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Abstract. Using recently derived explicit formulae for the 2- and 3-cochains in
SU(2) gauge theory, we are able to integrate the Chern-Simons density
analytically. We arrive - in SU(2) - at a local algebraic expression for the
topological charge, which is the sum of local winding numbers associated with
the corners (lattice points) of the cells covering the manifold plus contributions
from possible isolated gauge singularities which manifest themselves as
"vortices" in the 1-, 2- or 3-cochains. Among others we consider hypercubic
geometry - i.e. covering the manifold by hypercubes - which is of particular
interest to lattice Monte Carlo applications. Finally, we extend our results to
SU(3) gauge theory.

I. Introduction

Differentiable SU(iV) gauge fields on a compact 4-manifold M carry a topological
charge [1] ,

Q = ~ Ύh? L d*X£μvρσTrCFΛ]' ( 1 )

where

Λv-]. (2)

The charge Q is a measure for topologically non-trivial properties of the gauge
fields, which have been argued to play an important role in the physics of the
vacuum of QCD and SU(iV) gauge theories.

Preliminary results of calculations of Q in SU(2) gauge theory on the lattice
[2, 3] hold out hope for a quantitative resolution of the U(l) problem [4]. The
recent finding [5] that the vacuum of the quantized (pure) SU(2) gauge theory
possesses an underlying instanton structure brings us furthermore in touch with
semi-classical ideas of the QCD vacuum [6] and a possible mechanism for chiral
symmetry breaking [7], which could be the beginning of a better understanding of
the non-perturbative phenomena of these theories.
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So far these investigations have been limited to smaller lattices and hence to
smaller values of β. The difficulty involved is that a meaningful transcription of the
topological charge (1), as it stands, onto the (periodic) lattice [8] is mathematically
voluminous and very time consuming to compute, since the transition functions
and their derivatives must be constructed everywhere on the boundary of each
hypercube.

We realize, that the 4-dimensional integral in Eq. (1) can be performed
analytically with the help of the cochain reduction given in [9]. The outcome is a
local algebraic expression for the topological charge (1) in the continuum, which is
relatively easy to implement on the lattice and fast to compute. The derivation of
this result, which we believe is also of interest beyond the scope of lattice gauge
theory applications as it allows a simple geometrical interpretation of topology,
will be given in the present paper.

The paper is organized as follows. Sections II and III deal with the continuum:
in Sect. II we do the integral for SU(2) gauge fields covering the 4-manifold M by a
"generic" set of cells, while in Sect. Ill we take M to be the 4-torus and cover it by
hypercubes. In Sect. IV we briefly outline what it involves to evaluate the new
expression for Q on the lattice. In Sect. V we extend our results to gauge group
SU(3). We finish with some concluding remarks in Sect. VI.

II. Continuum SU(2) Gauge Fields and Generic Geometry

The derivation in this section will follow the cochain reduction of the Chern-
Simons density given in [9].

We cover the compact manifold M by a set of cells ci9 i.e.

M = {Jci9 (3)
i

with

(4)

The cells are chosen such that 5 — n cells overlap in a (possibly empty)
^-dimensional intersection. This we refer to as generic geometry. The topological
charge (1) can then be written

Q= - ^ Σ ί Λ β μ v ρ < 7 T r [ F ^ J , (5)

where the index i on the fields refers to the gauge in the cell ct. In each cell we may
gauge transform the gauge fields into a complete axial gauge by

^ Γ ^ ' + ^ k (6)
Making use of the fact that the Chern-Pontryagin density is a total divergence, i.e.

p

with

lσ)], (8)
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we obtain

Q=Σ$d3σμΩ£Xi)=±-Σ ί d*σμ{Ωf\ϊ)-Ωf(j)), (9)
i dcτ £1 i,j cιCΛCj

where c^ncy has the orientation of dct.
We introduce transition functions relating the gauges ίj in the cells ci9 Cj on

CinCj by

Comparing this with Eq. (6) one finds (on ctnCj)

Vij=gllgy (11)

We recognize now that the integrand on the right-hand side of Eq. (9) is the
coboundary operation

Ωf\ί) -Ω<μ%) = AΩμ°Xi,j) = dvΩμ\\i,j), (12)

which is again a total divergence. This excludes singular points in the interior of
ctncp i.e.

xeiCinc^diCiΠCj), (13)

at which

v^ = exp z'ατ = cos a + i sin αeατ, α e [0, π] (14)

becomes — 1 , i.e. α = π, where [9]

) = ~ g^2 (α ~ s i n α c o s Φμv^eα (Sρea x δσeα)

- 8^2 εμvρσ Tr[S^yi J x ^ ] (15)

has a "vortex"

1
« "μvρσeα (d ρeαxδ σeα). (16)

Applying Gauss' theorem, Eq. (9) then reduces to

with

and

4 Σ ί d2σμyίW(i,j)
l\ ί,jΰ(c,ncj)

^ Σ ί d\lΩμ\Xi,j)-Ωμ\\i,k) + Ωμ\Uk)-] (18)

Σ ί V̂ is^Λ fexW, (19)
cincj)\e{cincj) Si(x) O%
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where S2(x) is a sphere of radius ε around x and where CinCjnck and S2(x) have the
orientation of d{cιΓ\c^.

The integral in Eq. (19) gives

ί ^ 2 σ μ v ^ - ^ v ρ σ e α ( δ ρ e α x δ σ e α ) - n ( 1 ) ( x ; ϊ j ) 5 (20)

where rc(1) is the S2 winding number associated with the singularity at x. In the
vicinity of x we can write

dxaτβ+ . . . , (21)

which for detMφO results in

n u>( x ; ij) = sign(detM) = + 1 . (22)

In total we then obtain

Q ( 1 ) = Σ " ( 1 ) ( χ ; U ) , (23)

where the sum is over all singular points x, i.e.

U n c J ) } . (24)

From Eq. (11) we derive the cocycle condition

which, writing

Vij = exp (ΐατ), t?^ = exp (iβτ), t;ik = exp (iγτ), (26)

defines a spherical triangle as has been shown in [9]. The integrand on the right-
hand side of Eq. (18) is the coboundary operation

(z,7, k), (27)

which again is a total divergence. This excludes singular points

x G (CinCjnCj^diCinCjΓ^Ck), (28)

at which

- γ ) e y = - 2 π 5 (29)

i.e. where the spherical triangle defined by the transition functions (26) degenerates
to a circle, where [9]

fc)

• {(α + β - γ) (sinαej [_dσ {smβeβ)

+ (α + β - γ) (sin βeβ) [5σ(sin7er)

• (sinαeα)-(sinyey) δσ(sinαeα)]

+ (α + β - γ) (sin yeγ) [δσ(sin αeα)

• (sinjSe^) - (sinαej 3σ(sin^e^)]} (30)
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has a "vortex"

_ _ L (« + p-γ) (gσSxS)^ 1 ett-foδxδ)
4 π 2 W S 2 2π μ v ρ σ (52

(31)
S = cosα sinyS sinye^ x ey + cosβ siny sinαey x eα

+ cosy sinα sin/?eα x e^, δ = eα —e^.

The vector S defines the orientation of the great sphere (in group space) spanned by
the transition functions (26) and winds around by 2π as one runs round the
singularity.

Applying Gauss' theorem, Eq. (18) then reduces to

βα> = ρ<2) + ρ α ) ( 3 2 )

with

ζ&2)=γ,Σ f dσμvβΩfX(i,j,k)
Jl i,j,k d(ancjnck)

4 Σ ί dσμvβlΩ$β(i,j, k) - Ωffβj, I)
T" i,j,k cιr\cJnckΓλCι

& & M ] (33)

and

0(2)_iy y f d(J * eα ( ^ δ x δ ) G 4 )

3 ! ij,k xs(cιncJnck)\d(cιncJnck) 5|(Λ) ^7Γ ()

where Sg(x) is a circle of radius ε around x, and where cincjnckncι and Sg(x) have
the orientation of d^^CjCsc^.

One realizes that the integral in Eq. (34) gives

sLdσμve έ w eα'(^δxδ) = n<2)(x; ' λ f c ) ' (3 5)

where n(2) is the S1 winding number associated with the singularity x which
assumes the values

n<2\x;i9j9k)=±ί (36)

depending on whether S, δ wind around in the positive or negative sense. We then
obtain

Q{2)=Σn{2\x;iJΛ) (37)

with

Λ^ = U {x e (c.ncjnc^d^ncjnc,)} . (38)

Expression (33) brings together 4 spherical triangles, which build a spherical
tetrahedron as illustrated in [9].

The descent continues:

$β(i,j, k) - Ωfv\(i, j , 0 + Ω&(i, , 0 - Ω^g(j, k, I)

= AΩfv[(i, j , K 0 = dtfXίUU K 0 • (39)
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In [9] we have shown that

Ω$ρσ(U U k ^ = ^ W ^ ( U , K ΐ), (40)

where V(i,j,k,ΐ) is the volume of the spherical tetrahedron defined by the
transition functions relating the gauges ij, k, I. We realize that V(iJ9 k, ΐ) has a
discontinuity at points

x e (cinCjn^nc^XdicinCjnCknc^, (41)

where the spherical tetrahedron degenerates to a sphere. Applying Gauss' theorem
we then obtain two contributions to Eq. (33):

e i 2 ) = β ( 3 ) + δ i 3 ) . (42)

The first contribution gives

β ( 3 )=Σ« ( 3 )(*;» J , M (43)
Λ(3)

with

Λ(3)= U {xe(cincjnckncι)\d(cincjnckncι)}, (44)
Uj,k,l

where rc(3) accounts for the change of the orientation of the spherical tetrahedron at
the point x, i.e.

ni2>)(x i, j , k,I) = ̂  ε μ v β ^ v(hj, K = ± 1 . (45)

For the second contribution we obtain

0 ( 3 ) _ 1 V 1

o 2 v s . / ' I V ' v

= \\ Σ σ - ^ [F(i, j , k,l)- V(iJ, k, m)

+ V(i, j , I, m) - V(i, k, I, m) + V(j, k, I, m)] , (46)

where σ= ±1 is a sign factor, which denotes the orientation of j
The intersection of 5 4-dimensional cells defines a point which naturally leads

to the notation of the "lattice":

Λ= U CiΓΛCjΓΛ^nc^^. (47)
i,j,k,l,m

Thus we can rewrite Eq. (46) in the form

Xlm) (48)
Λ

with

n(i, j , k, l,m)=~ [V(i, j , k,l)- V(iJ, k, m) + V(i,j, I, m)

(49)
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(b)

Fig. 1. The 5 spherical tetrahedra covering S3. A1 is the angle between the spherical triangles
(ij, k) and (i, j , ΐ), A2 is the angle between the spherical triangles (ij, k) and (ij, m) and Λ3 is the
angle between the spherical triangles (ij, m) and (i,j, ΐ)

Note that the 1/5! factor in Eq. (46) has disappeared because of the implicit
summation over all permutations of cells. As we have discussed in [9], n combines
5 spherical tetrahedra, which wind around S3, the group space of SU(2). Since the
volume of S3 is 2π2 and the 5 spherical tetrahedra together are compact and so
cover S3 (but at most once), we find

n = 0, ± 1 . (50)

The calculation of n(ij, fc, /, m) proceeds as follows. We take the transition
functions vip vjk,... and determine the angles between adjacent spherical triangles
intersecting along a "hinge" of the spherical tetrahedra (cf. [9]). In Fig. la we have
illustrated this for a particular "hinge" with which are associated 3 angles, Au A2,
and A3, belonging to 3 different spherical tetrahedra. For geometrical reasons

(51)
Zπ

a special example of which is given in Fig. lb. If one of the lOp's is zero, then
evidently n = 0. If all p's are +1, then n = +1, and if all p's are — 1, we will have
n = - l .

Collecting our results now, we obtain for the topological charge

(52)

which is the sum of local winding numbers and, consequently, assumes integer
values. Expression (52) is gauge invariant by construction. It furthermore has a
simple, geometrical interpretation.
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In the continuum we can arrange that neither vitj= —1 in ^ ,
(α~bβ-γ)eα = 2π in (CincjncjjφicinCjncj,) nor AV(i,j,k, l)\x= ±2π2 at
x e (cinCjn^nc^dicinCjn^nCi), in which case the topological charge takes the
simple form

Q = Σn(ίJ9k9l9m). (53)
Λ

For a further discussion see Sect. IV.

III. Hypercubic Geometry

So far we have considered a generic geometry of cells covering M. Now we come to
the case of a hypercubic geometry, which is of special interest to lattice gauge
theory calculations, and where M is the 4-torus Γ 4 .

The "lattice" is now defined by

Λ = {seM\sμeZ, μ = 0,ί,293}. (54)

The cells covering M are the hypercubes (of length 1),

M=UΦ) (55)
seΛ

with

φ) = {yeM\sμ£yμ£sμ + ί}. (56)

The topological charge (1) can then be written

Q=Σ J d*xP, (57)
seΛ c(s)

where P is the Chern-Pontryagin density given in Eq. (7). Using

P = dβΩl°\s), (58)

we can perform one integration as before and obtain

δ = Σ Σ ί dχiΩfXs)-Ωf\S-μ)l, (59)
seΛ μ f(s,μ)

where f(s, μ) are the faces

f(s,μ) = φ)nc(s-μ), (60)

which have the orientation of dc(s), and μ is the unit vector in the //-direction.
Following the discussion in the previous section we can write

Q(O)(S) - β(0)(s _ β) = AΩ(0){Sί s_β) = δ v β U ) ( s > s _ β) ( 6 1 )

except for a set of singular points xef(s9μ)\df(s,μ). As before the topological
charge receives contributions from two terms, Q = Q(<1) + Q£\ where now

Gi1} = Σ Σ ί d\vld$(s9 s-μ)~ O$(s - v, s - μ - v)] (62)
seΛ μ, v p(s,μ, v)
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with

p(s, μ, v) = c(s)nc(s — μ)nc(s — v) (63)

being a plaquette, which was the orientation of df(s,μ). The contribution g(1),
which is independent of the particular geometry, is precisely the same as in the
previous case,

β<1>=Σw ( 1 )(x;s,5-μ), (64)

where the sum is over all singular points

Λ™ = [){xef(s,μ)\df(s9μ)}. (65)
s,μ

Noticing that [cf. Eq. (15)]

Ω$(s, s - μ - v) = - Ω^(s, s-μ-v),
(DO)

i)

Qψ can be rewritten

seΛ μ,v p(s,μ, v)

= Σ Σ ί d2σμyΔΩ$(s,s-μ,s-μ-V)
seΛ μ,\ p(s,μ, v)

= Σ Σ Σ d2σμvdfl$β(s, s-μ,s-μ-v), (67)
seΛ μ,v p{s,μ,v)

which gives as before β ^ ^ β ^ + β^, where

Qf]=Σ Σ ί dσμVQlΩ$β(s,s-μ,s-μ-v)
seΛ μ,v,ρ l(s,μ,v,ρ)

-Ωμ

2Jβ(s-ρ,s-μ-ρ,s-μ-v-ρ)-\ (68)

with

/(s, μ, v, ρ) = c(s)nc(s — μ)nc(s — v)nc(s — ρ) (69)

being a link, which has the orientation of dp(s, μ, v). The contribution Qi2) has the
form

β(2)= Σ n ( 2 ) (x;5, S -μ,s-μ-v), (70)

where

yl(2) = U {x e p(s, μ, v)\3p(s, μ, v)} . (71)
s,μ, v

Making use of the fact that [9]

(72)
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Eq. (68) can be written

Σ Σ ί dσμvβ
seΛ μ,v,ρ l(s,μ,v,ρ)

+ ΩfJρ(s,s-μ-v,s-μ-v-ρ)-Ωfv

)

ρ(s-μ,s-μ-v,s-μ-v-ρ)']

= Σ Σ ί dσμveΔΩ($Q(s9s-μ9s-μ-v9s-μ-v-ρ)
seΛ μ,v,ρ l(s,μ, v,ρ)

= Σ Σ ί dσμvQdσΩ$βσ(s, s - μ , s - μ - v , s - μ - v - ρ ) . (73)
seΛ. μ,v,ρ /(s,μ,v,ρ)

This gives, as before, Q{

Σ

2) = Q{3) + Qf\ where

with

= U {xeI(s,μ,v,βP(s,/ί,v,β)}. (75)
s,μ,v,ρ

For β^3) we obtain, together with Eq. (40),

QΣ3)=Σ Σ εμvQσ~-2lV(s,s-μ9s-μ-v,s-μ-v-ρ)
seΛ μ, v ,ρ ,σ -^71

— V(s — σ,s — μ — σ,5 — μ — v — σ, s — μ — v — ρ — σ ) ] , (76)

where K(s, s — μ>s — μ — v,s — μ — v — ρ)9... are the volumes of the spherical tetra-
hedra defined by the transition functions vStS-β9....

Again, making use of the symmetry/antisymmetry properties of εμvρσ, Eq. (76)
can be written

β^3)=Σ Σ εμλ>ρσ--ϊlV(s,s-μ,s-μ-v,s-μ-v-ρ)

seΛ μ, v,ρ,σ ^71

— V(s9 s — μ,s — μ — v,s — μ — v — ρ — σ)

+ V(s, s — μ,s — μ — v — ρ,s — μ — v — ρ — σ)

+ F(s-/i,s-μ-v,s-μ-v-ρ,s-μ-v-ρ-σ)], (77)

so that finally we obtain

Qi3)=Σ Σ n(s9s-μ9s-μ-v9s-μ-v-ρ9s-μ-v-ρ-σ)9 (78)
seΛ μ,v,ρ,σ

where n is the winding number associated with the 5 spherical tetrahedra covering
S3 as introduced before with values 0, +1.

In total, the topological charge then reads

Q= Σ Σ n(s9s-μ9s-μ-v9s-μ-v-ρ9s-μ-v-ρ-σ)
seΛ μ,v,ρ,σ

+ Σ n{ί)(x;s,s-μ)+ Σ n(2)(x;5,s-μ,s-μ-v)
AM Λ^

+ Σ n(3)(x;s,s-μ,s-μ-v,s-μ-v-ρ). (79)
(3)
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Again, it can be arranged that

Q=Σ Σ n(s,s-μ,s-μ-v,s-fi-v-ρ,s-μ-v-ρ-σ). (80)
SGΛ μ,v,Q,σ

The virtue of this construction of the topological charge Q is that it can easily
be adopted to any geometry of cells.

IV. Lattice Gauge Fields

In Sects. II and III we have assumed that the gauge fields are known in the
continuum (of M). This is no longer true if the theory is regularized by formulating
it on a discrete lattice of points in space-time - usually a hypercubic lattice, which
we shall identify with A [Eq. (54)]. In this case the transition functions #s s_£ are a
priori only given at the corners of the faces /(s, μ), i.e. the lattice points.

For the computation of Qψ this is all that is required. For the computation of
β ( 1 ), β(2)> and β ( 3 ) we need - if no further provisions are made - to know whether
AΩ^\s,s-μ% AΩiWs.s-μ.s-μ-vX and AΩ$ρ(s,s-μ,s-μ-v,s-μ-v-ρ)
are singular in /(s, μ)\3/(s, μ), p(s, μ, v)\dp(s, μ, v), and /(s, μ, v, ρ)\δ/(s, μ, v, ρ),
respectively. The exact positions of the singularities (xeΛ{1\ Λ{2\ and Λ{3\
respectively) are, however, not necessary to know. This requires (only) an
interpolation of uSfS_A throughout the plaquettes p(s, μ, v) and, possibly, to a single
(but arbitrary) point in the interior of f(s,μ). A potential interpolation (which
satisfies the cocycle condition and maintains gauge invariance) has been given in
the literature [8].

In the "continuum region," where the lattice spacing (which we have set to 1)
becomes small in physical units and the gauge fields contributing to the functional
integral have a small (lattice) action density,

Tr[l-l/(δp)]<ε (81)

[U(dp): parallel transporter around the plaquette p], the computation of β = Qψ
+ β ( 1 ) + β ( 2 ) + β ( 3 ) simplifies greatly. Using Lύscher's interpolation [8] of the
transition functions, one derives the following (sufficient) conditions under which
AΩf\s,s-μ), AΩ{μV

](s,s-μ,s-μ-v), and AΩffle(s9s-μ,s — μ-v,s — μ-v — ρ)
have no gauge singularities (assuming 14arccos(l —^ε)^π):

+ 6 arc cos (1 - \s) ̂  2π, (82)

( ^ ) ^

for μ, v, ρ e {2,3,4} (for μ, v or ρ = 1 the fields that give rise to gauge singularities are
of measure zero in the functional integral), where d(u, v) is the metric of SU(2) = S3,
i.e.

iTrw). (83)
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This means that for small ε it is possible to gauge transform the transition functions
- if necessary - such that the bounds (82) are satisfied. The computation of Q then
reduces to the computation of Qψ, and the charge can be viewed as the sum over
local SU(2) winding numbers.

For gauge field configurations with larger action density it is also not necessary
to compute all of the Q's. One finds that it is always possible to (explicitly) gauge
transform the transition functions such that Q^3) = β ( 2 ) = β ( 1 ) = 0. This then
reduces the problem to determine whether vss_fι= - 1 in f(s9μ)\df(s9μ), which
can be done on purely geometrical grounds.

It is not the purpose of the present paper to go into further details of the
numerical evaluation of Q on the lattice. This will be the subject of a forthcoming
publication, where we will also present results of a Monte Carlo calculation of
<Q2> on large lattices.

V. SU(3)

It is not trivial to extend the results of Sects. II and III to the physically more
interesting case of gauge group SU(3). Therefore one is led to ask the question: can
we reduce the problem of computing the topological charge for SU(3) gauge fields
to the case of SU(2) [10]?

In the continuum this is possible by means of the so-called reduction of the
structure group [11]. This means the following. A fibre bundle, which has structure
group G and is therefore in general given by G-valued transition functions, may
under certain circumstances be described by transition functions with values in a
subgroup of G. By means of the theorems proved in [11] it is easily shown that the
structure group of any SU(3) bundle over T4 can be reduced to SU(2).

The explicit construction makes use of the fact that SU(3)/SU(2) is equivalent
to S5. Actually, SU(3) is a SU(2) principal bundle over S5 (cf. [12] for the
analogous considerations in case of the unitary groups). The projection

SU(3)->SU(3)/SU(2)^S5 (84)

simply maps a SU(3) matrix onto its first column. Here and in the following we

describe points of S5 by a triplet of complex numbers,

As S5 minus one point is a contractible space, SU(3) minus the fibre over the
removed point is a trivial SU(2) bundle. For example, any u ε SU(3) with u11Φ - 1
may be decomposed as /1 Π 0 \

u = ω(ull9u2Uu3Aθ α - H , (86)

where |α|2 + |/?|2 = l and

- 1+0
a

ω(α, b, c) =
be*

\C 1+α

' " 1 + α*
(87)



Topological Charge 479

for \a\2 + \b\2 + \c\2 = 1, a φ - 1 . The first factor in (86) represents a point of the base
space S5 in SU(3) while the second one describes the fibre SU(2).

Now the reduction procedure as given in [11] goes as follows. Let 0> be an
SU(3) bundle over T 4 specified by transition functions (we shall restrict ourselves
here to hypercubic geometry)

yef(s,μ) (88)

analogous to the case of SU(2). We first construct a section of the bundle i
which has T 4 as base space and S5 as fibre. Such a section is described by smooth
functions

z s :φ)->S 5 (89)
satisfying

zs(y)=vs,s- μ(y)zs - μ(y) (90)

for ye/(s, μ). The fact that ^/SU(2) admits a section follows from

If zs is not surjective - this condition is generically fulfilled - we can find a
smooth map

ί s:φ)-+SU(3) (92)

such that the first column of zs(y) coincides with zs{y) for all y e φ ) :

/1\
)=Φ) (93)

\ 0 /

For example, if zs(y) Φ ( — 1,0,0) for all y e c(s) we can define

(94)

(95)

Consequently, if we use the functions zs to gauge transform the vStS-fi, we arrive at
transition functions with values in SU(2):

0

(96)

For yef(s,μ), we have

As the topological charge is invariant under gauge transformations like (96), it can
be computed from the SU(2)-valued transition functions vStS_β(y).

To carry out the reduction explicitly we need to know zjj). In the continuum,
where the SU (3)-valued transition functions ϋs^β are explicitly given in the form

vs,s-ίi(y)=gs(yy19s-ll(y) (97)
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[cf. Eq. (11)] for all yef(s9μ)9 we may take

Φ) = 9s(y)~1 0 , (98)

which, as is easily seen, satisfies Eq. (90) (and, as a result of (91), can be extended to
c(s)). On the lattice we follow [8] and construct transition functions at the corners
of f(s, μ) with help of the standard parallel transporters ws:

vs,s-β(y)=nyW~β(yy1 (99)

To extend the £s>s_/s to the whole of f(s9 μ) we may take Lύscher's interpolation
[8] (which is trivial to extend to the case of gauge group SU(3)). It has been shown
in [13] that this can be written for all yef(s,μ) in the form (99). The explicit
expressions for the parallel transporters ws(y), yedc(s) are also given in this
reference. We then may define

l (100)

which satisfies Eq. (90) and provides us with SU(2)-valued transition functions
vs,s-β(y) for all yef(s>μ).

V. Conclusions

We have integrated the Chern-Pontryagin density completely and obtained a
closed expression for the topological charge Q - which requires one to know the
gauge singularities of AQ(£\ AΩ$9 and AΩ$6 though. This result applies as well for
gauge group SU(3), whose transition functions can be gauge transformed into
transition functions with values in SU(2). The practical use of the expression is that
it allows us to calculate Q, in the continuum and on the lattice, without resort to
numerical integration.

We have seen that Eq. (79) leaves considerable room for the practical
evaluation of Q on the lattice - including the choice of an interpolation of the
transition functions. The by far fastest procedure is the first method described in
Sect. IV, in which it is sufficient to compute Qγ\ This will be applicable in the
"continuum region" only. But notice that alone in the "continuum region" a lattice
gauge field configuration can be assigned a unique topological charge [8],

While we were preparing this paper we received a preprint by Phillips and
Stone [14], who also were able to compute the topological charge of SU(2) gauge
fields by analytical means. The amount of algebra to do in their algorithm is similar
to that of the second method sketched in Sect. IV, where one has to compute Q(1)

only. It will be interesting to compare their charge with, e.g., Lύscher's
interpolation of the transition functions on individual gauge field configurations at
various values of the coupling constant to test for uniqueness of the results.
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