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Abstract. We investigate the connections of the Gibbs measures, which appear
in Euclidean Field Theory, and the corresponding partial differential equations
of Classical Euclidean Field Theory.

1. Preliminaries

Let J^ denote the family of bounded open sets A C Rd with piecewise ^ n, for some
n^ 1, boundary dΛ. Let ^0 be a countable base of J^, i.e.

such that for every neHΛncΛn+ί (1)

and VΛε^3w AcAn.

For A C Rd we denote Ac: = Rd\A.
Let (Ω,Σ) be a standard Borel space. We assume that in Σ there is a

distinguished family of σ-algebras of local events {ΣΛ}Λe^, which generates Σ and
is compatible, i.e.

Λl9Λ2e&:Λ1CA2 => ΣAlcΣAl. (2)

For any open set Q C Rd we define the σ-algebra ΣQ as the σ-algebra generated by
{ΣΛ :AG^,ACQ}. For arbitrary set Q C Rd we define

ΣQ: = {Γ\Σa:Q open, QlQ}. (3)

In particular we have the family of σ-algebras {ΣΛC}As& with the property

Λl9Λ2e&:Λ1CA2 => ΣA1CΣA1. (4)

We define the σ-algebra at infinity by

2 » : = Π ΣΛ.. (5)
Λeά
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For A £ Rd, <ΆΛ denotes the set of bounded ΣA measurable real functions on (Ω, Σ).
IϊΛ = Rd we will write 21 = MRd.

By Jί we denote the set of probability measures on (Ω, Σ). For μ e Jί and a
measurable function F, by μ(F) or simply μF we denote the expectation value of F
with a measure μ. The conditional expectation of F with respect to a σ-algebra 27,
associated to a measure μ is denoted by Fμ(F|Σ").

We will write

μ(F, G): = μFG - μFμG. (6)

For μ e ^#, if

V Λ e ^ V F e ^ , £ , ( F | Σ ^ ) e ^ , (7)

we say that μ has the local Markov property, and if

Vβ CRd VF e 9IQ, £ μ (F|Z Q C ) e M,Q (8)

we say (eventually restricting to the sets Q with sufficiently smooth boundary) that
μ has the global Markov property and we write μ e GMP. The global Markov
property imply the local one, but the converse is not true in general (e.g. [7, 20]).

A local specification ([5, 12, 16]) is a family $: = {E'ΛC}Λe&, which consists of
functions

E^:ΩxΣ^[09ί-]9 (9)

such that
i) VΛe^ VωeΩ,E%c{ )eJί,

ii) MAe^ VFe31, EΛC(F)e91^,
iii) the compatibility condition holds i.e.

Λ1,Λ2eP:Λ1cΛ2 => EΛc2(FEΛίG) = EΛc(FG) (10)

for any Ge%FeSΆΛV D

A local specification $ = {E'Λc}AfΞ& is called Markov if it fulfills the following
condition, which can be essentially written as (cf. [14]):

. (11)

The set of Gibbs measures for $ is defined by

}. (12)

The set of its extremal points [i.e. the set of those Gibbs measures for $ which have
no nontrivial convex decompositions in ^((f)] is denoted by

2. The Ground Specifications and the Ground Gibbs States

Let 3Γ be a Frechet space of real functions on Rd such, that 3) C F C #f densely and
continuously, where Θ is ^ with the usual topology [19] and J"f is a Hubert
space. Let 2Γf be the topological dual of 2Γ. Let (% be the Borel σ-algebra of subsets
in 2Γr generated by σ(!F\ 3~) topology.
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Let U be a ^°°(R), real function bounded from below. For Λe£F and η e 2Γ\ by
Φδ

η

Λ we denote a (weak) solution of the Dirichlet problem, which is formally given
b y ! (-A+m2)Φd

η

Λ(x)+U{iXΦδ

η

Λ(x)) = O , for xeΛ, (13)

Φd

η

Λ(x) =η(x), for xeΛc, (14)

where ί/(1) denotes first derivative of U. We assume that U is such that the classical
problem (13), (14) has a unique solution. If a Φ fulfills (13) for all xeRdψQ will say
that Φ is a global solution of this equation.

Let us assume that there is a Borel set Ω<Z_9~f such that for each ηeΩ the
problem (13) has a unique solution Φδ

η

ΛeΩ. Let us define

Σ: = &nΩ. (15)

The following proposition follows easily from the above definitions: (for U
considered in Sects. 3 and 6)

Proposition 1. The family

where
: = <W( ) (16)

is a local Markov specification on the standard Borel space (Ω, Σ). The set of all
extremal Gibbs measures for this $ is given by

) = {μ = δφ: Φ is a global solution of (13)}, (17)

and we haveμ e d&(δ) => μ e GMP. D

We call the specification S defined in Proposition 1 the ground specification
and the elements oίd^(i) the ground states for the system with local interaction U
(we will also say shortly: for interaction U).

Remark. All the above is obviously fulfilled if we take as Ω the set #, but for our
pourposes it is not sufficient. Note also that in general if Ω contains elements which
are not simply the functions, then here (14) has symbolic sense. We will consider
this case more precisely in Sects. 3 and 6. Further it will be also clear why we have
chosen such names for S defined by (16) and elements of d^(β). D

3. The Free Euclidean Fields: Their Ground Specification
and Ground Gibbs States

Let us consider the Classical Euclidean Field Theory given by the equation

(~A+m2)Ψ(x) = 0 (18)

in the space Rd (with m>0 if d<*2). It has been proven in [14] (extending works
[1, 2]), that the associated Dirichlet problem

(-Δ+m2)Ψd

η

Λ(x) = 0 , XEΛ,

iA xeΛc
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has, defined in a unique way, a solution in any Λc^ open with a boundary
condition η from some Borel set Ω C 2l\ (See [14] for details. Note also, that in this
work the case of more general elliptic operators is considered.) Hence we have

Proposition 2. There exist the ground (Markov) specifications S° for Classical
Euclidean Free Field Theories. The extremal ground Gίbbs states for these
specifications are given by all solutions of (18) through the definition in (17). All these
extremal Gibbs measures for S° have the global Markov property. D

Let for ΛeίF, AdΛ be the [selfadjoint in L2(Λ)~] Laplacian with Dirichlet
boundary condition on dΛ (e.g. [6]).

Let

- 1 (20)

with m>0 if d^2. For β>0 we define the measures μ^β by

^V^^expί-iΓΊl/ll2-!^, (21)
where

Wf\\2-uβΛ-=ίf(x)GδΛ(x,y)f(y)dxdy (22)

for supp(/)cA
We also assume that on ΣΛC the measure (21) coincides with δφΞΞ 0. For all η e S)\

for which the Dirichlet problem (19) has well defined solution Ψd

η

Λ, we define the
measure

EUF): = δημ^β(F(φ + Ψd/)). (23)

One can prove (e.g. [14,2]) that the family S°β : = {E'ΛC}ΛeSF, where E'ΛC are given
by (23), forms the local Markov specification on some standard Borel space (Ω, Σ\
with Ωc3)\ We call S°β the free (local) specification at inverse temperature β. [We
would like to add an obvious remark, that if one has constructed the local
specification by (23) on some Borel set Ωί C ίf\ then we can also define by (23) the
specification on the set

where Ψ fulfill (18), and so we have no a priori restrictions on the growth of η at
infinity.]

Let

G: = (-Δ+m2yι (24)

where A is the selfadjoint Laplacian in L2{Rd) with D(Δ) 3 %o(Rd) and m > 0 if d ̂  2.
Let

\\f\\2-1: = Sf(x)G(x,y)f(y)dxdy. (25)

Then for any global solution Ψ of classical free field equation (18) the measure
defined by

: = e x p ( - i / Γ ι \\f\\l, + ίΨ(β) (26)
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is the extremal Gibbs measure for free specification S°β, which has the global
Markov property. The set of the measures μΨ β given by (26) is exactly equal to
d<&{£°β\ see [ 8 ] .

For any unbounded open set Q C Rd the conditional expectation with respect to
ΣQc associated to μΨβ is given by the following measure:

£ ^ ^ | Γ Q C ) ( f 7 H £ ^ (27)

where / e ®, Ψψ is a unique in a set of μΨ ^-measure one solution of the Dirichlet
problem in Q with boundary data η. We have that

η = ή+Ψ, /v, r a.e., (28)

hence

ψψ = ψψ + ψ, (29)

where Ψψ is defined in [14] as a solution of (19) which is unique in the sense that
for μo-a.a. ή e Sf',

Ψψ ΞΞ lim Ψf^ = lim yg<c^> (30)

(with χΛ the characteristic function of A). This essentially means that Ψψ is
independent of behavior of ή outside dQ.

We can easily see, using (21)-(27), that the following proposition holds (in
which convergence of measures means convergence of the characteristic
functional):

Proposition 3.

in the sense that for any A e J% ηeΩ,

&Λc,β fl->-00

> 0ΨdηΛ 9 WA)

where Eη

Actβ is given by (23), and

as also for any unbounded open set QcRd

i.e. in the limit as the temperature β~ι goes to zero, the local structure of Euclidean
Free Field Theory is exactly prescribed by the free ground specification S*0 and all
possible Gibbs measures (as also their properties) are exactly prescribed by the set of
ground states for S° (and their properties). D

Now it is "obvious" why the states μΨβ are extremal (for Sfj and why they have
the global Markov property, since it is obvious for elements of δ^(<?°). By this
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remark we want only to stress the importance of further investigations of
connections of the theory of Gibbs measures and theory of partial differential
equations, particularly of the connections of (extremality and) the global Markov
property with the locality property for the equations of more general type (13).

Furthermore we will investigate these problems: The present paper is
concerned with the investigation of local aspects of the connections between
theories mentioned in its title in the context of Euclidean Field Theory.

In Sect. 4 we define and investigate the local specifications Sv

β with interaction
U at temperature β'1, in the case of models of two dimensional Euclidean Field
Theory. We will show that [in the sense as in (31)] Sυ

β jg_00> Sυ. Using this result
we propose in Sect. 5 a definition of Euclidean Field Theory with interaction U
associated to Classical Euclidean Field Theory given locally by the family of
corresponding Dirichlet problems (13) or equivalently by the ground local
specification Sυ. Section 6 is devoted to investigation of ground specifications Sυ

in ̂ -dimensional Euclidean space. We expect that our investigations can give some
new light on the existence problem of Euclidean (Scalar) Field Theory in space of
dimension d = 4.

In the second part of this work we will also show the existence of Gibbs
measures μφβ for the specifications Sυ

β, their extremality and the global Markov
property [the proof of the later property is not finished in the P(φ)2 case] proving
validity of a conjecture we state in [20].

It is very natural from the physical point of view and very important to
consider the families of local specifications Sυ

β at different β with interaction U and
the associated Gibbs states. In particular our investigations make more clear the
similarities of theory of phase transitions in statistical mechanics (e.g. [17]) and in
Euclidean Field Theory (e.g. [9, 6]).

4. The Specifications and the Ground Specifications
for the Euclidean Field Theory in Two Dimensions

Let Jίr be the space of regular measures μ on {Sf\ J*) in the sense that

for some C > 0 and
(36)

with arbitrary constants α,b^O and some p^4. Note that a,b,C, and p can
depend on μ.

It can be proven (see e.g. [1, 20]) that for any μeJίr there exist the solutions
ΨdΛx) of Dirichlet problem (19) for μ-a.a. ηe&" such that
Ψη(x)eLr(μ)<S)Ls(A,dx) for any l<Ξr, s<oo for all bounded open AcR2 with
piecewise ί?1 boundary, i.e. A e $F.

Let for A e ^

UΛ{φ + Ψδ

η

Λ): = ί :U(φ + Ψd

η

Λ):0,β(x)dx, (37)
A
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where : :Ofβ means the normal ordering with respect to a free measure μOtβ with
some mass m>0, and a real function U of the following types:

In

- polynomial λ Σ &$, neN, a2n>0,
ί = l

- trigonometric λ j cos(αg + #(α))dρ(α), (38)

- exponential λ J exp(αg)dρ(α).

(α) means a nonnegative finite - or only finite in trigonometric case - measure

supported in ( — 2]/π,2j/π) and Λ>0.]

The function UA(φ+ ΨδΛ) is well defined in Lr(μδ

0^β)(g)Ls(μ) -for any μ e Jίr and
any 1 ̂  r, s < oo in the polynomial case, and at least for r, s = 2 in the last two cases -
as the limit (in adequate space) of a sequence of functions UΛ(φε -f ¥ ^ ) defined on
all SP x $f' Γ where <pβ(x): = φ(he( -x)) with some hε e 9, K^i^ δ\

We define the local Markov specification Sv

β= {EΛC}ΛeSF for a field with
interaction U and at temperature /? - 1 by

dA e-β

^^ΛΓ - dΛ -βϋΛ
HΌ,βe

on a standard Borel space (Ω^ZΊ), where Ω! is a Borel set such that

β ^ υ βμ, (40)
μeMr

where for any μ e Jίr, Ωμ is a Borel set of μ-measure one, on which the function Ψd

η

Λ

is defined (at each point η e Ωμ).
We assume, and it can be realized, that Ωx is chosen sufficiently large, i.e. such

that the compatibility condition (10) for a specification is fulfilled.
Having δv

β defined on some ΩγQ.ίf' we can define it also on the sets {Ψ + Ωx}
C ^ , where Ψ fulfills (18).

Let Ω be a Borel set {Ψ + Ωjc®', with ψ fulfilling (18), and let Σ denote the
σ-algebra of Borel sets in Ω. From now on we consider the specification Sυ

β on the
standard Borel space (Ω, Σ). (For mathematically precise construction of specifi-
cations for random fields cf. [14, 15].)

Let Φδ

η

Λ be a solution of the Dirichlet problem (13) in a volume Λe^. We can
write (13) in the form of the Hammerstein equation

Φd

η

Λ(x) = Ψ°Λ(χ) - ϊ GδΛ(x, y) U^\Φd

η

Λ{y))dy = Ψd

η

Λ(x) - GδΛ * U^(ΦδΛ) (x).

(41)
(We will show in Sect. 6 that for interesting U Eq. (41) has a solution.)

Now let us change the integration variables in (39) as follows

(42)

then using the fact that

° ( f 4 (43)
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we have

dΛ e-β(UΛ(φ + Ψ^,Λ-GdΛ*U^HΦ^Λ))-φ(U^HΦ^)))pr _j_ ψδΛ _ gdΛ

Λ ^ ' ~ dΛ -β(

and using our assumption (41) we can write (44) in the form

,,dΛ ^-βΨΆ(<P,ΦnA)πίsΛ i_ rhdΛ\

where we have written
d Λ e-β

dΛ(δ

η

Λ(x)) - U(Φd

η

Λ(x)) - φ(U^(Φδ

η

Λ(x))) ^ (x)dx. (46)

In order to investigate the β dependence of (45) let us observe the identity
dΛ iφ(f) _ dΛ iβ- 1 / 2 φ ( / ) dΛ iβ~

MΌ,βe —MΌ,β = l e —HΌ e 9

which is the simple consequence of definition (21) of μ^β for any β>0.
Using (47) we can write (45) in the form

nΛA
r)- dΛ -βirΛ{β~ ι/2φ,Φη

8Λ) '

μ0 e

It is sufficient to consider the functions F of the form

F(φ) = eiφif\ fe®. (49)

Then

F(β ~ 1 / 2 φ + Φδ

η

Λ) = (eiβ"1/2(pif)) eiφ*Λ ( / ) (50)

and because β~1/2φ(f) ^_>oo> 0 as the function on 2' pointwise, so

pointwise and so in Lp(μd

0

Λ), for 1 ̂ p< oo.
Now heuristically, we have

o -k/2+l

βrΛ(β ~ 1I2Ψ, Φd

η

Λ)=ϊ-.φ2

b ( i / ( 2 ) ( Ό +Σ2% 6

^^i :φ 2 . ([/< 2 »(Φf) ) , (52)

hence we can expect, that at least in ^

if the right-hand side is μd

0

Λ integrable.
Combining the relations (48)H(53) we can conclude that (writing Eη

Λctβ for Eη

ΛC to
show explicitly the dependence on β)\

E\^{F)-j^5^{F). (54)
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From that we can write that

i.e. in the limit as the temperature β~1 goes to zero the local specification S^ with
an interaction U converges to the ground local specification Sυ (for the same
interaction U).

We will investigate now the limits (52) and (53) in the particular models. We will
see that (52) is easy and we have convergence in Lp(μd

0

A) with at least p = 2 (and
arbitrary 1 ̂ p < GO in the polynomial case). The harder, but more interesting case
is (53). We will see that there are polynomial interactions, for which this limit
cannot exist in the form (54) for all boundary conditions (as should be expected
from the presence of phase transitions).

The Case of Polynomial Interactions. Let

U(q) = λ Σ akq
k^λP(q), a2n>0, λ>0. (56)

k=l

In order to prove that

βrΛ(β~ll2φ, Φd

η

Λ)-j^ h: Ψ2 : (*7 ( 2 ) «)) (57)

in Lp(μδ

0

Λ\ for any 1 ̂ p < oo, using representation of polynomial as in (52), we need
only to show that

: φk: (U{k\Φd

η

Λ))\\ < o o (58)

for all 1 ̂ k^2n (it follows from hypercontractive estimates, see e.g. [6]). But by
our assumption (41) (we will verify this in Sect. 6) the functions Uik)(Φd

η

Λ(x)),
l^k^ln, are in Lr(Λ, dx) with 1 <r < oo, hence (58) holds (e.g. [6]).

Now let us consider the convergence (53). Because of (57) we need only to show
that

3Λ V V w ϊΛ) (59)

for a constant C>0 independent of /?^1, and some p>l. However we cannot
expect that (59) will be fulfilled in general since

cannot be finite for an arbitrary semibounded polynomial P(q) and an arbitrary
boundary condition η. We now show that if

λPi2)(q)>-m2

i (60)

then (59) holds independently of Φd

η

A. [Let us note that (60) can be fulfilled for any
semibounded polynomial if λ is sufficiently small.]

Let m2 = m2 — 2ε>0 (with some 0 < ε < l ) be such that

= λP(2)(q)>-m2. (61)

Since

μ?0

Λ expH(m2 + ε): φ2 : {χΛ)) < oo (62)
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for r ^ l , r(m2 + ε)<m2, so it is sufficient to prove that for any s ^ l , there is a
constant Cx independent of β^l such that

μ%Λexp(-sβvε,Λ(β~ll2Ψ, O < Cx < oo , (63)

where
, p): = τr(«, p) + i (m 2 + ε ) ^ 2 . (64)

Let us denote φκ(x): = φ(hκ( — x)) with hκt3)\ ίικ{z) = \ for z ^ κ andφκ() φ(κ( )) κ \ κ{) ^
ϋκ oo> 1, and c κ : = μ0φκ(x)2. For simplicity let JV = 2π = degP(g). We need the

following lemma:

Lemma 1. There are positive constants γ9 D(Φd

η

Λ), C(Φd

η

Λ) all independent of β^l
such that

βvε,Λβ~ll2Ψκ> O -D(Φd

η

Λ)cNJ2, (65)

and for any s^.2

l l 2 A l l 2 δ s ) s

N ' 2 - κ - y . (66)

From this lemma the bound (63) follows by Nelson's original arguments (see [11]).
This ends the proof of (59) in the case of polynomial interactions.

Proof of Lemma 1. The second statement easily follows from the fact that vε(q, p)
does not contain terms of degree less than two and the fact that Φδ

η

Λ(x) e Lp(Λ, dx)
for A G 3F and any 1 ̂  p < oo (see Sect. 6). The proof of the first statement is based
on the ideas of [3]. Under the assumption (61), we have that the function

N

vo: = vε(q,p)ε^oΞΞ Σ akq
k (67)

with ak = ak(p), fulfills

d d2

 ( 2 ) 2

dq dq s/-QΛ

(6δ)
Writing

and observing that

akq
k^\q\k (70)

N-2

for

N-2 fc, (71)
aN

we have

> P) = γ~2 a»qN + % k]k + a2q2 ( 7 2 )
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for

1 i1
\q\> max (N-2) — (|αk| + l)"~k = C(p)>l. (73)

On the other hand, for \q\ < C(p), we have

Hence for any qeRwe have

^ β Σ β \ h \ φ κ \ + k Σ k J i φ κ ή ^ ε κ ( 7 8 )
0 k=2 \ J

(74)

v£q,p)^ Σ bk\q\k, (75)

with

bN = aN, b2 = a2, bk=2(N_3*C(pr2, 3ϊk<N. (76)

Let now q = β~1/2φκ(x), then we have

/ / N [fc/2] \ o \

β:»B(q,p): =β(vε(q,p)+ Σ % Σ ^ / " V ^ - ^ Ί - - ^ ^ c j (77)

with α k J some combinatorial factors. From that, using (75), we obtain
N . .. / . [fc/2] . .

We have also

[ / ] \ a \ j

h\φκ\
k + ak Σ «kJcίφk

κ-
2^ -D max - L L (cκ + 1 ) ^ 2 (79)

" I
with Z) a positive constant independent of k and cκ.

Since from definition (67) \ak\ = #((\p\ + ί)N~k), and from (73) C(p) = *(|p| +1),
so using (76) we have

U I 2 j (AT-2)2

( where 2^k^N and l ^ j ^ - and Dx is a positive constant I. Combining

(78H80) with p = Φd

η

A{x) and β ̂  1, we obtain

"^~dx ^ 2 . (81)

Here it is important that the left-hand side of (81) is independent of β^ 1 and
finite, since Φd

η

Λ(x) e Lp{A, dx) for any 1 ̂  p < oo . D
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The Case of Trigonometric Interactions. Let

U(q) = λ j cos(aq+S(oί))dρ(a) (82)

with dρ(oΐ) a finite measure supported in (-2]/π,2|/π). We have

o-k/2 + ί
l l 2 φ , Φd

η

Λ) = i'Ψ2',(U(2\Φd

η

Λ)) + Σ £ : Ψk : (^ ( f e ) «) ) , (83)
fe>2

,,dΛ\where the series converges in any Lp(μd

0

Λ), 1 £Ξp<oo for sufficiently big β^l.
Hence one can see that (83) goes in Lp(μd

0

Λ) (for any l ^ p < o o ) as /?->oo to

* ' o
As before, in order to prove (53) in the case under consideration it is sufficient to

prove the bound

JUQ e <v O \ UU V" V

for some r > 1 and a positive constant independent of β ^ 1. We need to assume that

λ$d\ρ(a)\(x2<m2<m2, (85)

because only in this case

Since

μe

0

Λe*ih2:φ2o{XΛ)<cx) (87)

for any r ^ 1, r m2 < m 2 , so for (84) it is sufficient to prove that

μ0 e S"^Λ^ φ> i ) < C < co , (88)

where

β»Λ(β-1/2, Φd

η

Λ): = βrΛ(β-1/2Ψ, Φd

η

Λ) + \m2: Ψ2 : ( z J , (89)

u

Γ

and 5 = — - , and a constant C > 0 is independent of j8 ^ 1. The estimation (88), and
so the convergence (53), follows by [10, Theorem 3] with the use of the following
lemma:

Lemma 2. Under the condition (85) we have

βt>Λ(β~1^2φκ, ΦηΛ)^. — \m2\Λ\cκ — \λ\d\ρ{oι)\θL2\Λ\cκ(\ +e+β~1<χ2cκ/2), (90)

and VI ^ p < oo 3j8 0^l Vβg;β0,

wϊίΛ ί/ze positive constants C(Φd

η

Λ), δ and y all independent of β^β0- •

Remark. On the right-hand side of (90) we have the lower bound, which contains
β-'a2

the term proportional to (lnκ)κ:z with z = £ — - — . Since j8->oo, so z-*0. This,
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together with the fact that C(Φd

η

Λ), δ and γ on the right-hand side of (91) are
independent of β^β0, makes possible to use the arguments of [10,
Theorem 3]. D

Proof. Under the condition (85), the function v(q, p) has the properties (68), and so

v ( ί , p)£0. (92)
Since

: β»(β- U2φκ(x)9 φ
d

η

Λ(x)) : =Wll2q>K(x)9 φd

n

Λ{x))

+ βλ\dρ(a)(e 2 -l)cos(β-ll2aφκ(x) + ocΦd

η

Λ(x) + 9(a))-±m2cκ, (93)

so using (92), we have

^ ^ l α 2 ^ 2 +1). (94)

Hence by integration in volume A we get (90).
In order to prove (91) we use the elementary formulas

βrΛ(β-il2φ,Φd

η

Λ) = βίdSl ϊ ds2fΊυΛ(β-ll2s2ψ + Φd

n

Λ), (95)
0 0 uS2

and

, Φd

η

Λ) -βrΛ(β-ί/2φκ, Φd

η

Λ) =\dt~ βrΛ{β~ 1 / 2 ( t φ + (1 - i)φκ\Φd

η

Λ

o dt

together with the fact that the integrations as well as differentiations with respect
to Si and t can be interchanged with integration with the measure μd

0

Λ, as well as the
fact that the integral with the measure μd

0

Λ of the products of UΛ(β~ 1/2s fφ + Φd

η

Λ)
can be explicitly computed. The proof can be carried out exactly as the proof of
Theorem 3.1 in [10]. D

The Case of Exponential Interactions. Let

U(q) = λidQ(*)er* (97)

with λ>0 and dρ(oί) a. probability measure supported in (—2j/π,2j/π). The
convergence (52) can be proven (as in the trigonometric case) in any Lp(μd

0

Λ),
1 ^p< oo (see Lemma 3 below). Note that now we have

Ui2)(Φδ

η

Λ(x)) = λ J dρ(oc) α2 eαφ>?Λ ix}>0. (98)

We need only to prove that

rfΛ2pr(βv*Φt*) ( 9 9 )

with a constant C > 0 independent of β ̂  1. This inequality follows, by use - as in
[4, p. 394] - of Nelson's original arguments [11], from the following lemma:

Lemma 3. For interaction (97) we have

βrΛ(β- ίl2ψκ, O ^ - Qλ J dx dρ(φ2e*φϊA <*>)cκ, (100)
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and for any l^p<co there is βp^ί such that for any β^βp,

μdoΛ\β^Λ(β~1/2φκ>Φd

η

Λ)- βi/

Λ(β~1/2φ,Φd

η

Λ)\p^C(Φd

η

Λ)κ~pγ, (loi)

with the positive constants C(Φd

η

Λ), y independent of β^βp. •

Proof Since for any q e R,

eq-l-q^0, (102)

so with

(103)

we have
ll2φκ(x), ΦlA(x)) :=βλ]dρ(a)e"^ 2

Ψ
^ -£λϊdQ(ΦaΦηdΛ{x)x2)cκ. (104)

After integration over xeΛ, we get (100).
Let us now prove (101). We have

2 φ , ΦίΛ)\p

,,dΛ
• -w/2 + 1

• -w/2+1

{p~ί '2 (105)

where in the last step we used the triangle inequality together with hypercontrac-
tive estimates. Using

I U^(Φe

η

Λ(x))\ ί {2]f%f V(Φ\A(x)), (106)

we have (e.g. [6]), that

^cnnl\\U(Φs

η

Λ)\\Ls{dx)κ (107)

with the positive constants c, and some s> 1. From (105) and (107) we get for all

(108)
with a constant C(βp) > 0. This ends the proof of (101). D

We end the proof of convergence (55) of the sequences of local specifications for
Euclidean fields with interactions given by the real ̂ 2 functions U. In each case we
assumed that

U(2\q)>-m2. (109)

As we will see in Sect. 6 this condition is also connected with uniqueness of the
solution Φe

η

Λ for a given boundary condition η.
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Remark. Let us also note that under the condition (109) it is easy to prove the
analogue, as in the present paragraph, (as well as the other) results in the case of
Euclidean fields on the lattice TLά for any d^ 1 (see [21]).

We summarize these ideas in

Proposition 4. In two dimensional Euclidean space the local specifications Sυ

β of
Euclidean Field Theory are homotopically equivalent to corresponding ground
specification Sυ of Classical Euclidean Field Theory. O

Remark. Here the homotopic equivalence means that there is a path in the space of
specifications (defined by the continuous paths (54)), which connects iv

β and Su.
We see that the Markov property of specifications is a homotopic invariant in the
considered cases.

5. Theory of Gibbs Measures and Euclidean Field Theory

It is known (see [16, Sect. 4.3]), that any probability measure μ on the space iβ\
is a Gibbs measure, i.e. there is a local specification $ on [β\ 38) such, that μ e

From our considerations in preceding sections, it follows, that the following
definition is natural:

Definition 1. A field theory defined in Euclidean region by a probability measure μ
on the space of distributions (β\ S3) is associated to the Classical Euclidean Field
Theory with local interaction U if and only if μ e &($%) for some β > 0, and

where Sv is the ground specification for U. O

Remark. It is expected that from the existent theories also φ* fulfills this definition
with adequate families Sυ

β and δυ. G

Let us note that a priori there can exist totally different families iυ

β

homotopically equivalent to the same ground specification Sυ. This is connected
with the analogous phenomenon as in classical mechanics, where there can exist
nontrivially different Lagrangians (and so Hamiltonians and other conserved
quantities), which give the same equations of motion. This fact - interesting in itself
- can also have important application in the construction of a nontrivial model of
Field Theory.

If we accept Definition 1, then the first question on the way to finding any field
theory representable by a probability measure is: does there exist any ground
specification on (β\ @)Ί Note that we have defined a free ground specification S°
or equivalently the set of solutions Ψd

n

A of the Dirichlet problems for free field
equation (19) for a set Ω C Q)r of boundary dates η, such that ̂ °° C Ω and μ(Ω) = 1 for
any regular probability measure μ on (β\ 8$). [A more restrictive definition of the
regularity of measure than (35) is needed in higher dimensions.] If we want to give
an answer to the above stated question given S° we should consider the
Hammerstein equation

Φd

η

Λ(x) = Ψd

η

Λ(x) - J GdΛ(x, y) U^\Φd

η

Λ(y))dy.

We will discuss this equation in the next sections.



426 B. Zegarliήski

6. The Dirichlet Problems for Equations of Classical Euclidean Field Theory

Let the dimension of Euclidean space be d = 2. (The case d>2 will be discussed
elsewhere.)

Let A e 3F. Let Ψ6

η

Λ(x) be a unique solution of the Dirichlet problem in A for the
free Euclidean field theory:

(-A+m2)Ψd

η

Λ(x) = Q, xeΛ\ Ψd

η

Λ(x) = η(x), xeAc (110)

with η e 2)'. Recall that the function

@'xA3(η,x)^Ψd

η

Λ(x) (111)

is well defined for μ-a. a.ηeSi' for any regular probability measure μ on {β\ 38) and

IIHCWII^.*
for any 1 ̂  r, s < oo.

In this paragraph we consider the Dirichlet problems in Λ. e #" for the classical
Euclidean field theory with interaction:

( - A + m2) Φd

η

Λ(x) + U{1\Φδ

η

Λ(x)) = 0, xeA; Φd

η

Λ(x) = η(x), x e Ac,
(113)

where U is a real at least ^ 2 function bounded from below. We consider (113) in the
sense that for a given solution Ψd

η

Λ of (110), we look for Φd

η

A such that

ξd

η

Λ(x)^Φ6

η

Λ(x)-Ψd

η

Λ(x) (114)

is a function on R 2 identically equal to zero on Ac and ̂ °° on A
We will be interested in the case, when U(1)(Φ*Λ(x)) e L2(A9 dx). Then (113) is

equivalent to the following Hammerstein equation:

Φd

η

Λ(x) = Ψδ

η

Λ(x) - J G6Λ(x, y) U^(Φd

η

Λ(y))dy, (115)
Λ

we can write (115) in the form

%A ί e \ * X l \ a Λ d Λ ) { x ) . (116)

(Note that the operator T depends on Ψd

η

Λ as also on other parameters of U. If it
will be needed, we will denote this dependence explicitly.)

Before solving (116), let us make some remarks on the uniqueness of its
solution. Suppose that there exist two solutions ξδ

η

Λ and ζd

η

Λ of (116). Then their
difference

δξ: = ξ°Λ-ζd

η

Λ (117)

fulfills the equation

η η η )
0 / (118)

From that we see that if

VqeR, U(2Kq)>-m2, (119)

then δξ(x) = 0, since in this case the selfadjoint linear operator Lη in L2(A, dx) has
no zero as an eigenvalue.
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Now we will show in each interesting case of U separately, that a solution of
(113) exists.

The Case of Trigonometric Interactions. Let

U(q) = λ J dρ((x) cos(uq + S(α)) (120)

with λ > 0 and dρ(oc) a finite measure (not necessarily nonnegative). Since U{ί) in the
considered case is a bounded function, so a solution ξδ

η

Λ of (115) if one exists, is a
bounded continuous function. Therefore we can consider (115) in the space of
bounded continuous functions ^(Λ) on Λ. Since the continuous function

ξ->T(ξ) (121)

maps ^(Λ) into a bounded convex subset of equicontinuous functions (what
follows from the definition of T in (116) and properties of 17 given by (120)), so from
Schauder fixed point theorem (e.g. [18, Theorem 4.1.1]), we conclude that (116)
and so (115) and (113) has a solution. We have the uniqueness of the solution under
the condition

/ l ία 2 φ(α) |<m 2 . (122)

The Case of Exponential Interactions. Let now
q (123)

with λ>0 and dρ(a) a probability measure supported in ( —2|/π,2|/π). [We
assume that dρ(oc) has no positive mass at the point α = 0.)]

We are interested in such a solution of (115) for which for every regular mea-
sure μ,

« o o . (124)

In this case (116) is equivalent to (113). Let us first consider the case when dρ(a) is
supported in a halfline, i.e. in [0.2j/π) or ( —2|/π,0], since we will use the same
methods in analysis of global aspects. We consider only the case suppdρ(α)
C[0,2]/π), because the second case is almost the same. Now under the fixed
conditions, we have that a solution ξd

η

Λ of (115) - if it exists - is nonpositive and
bounded as follows

- f G6Λ(x,y)U^(Ψd

η

Λ(y))dy^ξd

η

Λ(x)S0. (125)
A

[This is the consequence of properties of GδΛ(x, y) and £/.] Moreover we see that
the bounded closed and convex set of functions which fulfill (125) is mapped by T
[defined in (116)] into itself. Hence by analogous arguments as in the trig-
onometric case based on the Schauder's fixed point theorem, we have the existence
of solution ξηΛ of (115). The uniqueness, for each λ>0, in the case of U given by
(123) follows from the fact that Ui2\q)>0.

The case of general exponential interaction will be considered together with a
polynomial case in the following point:

The Case of Interactions Monotonous at Infinity. For simplicity let us assume that

U{2)(q)>-m2>-m2, (126)
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hence we may and do assume that U{2) is nonnegative. [Because if (126) is fulfilled
we can redefine interaction by taking U(1) + m2q instead of t/ ( 1 ) and the mass
m2 — m 2 > 0 instead of m2 in (113). By this manner we can obtain an analogous
equation as (113), but now with an increasing first derivative of interaction.]

Using the notation (114), let us write our Dirichlet problem (113) in the form

η η η XGΛ; ξδ

η

Λ(x) = 0, xeΛc (127)

with

F(ξ) (x): = U^(ξ(x) + Ψd

η

Λ(x)) - U^(ΨδΛ(x)) (128)

and

fδΛ(x):=-U^(ΨδΛ(x)). (129)

Since we have assumed that U{1) is nondecreasing, so for any x and any real
function ξ(x), we have

ξ(x)F(ξ)(x)^0. (130)

Moreover since we assumed that

U^\Ψd

η

Λ(x)) e LS(Λ, dx), μ-a.e. (131)

for some s > 1 and any μ e Jίri so we have

IIΛM( ) l l - i , M < o o . (132)

Hence we can prove the existence of a weak solution of (113) (in the sense that
F(ξηΛ)(x)eLltl0C(Λ) and (113) is satisfied in the sense of distributions on ^(Λ)
exactly by the method of [13] (proof of Theorem 1). In fact in the interesting cases
we have U e ^°°, and since from [14] the functions Ψ6

η

Λ(x) are harmonic in A (μ-a. e.
for any μ e Jίr), so fδΛ(x) e ^(Λ). Hence and from the ellipticity of our problem
we have ξd

η

Λ e ^°°(yl), and so Φd

η

Λ(x) e <g™(Λ) and fulfill (131). Under our assumption
(126) we have also uniqueness.1

This ends the discussion of ground local specifications in two dimensional
Euclidean space (leaving the other cases for further investigation). D

By this we would like to close the investigation of local aspects of the
connections of the theory of Gibbs measures of Euclidean Field Theory and the
theory of partial differential equations of Classical Euclidean Field Theory. The
global aspects of these connections will be studied in the second part of this work:
We will prove the existence of measures μφβ e d^{SUβ) for all global solutions Φ of
(13) and show that they have the global Markov property as well as that they have
the representation (3.8) of [20]. We also prove that μφβ ^_>oo> δφ and for any
unbounded Q C J R 2 with smooth boundary, for μφ > r-a.a. ηe2\ β ' ^ 1 , we have
EVQc,β(') ff-voc/ ̂ Φ£ Q ' where Φ6

η

Q is the unique - in the set μφ^> measure one -
solution of Dirichlet problem in Q with boundary data η, and Eη

QC>β(')
= Eφ>β(- \ΣQC)(η). (For analogous results in the lattice case, see [21].)

1 For a more detailed and more general investigation of the non-linear Dirichlet problem with
distributional boundary data (113) see [22]
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