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Abstract It is shown how, in the frame of the Cartan-conception of spinors, the
old theorems on minimal surfaces, as generated from null-curves, formulated by
Enneper-Weierstrass (1864-1866) for 3-dimensional ordinary space, and by
Eisenhart (1911) for 4-dimensional space-time, may be reformulated in terms of
complex 2- and 4-component projective spinors respectively. For the corre-
sponding real (Majorana) spinors instead the same procedure naturally leads
to strings in 3-dimensional and 4-dimensional space-time (R 2 ' x and R 3 ' *). It is
suggested that this close connection with Cartan-spinors, and the correspond-
ing (projective) null-geometry, may be the clue for understanding the
fundamental nature of strings.

1. Introduction

For more than a century [1], mathematicians have known the fundamental,
elementary character of null vectors and null lines and, in particular, of their
property to generate minimal surfaces. These played subsequently a central role in
several later developments of mathematics, geometry and, especially, of those
fundamental branches of physics which are based on classical and quantum field
theories.

E. Cartan discovered spinors in 1913 [2] in searching for new representations
of rotation groups. However, from his subsequent work [3], it clearly appears how
he was especially struck by the equivalence of what he named "simple spinors"
with null or isotropic vectors and totally null planes. A two-component spinor, in
his words: "est done en quelque sort un vecteur isotrope oriente ou polarise" and,
in general: "tout spineur simple peut etre defϊni d'une maniere concrete comme un
v-vecteur isotrope polarise." This equivalence may now be expressed in modern,
perhaps more rigorous, language as a bijective map: "the Cartan-map" [4]
between simple or pure-spinor-directions and geometrical elements (totally null
planes, quadric Grassmanians or flags) in projective spaces. This Cartan-map is, in
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our opinion, the optimal starting point for understanding the basic role of null-
vectors and of spinors1 in geometry, and then in physics [4, 5].

The concept, at first sight surprising and peculiar, of relativistic strings was
introduced in physics, almost incidentally in 1969 [8]. Only recently [9] this
concept has manifested its virtue as a possible effective tool for overcoming at least
some of the severe difficulties which have plagued relativistic quantum field
theories for more than forty years. Should these properties be confirmed, as more
and more signs seem to indicate, then it would not be surprising if strings were
related to fundamental geometrical objects like null vectors and pure spinors, and
this would, in some way, allow a better understanding of their properties and to
grasp the deep origin of their virtues.

I wish to show in this paper that, if one adopts the Cartan conception of
spinors, then the old general results regarding minimal surfaces in ordinary
3-dimensional space and 4-dimensional space-time may be reformulated in terms
of complex spinor-directions [see Eqs. (4), (40, (5), and (17), (18), (180, (19)]; the
corresponding equations with real spinors instead represent strings, obviously in
spaces which admit those real spinors, that is 3- and 4-dimensional space-time [see
Eqs. (12), (120 for R 2 1 and (25) for R 3 1 ] .

2. Null Curves in C3. Minimal Surfaces in R3 and Strings in R 2 1 as Generated
from Two-Component Complex and Real Spinors Respectively

Let Ψo represent a <C3-spinor thought of as a complex vector in a two
Ψi

dimensional spinor-space S = (C2. According to E. Cartan there is a two to one
correspondence between φ and a null vector Z: (Z2 + Z\ + Z 2 = 0) of C 3. This is a
particular case of the Cartan-map S-+<£N defined in a previous paper [4] and
bijectively connecting pure spinor directions with elements of a projective quadric:
in this case Q1\{Z2 = 0, ZeC 3 } .

Defining <φ = : — φ}τίσ2, the Cartan-map may be represented by the matrix
equation: 9

Z 3 Z1 — i~Ψo

\ψ\ Z1

JriZ2 — Z
3

(1)

(we may multiply both members by an arbitrary non-null complex factor), where
Zj are (orthonormal) coordinates (projective) of Qu φA of φ (projective), σj are
Pauli matrices generating C 3 Clifford algebra: C1(C3).

Ψo
From (1) we get, for any φ} =

Ψi
: Zj=2-(φσjφ} eQu explicitly:

—i

1 After the advent of quantum mechanics, the discoveries of the Dirac equation and of relativistic
field theories, several physicists, on various occasions, have conjectured the fundamental role of
spinors in the explanation of elementary physical phenomena [6]. However, the Cartan
conception of pure spinors, that is their strict connection with the elementary geometry of null
vectors and totally null planes, was only rarely [7] considered as relevant for physics
2 If we substitute φ0, φγ with holomorphic functions of a complex variable ζ, then Z3{ζ) may be
considered as components of the tangent to a null line in C 3
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We may represent locally the direction φt of φ by the complex number
ζ

ζ = φo/φu for φγ Φ 0: φt) = , and indicating with ί, the corresponding chart for

Zj-direction as implied by Eq. (1):

Z2^t2(ζ) = ί(φtσ2-φt)=-Ul + ζ2), (2)

Consider the products: tfζ)F(ζ), with F{ζ) an arbitrary holomorphic function of C,
they may be considered as the null tangents at ζ of a class of holomorphic null lines
in (C3. Any one line of such a class will then be represented by its orthonormal
coordinates 7}(£): ζ

7}(£) = 7}(0) + } i <φtσjφtyF(ζ)dζ, (3)
o

where the integral is performed along any path in the complex plane ζ. Setting
Tj = Xj + iYj and ζ = u + iv9 we immediately obtain the Enneper-Weierstrass [10]
parametric representation3 of any minimal surface Xfu, v) in R 3 [insert in (3)
expressions (2)]:

Xfμ, υ) = X/0,0) + Re H <Φ^ Φ ί > F(QdC (4)
o

Setting F(ζ) = f'"{ζ) we get the differential form of it as given by Hitchin [11] (with
appropriate values of Xj and / at ζ = 0).

(5)

(connected to the spectral curve of a static monopole in IR3).
The appearence in (3) and (4) of an arbitrary holomorphic function F(ζ) may

suggest the possibility of deriving the above formalism from Weyl space-time
spinors. In fact the complex variable ζ may be thought of as characterizing the
(local) stereographic projection of the R 3 ' x celestial Riemann sphere S2 : {χμχ

μ = 0,

t = 1 χμ e IR3'x} on an equatorial plane. Then ζ = φo/φl9 where φ =
Ψo

represents

a Weyl, space-time spinor4. Equivalently this result may also be obtained
algebraically by rewriting the Cartan-map-Eq. (1) in the form:

φ} (φ = Z>σj = {E> + iW)σj = i/^[yμ, yv] (1 + y5), (6)

3 In the hypothesis of the preceeding footnote F(ζ) may be eliminated in Eqs. (3) and (4) and the
form (94) of Weierstrass formula of [10] is obtained
4 This allows a simple geometrical interpretation of the arbitrary holomorphic function F(ζ). In
fact we could equivalently take, instead of the plane section t = 1 of the light cone, giving S29 any
other one conformally mapped to the Riemann sphere S2, this arbitrary change of section would
produce the appearance of the arbitrary function F(ζ)
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where yμ are the generators of 1R3' ̂ Clifford algebra Cl(3, l)(yf = 1); fμv behaves
like the antiself-dual e.m. tensor and use was made of the algebraic identity σ1σ2σ3

= ίi. The Z isotropy is now expressed by: E2 — H2; E>H = 0.

Also the chosen local chart of φ =

Z 2 + Z 2 + Z 2 = O

and, in the Cartan-map Eq. (1):

Zγ — iZ2

* Zx + iZ2

-c2

corresponds to:

• = o (7)

(8)

In such a way that, in the chosen local chart, the complex variable ζ has a precise
physical5 meaning: ζ = t3 = E3 + iH3 (for £ 1 =f/ 2 + l; E2=— Hi).

We may now express the minimal surface-coordinates Xj in terms of the Weyl
spinor φ and of the one φ, of opposite chirality, for which :φ> (φ= (Ej—iHj) σj [see
Eq. (14) for signs]. Then any R3-minimal surface in Eq. (4) results by summing the
contribution from both such Weyl spinor directions; Enneper-Weierstrass Eq. (4)
takes the spinorial form:

(40<φtσjφt}F(ζ)dζ+
0 0

R3>1-Weyl spinors are complex while R2)2-ones may be real; therefore if we
apply to them the Cartan-map and the subsequent derivation above, we will
obtain the real counterpart of R3-minimal surfaces: that is, strings in 3-dimen-
sional space-time (R2 ' x) as I am going to show now.

Let φ+ and φ~ represent two pure (Weyl) spinors of R 2 ' 2 of opposite chirality.
Since Cl(2,2) = #(4) and C1+(2,2) = £(2)Θ£(2) (we indicate with Cl+ the even
Clifford-sub-algebra) they both may be real. We may express for each of them the
Cartan-map by [see Eq. (14) with φ,ψ-*φ+,φ_ for signs]:

XΦ± =
± = (9)

where ε1 = σ1;ε2= — ίσ2 ;s3 = σ3 are the generators of Cl(2,1) and Df = δj ± Jffj are
the components of two independent real null vectors in R 2 ' 1 (light rays in
3-dimensional space-time). In matrix form:

Φ±XΦ± = Φl - -D3

(90

valid independently for both φ+ and φ , and then both (D+)2 = 0 and (D )2 = Q
which implies

— U ω ' Jt —U , \l )

however with the metric (H f-).

5 In the hypothesis of the fundamental role of spinor- or null-vector-geometry one should expect
to discover the central role both of the most natural null vectors we see in nature: light rays, and of
the null- or optical-geometry based on them [12]
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We may again select a particular local chart for representing pure spinor
directions φ* in terms of projective quadric variables6:

and

(we set Jf3 = τ, <?3 = σ). In terms of these parameters (9^ becomes:

(10)

α V*.

1 = 1 —t:
(11)— α

- α

for each α + , α~, ί+, ί~; explicitly:

tί=i(l-α2

±);
and ί* may be thought of as the null tangents of two optical-curves in R2Λ

parametrized by α+ = σ + τ. We then easily obtain a general string in R 2 1 in the
form:

ί 3

± = α ± ,

ί (φt

+εjφt

+)F(a+)da++ ί
0 0

(12)

or equivalently

where X7 are obtained from Eq. (5) by substituting the complex variable ζ with the
real one α + or α~ and eliminating the factor i in X2 and the symbol Re.

It is easy to see that χ/σ,τ) in (12) and (127) satisfy the string equations in
3-dimensional space-time R 2 ' x :

d2Xj
(13)

3. Null Curves in (C4. Minimal Surfaces in R 3 ' ι and R 4 Generated from Complex
Spinors. Strings in R 2 ' 2 Generated from Real Spinors

Let us now consider a R 4 ' 1 4-component pure 7 spinorφ>: =

From the Cartan-map matrix equation:

where < φ = —ψTiy2yo9 w e β e t

(14)

(15)

6 Like the complex variable ζ, also α± may be thought of as resulting from a "stereographic"
projection: this time of a torus representing the rays of the R2'2 projective quadric: Xf+ Xf
= X\ + X\ = 1 (actually two independent ones from the two circles)

7 φ-pure implies the Cartan-map between projective ψ in S and projective elements of C 5 or C 6

(twistors). Only for 8- or higher-component spinors constraint equations on spinor components
will appear
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and for every ip, Z is null8 in R3i 1: ZμZ
μ = 0. We recall that the Cartan-definition of

ψ as a pure R4'1 spinor implies the rank 3 of eq.

5

Σ (16)

Then for ψ pure, in the frame of the Cartan map, with the usual (local) choice
Ψolφι=ζ, we may express χ in terms of φ and we will have Zμ = Zμ(ζ) and, as
before, we may find the coordinates Tμ(ζ) of the searched null-curve by integration.

Let us now consider explicit coordinates: from (15) we have Zμ = \ <φσμχ> and
the Cartan-map equation is:

x><φ =

from which we derive the equality of projective coordinates:

Z1-iZ2=-χ0φ0->-ζχ0(ζ) = t1-it2,
(17)

where equalities on the right-hand side, with χ7(ζ) holomorphic, are obtained after
the choice ζ = φo/φι (for φχ + 0) as local projective coordinate representing

ζ
. Then the equation dTμdTμ = 0 may be solved by:

(18)

or, in differential form:

T0(ζ)=f'-ζg' + g,
(180

where the arbitrary holomorphic functions /(Q, and g{ζ) are defined by

] In fact for γj9 γ0 =
0

we have: Zi = i(<poXo-<PiXi), Z 2 = ^

-o = i(^i%o —^oZi)^ a n ( i then ZμZ
μ = 0. Geometrically Zμ is the null

intersection of the two planes Cartan-equivalent to φ and χ
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Equation (18") has been also obtained by Eisenhart [13] and by Shaw [14]
from twistor theory9.

By general theorems [10, 15] then:

μ μ (19)

are the most general equations10 for a minimal surface in R3*1; (and for Re Tb

Im To the same in R4). Xμ(u9 v) satisfy the equations defining minimal surfaces in
1R31

o
3 ' 1

In order to find the corresponding string equations the simplest thing to do will
be to consider 1R3'2 spinors which may be real since Cl(3,2) = JR(4)©R(4). And in

fact we may repeat the same procedure as for 1R4'1 only now ψ =
O — i ψ- ε{ 0

1 0

Φ- -j

and ε, and φ+9 φ_ are the same as those of the preceding paragraph

[see Eq. (9) and following].
The Cartan-map Eq. (14) is now real and complex Zμ are substituted by real

Kμ = ̂ (ψyμy5ψ} and we easily obtain instead of (17):

K1—K2= —φoφo, K

satisfying K\ - K\ + K\ - K% = 0.
We have now two possibilities of local projective coordinates: either φo/Φt

= a+=σ + τ or ΦQ/ΦΪ =oί-.=σ — τ; correspondingly we may interpret Kμ as null
tangents tμ and tμ to two curves in 1R2'2 parametrized by α+ and α_:

ί

-t =

+ +ί+ =

The two χ^, χ~ curves are obtained by integration χμ

t(a±)= Jί^dα^1, and the
string in 1R2'2 is then

' I ' ί μ

+ ( α + ) d α + + 7 T ίμ"(α-)dα" , (21)
o o

9 We could also have taken the two complex Weyl spinors φ1 and χ2 as belonging to different
Dirac spinors ψι and ψ2 respectively. In this case ψ would have represented a R 4 ' 2 pure spinor
(semi spinor in Cartan terminology [3]) or twistor. The Cartan-map for IR4'2 will include both real
spinors and twistors. However these might be less adapted for the generation of strings, since Weyl
R 3 ' 1-spinors are always complex (Cl+(3,1)=C(2) ©C(2)). An interesting exceptional case may be
R 9 ' 1 since Cl(9,1)=Cl(l, 1)® Cl(8,0) and for the periodicity theorem R 9 ' 1 semispinors (or Weyl)
are real and then might originate strings
1 0 It is interesting to note that solution (18') of dTμdTμ = 0 has been incidentally found and
extensively studied in the context of null vectors and isotropic planes in C 4 and R3 > 1 by Eisenhart
in 1911 [13] before the discovery of spinors
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which can be explicitly expressed from (20). It is easy to verify that χμ(σ9 τ) are
solutions of the string equations in R 2 ' 2 .

4. Strings in R31-Minkowski Space Generated by Majorana Space-time Spinors

Since C1(2,2) = C1(3,1) = R(4), it must be possible by this procedure to generate
also R 3 1 space-time strings. To this end it will be necessary to start from a
Majorana space-time spinor. We may obtain it taking as generating Cl(3,1) real
matrices:

y 1 = σ 3 ® σ 1 ;
75 =

then since σl9 σ3 generate Cl(2,0) the Majorana spinor ψ will have the form:

where u and v are real R 2 0 spinors (non-pure: they are real R2 ϊ l-pure spinors
where the extra time-generator ε2 is contained in y5) or Majorana spinors for
3-dimensional space-time.

From the Cartan-map11 we obtain now the equation « φ : = xpτy

and the real, lightlike (or null or optical) vector kμ = ̂ (ψyμy5ψ} may be expressed
in terms of the real Majorana spinor components (we introduced the factor 1/2 for
sake of economy):

h + ko=-(μl + ul), k3-k0 = v2

) + v2

ί,

ki=uίvo + uovί, k2 = uovo-uίv1,

and it is easily verified that kμk
μ = O for any u and v.

We may now think of kμ as optical tangents to two optical curves in R 3 ' x and
by integration we could obtain a string in terms of them. We wish to show that all
this may naturally be obtained by selecting appropriate local projective charts to
represent the Cartan-map above. We easily obtain in fact:

«><=
u\ - -f2

+ (23)

where

fj+-fjo+fJ3;

From these, going to projective local coordinates — = /

we obtain the optical vector tμ(tμt
μ=^O) tangent to the optical curve in R 3 1 :

L Since y§= — 1, ψ now represents a real, pure, JR
3 '2-spinor
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(230
~J2 ~~Jί ~κ

- / f + * ~ f2-

where ff = fj3—fj0; k~ =i(/c3 — k0). Choosing the corresponding local projec-

tive coordinates: =/23 — /2o = α - =σ — τ we obtain the optical tangents of

another line in R 3 ' 1 :

3̂ +^0 = "~ LWθ(α-)^" W l ( α - ) J 5 3̂ ~^0 = l + # - > ^^/\

(24)

From these it is easy to give the equation of a string in space-time expressed in
terms of the two optical lines naturally generated in the projective space of a
Majorana space-time spinor:

σ+τ σ—i

ί t;(α+)dα++ J
0 0

(25)

where

and

U1 = ί

It is easily verified that χμ{σ,τ) satisfy the string equations in R3*1:

Xu dχμ dXμ dχμ dXμ dχμ

dσ2 δτ2 = 0
dσ dσ dτ dτ dσ dτ

= 0. (26)

5. Conclusion and Outlook

This simple application of the Cartan-map which generates minimal surfaces from
complex spinors and strings from real ones could be generalized through the use of
other charts and atlas and extended to higher dimensional spaces where,
coherently with the spinor construction, coordinates in projective spaces will be
obtained, containing locally ordinary space-time; furthermore, pureness con-
straints will play interesting roles.

The next obvious step is to add to the selected charts the excluded sets (φ1=0,
χ0 = 0...) in order to put in evidence the global and topological properties. This
point will be essential for the discussion of closed strings, in fact it is clear that open,
infinite strings in the local charts may instead appear closed when the point at
infinity corresponding, say to φi=0, (ζ = oo), is added to the chart. These
compactifications may become important, and contribute to the elimination of
divergences (both infrared and ultraviolet), when the method is applied to
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conformal extensions of space-time [5], since then the compactifying sets lie on the
light cone at infinity. These and other matters such as the generation of similar
results from the Cartan-map identification of spinor directions with coset space
elements in projective spaces and the role of the stability groups for the generation
of string structures; the embedding of spinors in Clifford algebras (minimal ideals)
with consequent non-commutative properties, besides obvious dynamical aspects,
will be the subject of further work.

At the present stage we wish to stress that the possible common origin of
minimal surfaces and strings from complex and real null-vectors (optical-vectors
in space-time) and, after Cartan-map, from complex and real spinors might furnish
a firm geometrical basis to the conjecture that strings are fundamental objects for
the representation of elementary natural phenomena in a similar way as minimal
surfaces have been and are, and this may be simply due to the close connection of
strings and minimal surfaces with real and complex spinors respectively, which
makes them the natural intermediaries between the fundamental, but difficult to
imagine, null-vector geometry and the easily visualizable, but not elementary,
euclidean one.
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