let μ = pδ(v) + (1 - p)δ(v- b)
with pe(0, 1) fixed and b > 0. We will use the same notation as before except for a
subscript b to emphasize the dependence on the parameter b.

In the present situation we have

We take b> 4 so the two intervals are disjoint. Notice that then it is easy to see that

JVb([-2,2]) = p,

so it follows that

Nb([6-2,fc + 2])=l-p.

Using Thouless formula (i.e., (A.2)), we have

yb(E) ^ plog4 + (1 - p)log(b + 4) (5.18)

for any £e[- 2, 2]. If we now use Fubini's theorem to interchange integrals we get

$2-2yb(E)dE = ί2_2dNb(F)ί2_2log|E - E'\dE + βΐ 2

2dNb(Ef)^2l^\E - E'\dE.

The first term is bounded uniformly in b > 0 and the second one is bounded from
above by 4(1 - p)log(fe + 4) and from below by 4(1 - p) log(b - 4). This implies that

\ιm (logb)-ij2_2γb(E)dE = 4(l -p) (5.19)
6-* oo

Now, for each fixed α > 0 we have

I {Ee[ - 2, 2]; yb(E) ^ y} \ ^ [p log 4 + (1 - p) log(fe + 4)] ' 1 ^2^{yb(E^}y

because of (5.18), where \Λ\ denotes the Lebesgue measure of the set A.
Since

we get

by (5.19), and thus

lim I {£e[ - 2,2]; yb(E) Z γ} \ = 4. (5.20)
b-κχ>



54 R. Carmona, A. Klein and F. Martinelli

We now fix γ > 2 log 2. According to (5.20), for each ε > 0 we can choose
b = b(y, ε) > 0 so large that

For such fixed b, we use the continuity of the function γb(E) to construct an open set
/ c [ - 2, 2] such that |/ | ̂  4 - ε and yb(E) ^ 4γ for all Eel.

According to the remark in Sect. 4 about the rate of decay of the eigenfunctions
we know that, almost surely, we have that for each Eel, either E is not an eigenvalue
or the corresponding normalized eigenfunction, say φE, satisfies

\φE(x)\ίe-2^ (5.21)

for a l l \ x \ large enough.
Thus, almost surely if Eel is an eigenvalue, (5.21) holds for x = ± (/ + 1) if / is

large enough. As a consequence, if we define the function φE by φE(x) = φE(x)
for — / ̂  x :g / and φE(x) = 0 otherwise, we have

Thus

and consequently

for / large enough.
We can thus conclude that, with probability one, all the eigenvalues in / are

contained in the set

(5-22)

where Sb(l) is the set of all possible eigenvalues of HBl when we take all the possible
configurations of the potential in #/? and the superscript (γ) means that we are taking
an e~yl neighborhood, i.e.,

But

which is summable in / because of our choice of y. Thus (5.22) implies that |/ y | = 0.
On the other hand Nb(Iγ) = Nb(I) by our construction since all the eigenvalues in

/ are actually in lr Since / c σ(Hb) and / is open we must have that Nb(I) > 0. Hence
ΛΓ,(/y)>0.

This finishes the proof of Theorem 2.2.
It is worth remarking that the first part of the above proof, at least up to (5.20), is

an attempt to show that for each fixed E one has lim γb(E) = oo . Indeed, our
&-+00
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argument shows that, for each ε > 0 and y > 0,

However, using Halperin's argument [11] and Thouless formula, it can be shown
that for a dense set of energies γb(E) g K log b with K < (1 — p). This shows that the
function γb(E)(logb)~1, as a function of E, "tends" to be highly noncontinuous.

Appendix to Section 5

In this Appendix we extend LePage's result [15] on the local Holder continuity of
the integrated density of states to the case where the potential is no longer assumed
to be bounded. The idea of the proof is LePage's original one. We merely improve on
some of the steps and here again we benefited greatly from Part B of [24].

Theorem A.I. Suppose that the probability distribution μ of the potential at one site is
not concentrated on a single point and

Jlog(l + M)dμ(ι;)<oo. (A.I)

Then the integrated density of states N(E) and the Lyapunov exponent γ(E) are related
by Thouless formula:

y(E) = Jlog|E -E'\dN(E')9 (A.2)

and the function E->N(E) is locally Holder continuous, i.e.,/or any compact interval I
there exist p = p(I) > 0 and C = C(I) < oo such that

forallEl9E2€l.

Proof. Let us write

for the (random) empirical distribution function of the eigenvalues of the operator
HBl. We recall that, without any assumption on μ, the measures dNl (E) converge
weakly to the deterministic measure dN(E) with probability one (see for example
[1,2] and, as usual in the Birkhoff ergodic theorem, the expectations converge
accordingly.

For each configuration of our random potential we obviously have

v-2£HBl£v + 2. (A.3)

Notice that these upper and lower bounds are diagonal operators. Let us denote by
ΛΓ / ι ± the empirical distribution functions of the diagonal operators υ±2 restricted to
B{. For any function / we have

(A.4)
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Moreover, (A.3) implies that

(A.5)

Notice that (A.4) and (A.5) remain valid after taking expectations. If we first
use (A.4) and the rightmost inequality of (A.5) with the function fm(E} =
log(l -E)χ{E^_m}9 and then use (A.4) and the leftmost inequality of (A.5) with
the function gm(E) = log(l + E)χ^E>m}, we obtain, for each m > 0,

W>g(l + \E\)dE{Nt(E)} ^ 2jN^_2log(l + \v\)dμ(v) (A.6)

because the expectation of the right-hand side of (A.4) is nothing but J/(t? ± 2)dμ(v).
The crucial point of (A.6) is the uniform integrability of the function log(l + |£|)

with respect to the measure dE(Nl(E)) which is implied by (A.I).
Now let £ be a complex number with Im E Φ 0. Then

(A.7)

where Pt is the unit (random) polynomial of degree 21 + 1 whose roots are the
eigenvalues of HBl. As /->oo, the left-hand side of (A.7) converges to
J log I E — E'\ dN(E') because of the uniform integrability given by (A.6) and (A. 1). The
right-hand side of (A.7) converges to y(E) because P,(E) is an entry of the matrix
T(f j + ! T\E) . This proves Thouless formula for Im E Φ 0 and we conclude as usual
by using the fact that both sides of (A. 2) are subharmonic functions to obtain (A. 2)
for all E.

We now argue the local Holder continuity. For m > 0 we set

ψm is an L2-function. Let us denote by $m its Hubert transform. A simple integration
by parts and (A.2) give

^mW=--W3m)log|3m-^|+- ίAm(
π π

- λ\dN(E). (A.8)

We will show that N is Holder continuous in [ — m,m] by showing that the
Hubert transform of \j/m is Holder continuous in [ — m,m]. We have

π«L(£) = Um f ,<,,_„<

A simple calculation using only the square integrability of \pm shows that

for all Eί9 E2eU with C1 = C^m, || {j/m \\ 2) < oo. For Eel ~ ™> ™\> <Pι(E) involves only
values of φm(λ) for Ae[ — 2m,2m] and in this interval we can read the Holder
continuity of $m(X) from (A.8). Here we used the local Holder continuity of
Lyapunov exponent y(E). This fact was already the crucial step in LePage's original
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proof. In the present generality it is argued in Proposition BII4.7 of [24]. Moreover,
all terms in the right-hand side of (A.8) are Holder continuous of order 1, except
perhaps for y(E\ which is, say, Holder continuous of order α > 0 in [ — 2m, 2m]. In
the same way one usually shows that the Hubert transform preserves local Holder
continuity, one can verify that

\φ1(Eί)-φ(E2)\^C2\E1-E2\
τ

for Ei9 E2e[ - m, m], where C2 = C2(m) < oo and τ = 2(α Λ 1).
This completes the proof.

6. The Multidimensional Case

Let ε > 0. It is easy to see that

P{dist(£, σ(HBl)) ^ ε} ̂  P Jim Tr GBl(E + fe) ̂  ̂ -
( 2ε

^ Σ P{Im GBl(E + ίe, x, x) ̂  [2ε(2/ + 1)VΓ ' }•

Thus Theorem 4.2 follows from

Lemma 6.1. Lei v be arbitrary and suppose μ is Holder continuous of order p >0, i.e.,
δp(μ) > 0. Let W be a given (deterministic) potential. For xeBt and veU define H(

Bl'
v) =

— Δ + W + vδx restricted to /2(£j), and let G(^v\E + i&) be the corresponding Greens
function. Then for any 0 < δ < δp(μ) we can find ηι=ηι(μ,δ)>Q such that

forallQ<θ<ηl.

Proof. It follows from the resolvent equation that

G<$?\E + fc; x, x) = Gg 0)(E + iε; x, x) - G%"\E + fε; x, x)i;G^;0)(£ + fε; x, x)

so

G%V\E + fε;x,x) = [[G£°>(£ + ίβj^x)]'1 + t;]'1.

Let us write [G£;0)(E + fε ^x)]'1 = c + id with c,deR. Then

and hence

Thus

Now use the Holder continuity of μ. Given Q<δ<δp(μ), there exists T^ =

^μ, δ) > 0 such that μ( !>>&]) ̂  ̂ ~ l\b-a\p for all α g f c e l R with \b-a\^η^. Thus,
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for any αelR and 0 < θ ̂  ηί we have

Thus proves the lemma.
The above considerations give a simple proof of Wegner's estimate on the

density of states [ 1 2] . If we assume that μ( [α, b~\ ) ̂  δ ~ l \ b — a \ for all a < b e IR, we
have

ί Im G%'\E + is; x, κ)dμ(v) g δ~ 1 f
-ao\ ~r V) ~r a

So

for all ε > 0 and xe^. This implies Wegner's estimate.
A similar proof of Wegner's estimate has been independently obtained by Simon

[26] using the ideas of [8].
Lemma 6.1 can be used to prove an extension of Wegner's estimate.

Theorem 6.2. Let v be arbitrary and suppose there exists δ>0 and 0 < p < 1 such that
μ(O,fe]) ̂  <T 1 \b - a\pfor all a < beU. Then

E(Im GBl(E

for all ε > 0, / and xe#z. As a consequence we have

P{dist(£, σ(HBl)) ^ε}^ 2(1 - PΓ
lδ~\2l

/or α// £eR, ε > 0 and xeBt.

Proof. Let us fix ε > 0 and xeBt. By Lemma 6.2

F(α) = P{Im Gβ/(£ + iε;x,x) ̂  α} ̂  5~

for all α > 0. But since

Im GBl(E + fe; x, x) g || Gβo(£ + fe) || g

we have that F(α) = 0 for α ̂  ε~ x. Thus

E(Im Gβl(£ + iε;x,x)) = fF(α)rfα ^ f ^"^
o o

1/8

= δ ' l - )" V"1.

This completes the proof since the second statement follows from the first in the
standard way.

We now turn to the proof of Theorem 4.3. For each / let us fix ε = ε / 5 0 < ε < 1,
such that εα(2/ + l)v < 1 for some 0 < a < £. Let 0 < δ < δp(μ^. For each £e(R and
positive integer / we define

ΩEJ = {dist(£, σ(HBl)) ί ε}, ΨEJ = {Im Tr GBl(E + ie) ̂  iε" 1}.

Then ΩEιl d Ψ E I , and hence P(ΩEJ = P(ί\zn ΨEJ.
In order to estimate P(ΩE tl) we will divide the potential configuration {vx}xeBl

into its "nice" and "bad" parts as follows:
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Let {ξx}xeBl be the Bernoulli process on Bl with parameter p, i.e., {ξx}xeBl are
i.i.d.r, v.'s such that ξx == 0 with probability p and ξx = 1 with probability 1 - p. We
will denote by E the corresponding expectation. For any integrable function/of the
potential v in Bt we have

E{/(t;)}=EJf/(t;) Π <foiM*)) Π dμMx))}
{ xeBi xeBi }

Thus, with P denoting the joint probability over υ and ξ, we have

P(β£,/n ΨE>l)^P(ΩEίlr\{ξx = 0 and ImGB l(E + fe;x,x)^i(2/ + l)~ vε~ τ (6.1)

for some xεB,}) +'P(β£t/n{ImGBl(E + iε;x,x)<^(2ί + l)~vε"τ

for all xeB, such that ξx = 0}).

Here \ < τ < 1 — a.
The first term in (6.1) can be estimated in the same way as we proved Theorem 4.2

using Lemma 6.1 and is thus bounded by <5~12p(2/+ l)v(1+p)ετp if ετ(2/+ l)v<η,
where η = η(μ^δ) is chosen as in the proof of Theorem 4.2.

The estimate of the second term in (6.1) will be reduced to a sort of percolation
problem.

If veβ£ι/ we can find λeσ(HBl) such that \E - λ\ g ε; let φ be a corresponding
normalized eigenfunction. If

Im GBl(E + zε;x,x) £

it follows that

\φ(x)\ g (2/ + l)-v/2ε1/2(1 ~τ) = ε0 =
Thus

-vε-τ for all xeB, such that <^ = 0})
^ P {there exists a normalized eigenfunctions φ of

HBί such that | φ (x) | g ε0 for all x e Bl such that ξx = 0} . (6.2)

We will estimate the right-hand side of (6.2). Up to now our methods were
independent of the dimension v, but now we have to study separately the cases v = 1,
v = 2 and v ̂  3. Since the v = 1 case is just a much simpler version of the v = 2 case
and was already extensively studied in Sect. 5, we will proceed directly to v = 2.

So let us fix v = 2. Let φ be a normalized eigenfunction of HBl such that

\φ(x)\ ^ε0 for all xeB, for which £x = 0. Let xQeBl be such that |φ(x0)| >N/εo
Such a point always exists since

max MX) I ̂  (21 + l)~v/2 > ^ε0 if we have (21 + 1)V ~τ < 1.
xeltyl

We will actually, later on, estimate from below the number of such x0's and we will
also show that we can pick x0 away from dBl so that the following construction is
contained in B/.
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Let Γ be a finite strip parallel to a coordinate axis of width two and length

2[/c^/|logε|] + 1 such that x0 is the middle point of one of the sides of Γ. The
constant K will be chosen later. We divide Γ into disjoint blocks {M/}7 of length ί,
with t even, and width two. The length t will be chosen later uniformly on /. We
will say that a given block M{ is "nice" if ξx = 0 for all xeM/, otherwise M/ is "bad."
Clearly, given a block M\ we have

P{M/ is "nice"} = p2t. (6.3)

In order to reduce our probabilistic estimate to a percolation problem we will
need the following deterministic results which are consequences of the discretized
Schrδdinger equation. We fix E0 > 0 and always take |E| < E0. In the following
lemmas v is a bounded potential, bounded by cί = sup{| w|; wesuppμ} < oo. We set
C = 3 + Cl + E0 + 1. For future use we notice that if \E\ ̂  E09 \λ-E\£ε implies
\λ\^E0 + ε<E0+l. We will also assume that Γ is parallel to the first coordinate
axis.

Lemma 6.3. Let φ be a solution of HBlφ = λφ in Bl9\λ\^E0 + l9 and assume that
\φ(x)\ ^ ε0 for all xeMJor some block Mt. Then\φ(x)\ ^ ε^ for all x^Bi which are in
the union of the two triangles whose hypotenuse is one of the lines ofMt of length t and
do not intersect the other line.

Proof. Let Tt

+ and Tt~ be the upper and lower triangles described above.
Let Qt = MtvTt

+vTt-.
Let 0 ̂  n < t/2 and suppose that on each segment in Qt parallel to Mt at a

distance h ^n<t/2 from Mf the function φ is uniformly bounded by CΛε0. Let Sn + 1

be the segment in Γ,+ parallel to M, at a height equal to n+ 1. Then using the
equation HBlφ = λφ, we have that

3C% + sup |<y) -λ\C"ε0 ^ Cn + 1ε0
y

for all xεSn+ΐ. Since the above argument holds for n = 0, 1, . . . , t/2 — 1, the lemma
follows.

We now define Q"9 n = 0, 1, . . . , inductively as follows:

e? = a> QΪ+I = e?u{xez2\er; there eχists y^on with i* - y\ = *}•
For xeQ" let h(x) be the height of x with respect to Γ. We also let ε'o = ε^C.

Lemma 6.4. There exists w > 0 large enough such that if for any xeQ" we have
\φ(x)\^ε'Qe™\h(x}+\\ then if

for some ye<2"+1\g" we have that \φ(x)\ ^ε'0for all x in the diagonal part of the
boundary of Qn

t

 + l to which y belongs.

Proof. Let x be one of the vertices of β" + 1 lying on Γ, say the leftmost upper one. In
order to prove the lemma it suffices to show that:

(i) If |φ(x)| g ε'0e
m(n+ 1)2 then |φ(x)| ̂  εf

Qem(n + ί)2(h(x) + 1) for all xeS0, where S0 is
the upper left side of the boundary of Q"+1.
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(ii) If |φ(x)| > εf

0e
m(n+1}2 then |φ(x)| ̂  ε'0 for all xeS0

In order to prove (i), let xeS0, x = (x(1), x(2)), and let

Xl = (x'1' - 1, χ<2>), χ2 = (χ<!> + 1, χ<2>),

χ3 = (χ(D _ 1, χ(2> _ 1), 3; = (X(D _ 1, χ(2) + 1),

and suppose |φ(x)| ̂  εΌem(M + 1)2(/ι(x) + 1).
Since (H^φ^xJ = λφ(xί)9 we get

\φ(y)\ £\φ(χ)\ + \φ(χ2)\ + l«Φc
^ ε'0e

w(M+ 1)2(/z(x) + 1) + (

^ s'0e
m(n+ 1)2(h(x) + 2) + ε

for all n if m is chosen sufficiently large.
The proof of (i) now follows by induction on x starting from x.
To prove (ii), let x,^,x1,x2,x3 be as above. We take as induction step

I φ(x) I > sf

0e
m(n + 1)2 - Cε'0h(x)(h(x)

Again, since (H^ψ^x^) = λφ(xl) we get

\φ(y)\ > ε'Qe««n+v2 - ε'QCe™2 {h(x)(h(x) + 1) + (h(x) + 1)}

= ε'0e
m(n+ 1)2 - ε'0 Cemn\h(x) + I)2 ̂  ε'0e

m(n+ 1)2 - ε'0Cemn2h(y)(h(y) + 1).

This proves the induction step. To complete the proof it remains to show that for any
xe50, we have

^em(n + 1)2 _ g^c^) + i)h(x)emn2 > ε'0.

This is true if

for all n. This can be satisfied if we choose m large enough.
This proves the lemma.
We now have all the ingredients to estimate the right-hand side of (6.2) when

v = 2. The main idea is the following: for all potentials in the set described in the
right-hand side of (6.2) the eigenfunction φ satisfies the assumptions of Lemma 4.3
for all "nice" blocks Mf in Γ and therefore is smaller than ε0C

ί = ε'0 in βf°. From
Lemma 6.4 it follows that \φ(x)\ ^ εf

Qemn\n + ί/2 + 1) for all xeβ" or we can find an
n0 such that on one of the diagonal sides of β"°, \φ(x)\ ^εr

0. This in turn implies that
this particular side of β"° contains only "bad" sites. But for each "nice" block only
the latter possibility can occur since

joe#*\Wυ2-<f(κ\logε\V2 - t + t/2 + 1) ̂  ε0C^mίc2ίlogε|(κ:|logε|1/2) g εj/2 ^ |φ(x0)|

for all k = k(m) > 0 sufficiently small, independent of /, and / sufficiently large
(recall ε = εz->0 as /-> oo); how large, of course, depending on our choice of ί.

We have thus proved the following lemma.
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Lemma 6.5. There exist κ> 0 such that for all "nice" block M\ in Γ, with Γ of length
2[/c|logε|1 / 2 + 1], we can find n^ [τc|logε|1/2] such that on one diagonal side of Qn

t

jj
the random variables ζx are all equal to 1,/or all I ̂  I0for some 10. K is independent oft,
but /o may depend on t.

For each nice block M{ in Γ we will denote by D; the side of β"J where ξx = 1 for
all xeDj (if there are several we just choose one).

N

Lemma 6.6. Let N be the number of "nice" blocks in Γ. Then the set (J Dt contains
_ ί = ι

K^N disjoint segments D} at 45° with Γ such that:
(i) One of the ends ofDj coincides with the upper or lower vertex of one Qfy and the

other end lies at a distance 1 from Γ.
(ii) Let \Dj\ be the number of lattice sites on Dj. Then

\Dj\^t/2 and £ |/J,|£JVί/2.
7=1

N N N

Proof. Clearly (J β^ iD (J M{. Let (δ"Jj.}f=ι be a minimal covering of \J M{ by
j = l ' j = l _ j = l

the Q"JjS (i.e., K is minimal) and let Dt be that part of the "bad" side of β"-̂  which lies
at a distance 1 from JΓ. We claim that the Dt are disjoint and satisfy (i) and (ii). Indeed,
(i) and (ii) hold by construction. To show that Dt nDk = φiϊi^k\VQ observe that by
Lemma 6.4, if the "bad" sides of β"̂  and β"-̂  intersect each other, then either they
meet at a vertex on 7" or they lie on the same line. Therefore by construction the
corresponding Dh Dk do not cross each other and cannot lie on the same line since
this would contradict the minimality of the family {β"Jj.}f=1.

This proves the lemma.
Let ΩXQ denote the event described in Lemma 6.2. We now estimate its

probability.

Lemma 6.7. Let 0 < p0 £Ξ p ̂  1. Then there exists ί0 = ί0(Po) sucn tnat for t^t0we
have

where 0 < d(p0, /?, ί) -> oo as p -+ 1.

Proof. Clearly

where S is an arbitrary subset of the set of blocks M{ in Γ and Ωs = [S is the set of
"nice" blocks in Γ}. We denote by |S| the number of blocks in S. Thus

+ Σ P(ΩXonΩs). (6.4)

S;|S,>Γ lp

2ί

[κ|lOgε|1/2]

The first term can be estimated by

P{number of nice blocks in Γ^ί"Vΐ^
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for large / by standard large deviation estimates on the binomial distribution since
the expected number of blocks in Γ is equal to Γ1p2t2[κ:|logεllί2]. Here c2 >0 is
some constant independent of our parameters.

To estimate the second term in (6.4) we first observe that once the set S of "nice"
blocks in Γ is specified then the event ΩXQ no longer depends on the random
variables in Γ\S. Thus we can estimate the second term in (6.4) by

Is! v*

Σ W Σ Σ Σ 4*(i-p)^";
Xjisi£^&epoint

of a block in S

ISI
l Σ (IfW Σ (i - pϊ'2}k

p=1 t'^t/2

^ ( 1 _ p y - w i o g e i ] < / 8 (66)

if 0 - Po)'/80 + 4[1 - (1 - p0)
1/2] ~ *) ̂  1, which is always true for t ̂  ί0 = ί0(fc) for

some t0.
The Lemma now follows from (6.4), (6.5) and (6.6).
In order to complete the estimate of the right-hand side of (6.2) we observe that if

x^eBl is such that \φ(xj\ = max |<p(*)l, then \φ(xj\ ^(2/+ l)~v/2 Thus by the

argument in Lemma 6.3 we can choose a direction along a coordinate axis such that
for each

C being the constant in Lemma 6.3, we can find x0

 such that

n^\x2

0-xi\^n+l and \φ(x0)\ >εl

0

12.

We can thus find

sites Xj such that | xf - x2 1 ̂  2[κ | log ε | 1/2] and | φ(xj) \ > εj/2 for j = 1, . . . , N.
Thus we can estimate (we have to be careful here on how close the Xj are to the

edges of BL) the right-hand side of (6.2) by

Xi,...,xneBιJ=ί

< (21 4- l)vΛΓg-N^0'P.ί)|logfi!1/2 < e-d'(PQ,p,t)\\ogε\ — £d'(Po,p,t)

where d' has the same properties as d, in case (2l+l)v^ε~θ for some θ > 0.
This proves the theorem for v = 2.
If v ̂  3, let again x^ be a site where φ attains its maximum. Using the argument

of Lemma 6. 3 it is easy to see that if | φ(x) \^εl9 then for any coordinate direction, say
the 7-th, there exists y such that \y-x\^2,y(j)>x(j) and \φ(y)\ ^ε^"1, where

as in Lemma 6.3. Since \φ(xj\ ;>(2/+l)v/2, we can find a
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path y c Bl made out of points at a distance one or two of the adjacent ones, and of
length

such that \φ(x)\ ^ 2ε0 for all xey. For potentials v in the set described by (6.2), this
implies that ξx = 1 for all xeγ. Using standard percolation arguments we get that

P{there exists y = (x l 5 x2, . . . JeB,, | X j - xί+ 1 1 ̂  2,

|y | > (log Cv)~ * I log 2s0(2/ + l)v/2|; such that ξXi = 1 for all /} ̂

where d^p)-* oo as p-> 1, which is

for some other constant d > 0, independent of p.
This finishes the proof of Theorem 4.3.

1. Some Remarks on the Anderson Model on the Cayley Tree

We would now like to conclude with a discussion of the estimate (II) for the
Anderson model on the Cayley tree. This model was first considered by Abou-
Chacra, Anderson and Thouless [27]; Kunz and Souillard have announced rigorous
results for the case when μ has a smooth density [28]. Here we want to show that in
the case when μ is a Bernoulli measure the estimate (II) does not hold.

We will take the coordination number of our tree T, namely the number of
branches out of any vertex, to be three. If xε T, we define Tk(x) as the finite subtree of
T obtained by exactly k bifurcations in two directions starting from x. The root of
Tfc(x), say τ(x), will be the nearest neighbour of x not in Tk(x). The endpoints of Tk(x)
different from x will be denoted by xf°, i = 1, 2, . . . , 2k.

Let Tt = Tfe(x;), ί = 1, 2, be disjoint and such -φq) = τ(x2), and let vτt = {ΦOjxeTv
f = l , 2 . We will say that vTί = vT2 if by superimposing T2 with 7\ keeping
φcj) = τ(χ2) the values of v in T2 and Tί coincide.

Lemma 7.1. Let Tt = Tfc(xf), ί = 1, 2, be as above, and let vTί = vT2, τ = φcj = τ(x2).
Then any eigenvalue E for HTl = -A +vTl on l^TJ is also an eigenvalue for
- Δ + v on 12(T1 u T2 u Γ0 u τ), if v\Tt = vτ., i = 1, 2 where T0 is any subtree such that

(i) T^Tv = T^T2 = φ

(ii) the root of T0 is τ.

Proof. Let J:7\ -» T2 be the map that associates to xe7\ the site J(x)eT2 which
coincides with x when we superimpose 7\ on T2 keeping τ fixed. Let Eeσ(HTl) and
let φ be a corresponding normalized eigenfunction. Define φel2(Tί u T2 u T0 u τ) by

if

ψ(x)=-φ(J-l(x)) if

= 0 elsewhere.

It is easy to check that ( - Δ + v)ψ = Eψ in 7\ u Γ2 u T0 uτ, and hence £ is an
eigenvalue of — Δ +v on / 2 (T 1 uΓ 2 uT 0 uτ) if t;|Γ. = vτ., i = 1,2.
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This proves the lemma.
Now let us fix

where 0 < p< 1, beR, and let us fix sites xl9 x2 as above and a positive integer k. We

let T1 = TJ^XI) be fixed and let vTl be a possible potential configuration in 7\,
namely, vTl(x)e{Q,b} for all xeT1. Clearly

P{vTι = ϋTί} = pU**nM-°>i(l - p)K*W*>-*>ι (7.1)

By fn we will denote a tree of the form fn = Tn(x1)vTn(x2)9 where TJίxJ and

Tn(x2) are disjoint and rίxj = x2»
T(*2) = *ι

Our result is

Theorem 7.2. Lei £ fee an eigenvalue of — Δ +vTl on /2(Γ1). Γ/zeπ /or any n large

enough we have

In particular, (II) does not hold for the Cayley tree.

Proof. Using Lemma 7.1 we get

P{Eεσ(Hfn)}^P{vTk(xΓk(Xj)) = vTί and
ϋrk(*?= ί(*/)) = ^rι for some 7=1,2 and ie{l,...,n- 1}},

where the Tk(x"~k(Xj)) are chosen in such a way that their endpoints are a subset of
the endpoints of TJ(Xj)9 7 = 1,2.

From (7.2) and (7.1) we get

P{Eeσ(H f)} = [pK'^iW-°}i(i - pp^w-*}!]*.

This proves the theorem.

Lemma 7.1 can also be used to discuss the quantum percolation on the Cayley
tree. This model has as Hamiltonian the discrete Laplacian on the random subset of

T determined by the set of open bounds in the standard bond percolation problem
on the tree with

P{a given bond is open} = p
and

P{a given bond is closed} = 1 - p.

Using Lemma 7.1 we can show that there exists a nonrandom countable dense
subset of σ(H) which is with probability one contained in the pure point spectrum of
H. However, this does not exclude the possibility of continuous spectrum.
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Note added in proof. Since the completion of this work, F. Martinelli and L. Micheli have proven that,
under the hypothesis of Theorem 2.2, lim inf {yb(E); £e[- 2,2]} = oo. If this fact is used in the proof of

b-»oo

Theorem 2.2, it follows that the integrated density of states is actually purely singular continuous for b
large enough.




