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Abstract. We construct a family of representations %™ of the Neveu-
Schwarz and Ramond algebras, which generalize the Fock representations of
the Virasoro algebra. We show that the representations /%" are intertwined
by a vertex operator.

The above results are used to give the proof of the conjectured formulas for
the determinant of the contravariant form on the highest weight represen-
tations of the Neveu-Schwarz and Ramond algebras. Further results on the
representation theory of the latter are derived from the determinant formulas.

1. Introduction

In Superstring theory physicists consider two supersymmetric extensions of the
Lie algebra of vector fields on the circle (Vect(S')) called the Neveu-Schwarz [19]
and Ramond [20] algebras. The Neveu-Schwarz algebra has basis {L;, L;, G;}
(ieZ,je% +7Z), where Ly is central, and the bracket of two noncentral generators is
given by the relations

L =i ,
[LioLj]z(]—l)Li+j+5i,-—j<T>L0>

[G;,Gl=—2L;,;+0; —j%(iz_%)L;) »
[Lio Gj] =(j—%i)Gi+j-

The Ramond algebra has the same relations, but the G; are indexed by Z. These
algebras are “Z,-graded Lie algebras,” i.e., Z,-graded vector spaces with a grading
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preserving bracket operation that satisfies Z,-graded versions of anticommutativ-
ity and Jacobi’s identity.

In[13, 14] Kac gave a formula for the determinant of the Shapovalov form for
(a central extension of) Vect(S'). Kac’s formula was later proved by Feigin and
Fuchs ([2])!. In [14] Kac also gave a brief introduction to the highest weight
theory of the Neveu-Schwarz algebra, and stated (without proof) a formula for its
Shapovalov determinant. An interesting application of this formula is found in the
recent work of Friedan et al. ([8]) where the formula is used to obtain a series of
(conjectured) unitary representations. In [8] the authors also considered the
Ramond algebra, for which they conjectured a determinant formula. In the present
paper we prove the determinant formulas for both the Neveu-Schwarz and
Ramond algebras? (Sect. 4). We then use the determinant formulas to prove that
the highest weights of a Verma module and that of an irreducible subquotient are
“linked” (Theorem 5.1). For the Neveu-Schwarz algebra this result was first stated
by Kac [14].

Our proof of the determinant formulas follows the general lines of that of
Feigin and Fuchs for Vect(S') and is, like theirs, based on the construction of a
concrete family of representations. Rather than generalizing the construction of
[2], however, we generalize the one obtained by Goodman and Wallach [11].
One can show that these constructions are isomorphic via the boson-fermion
correspondence [see Frenkel, I.B.: J. Funct. Anal. 44, 259-327 (1981)]. In this
approach, the operator that was used in [2] to obtain highest weight vectors
becomes a vertex operator.

We would like to point out that the theory of Verma modules for the Ramond
algebra, developed in this paper, is quite a bit different from that of the Neveu-
Schwarz algebra. For example, the Ramond algebra admits “half” Verma modules
as well as Verma modules. The former explain the extra factor in the determinant
formula of this algebra.

Finally, we hope that our findings on the Ramond algebra, as well as our
detailed follow-up and proofs of the results announced in [14] can serve as a basis
for further investigations on the subject.

In Sect. 2 we review the background material on Z,-graded Lie algebras and
their representations that will be needed in the paper. In Sect. 3 we present some
basic results on the Neveu-Schwarz and Ramond algebras and their highest weight
representations. The determinant formulas are stated at the end of this section. In
Sect. 4 we construct the representations %" (Theorem 4.2) and prove that they
are intertwined by a vertex operator (Theorem 4.4). We then use the latter to
obtain maximal weight vectors in =" (Corollary 4.8). We conclude this section
with the proof of the determinant formulas which consists of two parts: The degree
computation (Proposition 4.10) and the proof of the vanishing of the determinant
on the variety of its irreducible factors (Proposition 4.13). In Sect. 5 we construct
Jantzen type filtrations following the general lines of [23], and then use them to
obtain character sum formulas (Proposition 5.2). The latter imply Theorem 5.1

! After this work was completed we received reference [27]
2 After this work was completed, D. Friedan informed us that Curtright and Thorn had also
succeeded to prove these formulas



Representations of the Neveu-Schwarz and Ramond Algebras 265

mentioned above. Finally, in the Appendix, we extend to Z,-graded Lie algebras,
some definitions and classic results about central extensions of Lie algebras.

We denote by N the set of positive integers, Z , the set of nonnegative integers,
and set Z,=7/27.

2. Preliminaries

First we recall the necessary definitions pertaining to Z,-graded algebras
([1, 15, 16, 18]). All algebras and vector spaces are defined over C.

A Z,-graded algebra is an algebra a with a vector space decomposition
a=ag+ajsuchthata,-azCa,. gzforalle, feZ,. The elements of ag are called even
and those of a, are called odd. By a subalgebra of a Z,-graded algebra we will
always mean a Z,-graded subalgebra. Also, by a homomorphism &:a—a’ of
Z.,-graded algebras we will always mean one that preserves the Z,-grading, i.c.,
such that &(a,)Ca, for all aeZ,.

A Z,-graded Lie algebra is a Z,-graded vector space [ =[5®[g equipped with a
bilinear map [,] such that [[,,[;]1Cl,. s o feZ,, and satisfying the following
conditions:
L1) [X,Y]=—(—-D"[Y,X], Xel, Yel, 0,feZ,,
L2 (—0)"[X,[V,Z]]+(= D" [Y,[Z, X]]+ (- D"’ [X,[Z, Y]]=0,
Xel, Yely, Zel, o, B,yeZ,.

The subalgebra [; of | is clearly a Lie algebra in the usual sense.

Note. We warn the reader that the terminology for the objects just defined is
varied. [15, 16] use the term “Lie superalgebras.” In [18] the authors consider
what we would call “Z ,-graded Lie algebras” and refer to them simply as “Lie
algebras.”

If a is an associative Z,-graded algebra, set [X, Y]=XY—(—-1)*YX, X €q,,
Yeay, o, e Z,. We denote by a,, the resulting Z,-graded Lie algebra.

The universal enveloping algebra of a Z,-graded Lie algebra lis a pair (U(l), o)
where U(J) is an associative Z,-graded algebra and ¢:[-U(l) is a linear map
preserving the Z,-grading, with the following universal property: o[X, Y]
=0(X)o(Y)—(—1)?o(Y)o(X) for all Xel,, Yel, o,feZ, and given an
associative Z,-graded algebra a and a linear map t7:l—a preserving the
Z,-grading, and such that 1[ X, Y] =1(X) 7(Y) — (= 1)* «(Y) «(X) for X €1, Ye I,
o, feZ,, then there is a unique homomorphism y: U(l)—a such that t=ypog.

Let V=V;®V; be a Z,-graded vector space. Let, for p=1, (®?V),
= i Z+/3 V5 ®...QV;, o, Bi€Z,, i=1,...,p, and set T*(V)=Q"V, p=1,
T°(V)=C.The tensor algebra T(V)= @ T?(V)isclearly a Z,-graded associative
algebra. p=0

Concretely, U(l)=T(1)/I, where I is the two-sided (Z,-graded) ideal in T(I)
generated by the elements of the form X@ Y —(—1)*Y®X —[X, Y], X el,, Yel,,
o,feZ,, and o:1-U(l) is induced by the restriction to [ of the canonical map
n: T()- U(D).
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Let {x;} (i e A) be a homogeneous basis of [, where A is a totally order set. Let
peZ .. By a p-tuple of A4 we mean a sequence of p elements of A. We write § for the
O-tuple. If Lis a p-tuple we set y, = yo =1 in U(l), for p=0,and y,=y;, ... y;, in U())
ifI=(y,...,i,),i;€4,j=1,...,p,for p=1, where y;=o(x;) forallie A. A p-tuple of
A is said to be admissible if its elements are in nondecreasing order and if no index
of an odd basis element appears more than once in the sequence.

Lemma 2.1 [1]. Let{x;} (i € A) be an ordered basis of 1. Then the monomials yy, for
all the admissible p-tuples I of A, and all p=0, form a basis of U(1).

From Lemma 2.1 we immediately obtain the following:
Proposition 2.2. The canonical map o:g—U(g) is injective.

Proposition 2.2 allows us to identify x; and y; Now set x;=x;, ... x;, for
I=(,...,i),j21, xo=1. By Lemma 2.1 we have

Theorem 2.3 [1]. Let {x;} (i€ A) be an ordered basis of 1. The monomials x; for all
admissible p-tuples I of A, and all p=0, form a basis of U(l).

Next, we will state the Poincaré-Birkhoff-Witt theorem for Z,-graded Lie
algebras. First, we need a few more definitions.

An associative Z,-graded algebra a is said to be commutative if [a,a]=0. The
symmetric algebra of a Z,-graded algebra [ is a pair (S(1), ), where S() is a
commutative associative Z,-graded algebra and g¢:1-S(l) is a linear map
preserving the Z,-grading, with the following property: Given any pair (a,t) where
a is a commutative associative Z,-graded algebra and t:1—a is a linear map
preserving the Z,-grading, there is a unique homomorphism : S(I)—a such that
t=1o 9. Concretely, S(I)=T()/J, where J is the two-sided (Z,-graded) ideal in
T(l) generated by the elements of the form X®Y—(—1)*Y®X, Xel,, Yel,
o, feZ,, and ¢ is induced by the restriction to I of the canonical map e: U(1)— S(I).
It is clear that ¢ maps [ injectively. For this reason we will identify ¢(I) with L.

We define a filtration of T(l) by T,(1) = T°()@® ... ® T(), and let U ,(I) =n(T,(1))
[respectively S ,(I) = &(T,(1))] be the corresponding filtration of U(l) [respectively of
S()]. Consider the Z,-graded vector spaces G*(I)=U,()/U,_(I) and G(I)

= @ G(1), where we have set U_,(1)=(0). Since U,(I) U, () CU,, (1), the multi-
i=0

plication in U(l) induces a multiplication in G(I). The resulting associative
7 ,-graded algebra is called the graded associative Z,-graded algebra associated to
the filtered Z,-graded algebra U(l).

Clearly, G°() = U°()=C - 1 and lis canonically identified with G'(I) thanks to
Proposition 2.2. Since

XY=(—1D)*YX+[X,Y]
inU,(), X el,, Yely, o, f € Z,, we conclude that there is a unique homomorphism
p: S()—G(I) such that p|;= identity. [Here, we have identified [ with its image in

S(1).] w is called the canonical homomorphism of S(I) in G(I). The next theorem is
readily obtained from Theorem 2.3.
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Theorem 2.4 (Poincaré-Birkhoff-Witt) [1]. The canonical homomorphism of S(I)
into G(I) is an isomorphism.

Remark. The Poincaré-Birkhoff-Witt Theorem for Z-graded Lie algebras was
first proved in [18].

Corollary 2.5. Let £Cl be a subalgebra of | with an ordered basis {x;}; . Let
{X;}iemon be an ordered basis of | extending {x;}; .y, and such that i<j for ie M,
j€N. Then the inclusion ¥Cl induces an injective homomorphism U(f)— U(l), and
U(D)is a free U(Y)-module with basis {x,} for all admissible p-tuplesI of N, all p=0.

For a Z,-graded vector space V=V;®V; we let End(V) be the associative
Z,-graded algebra of (graded) endomorphisms, End(V) = (End(V)); ®(End(V))1,
where

(End(V)),={TeEnd(V)|T(V,)CV,,p forall yeZ,},

aeZ, Weset(V)=(End(V)).. A representation n of a Z,-graded Lie algebralisa
homomorphism 7: [-1(V). We set Xv=n(X)v, for X el, ve V. Itis clear from the
definition that

X(Vy))CV,yp forall Xel,aeZ,,
and that
[X,Y]o=XYvo—(—1)*YXv, forall Xel, Yel, «,feZ,.

We will also use the terminologies of “U(l)-module” and “I-module” in place of
“representation of 1.” A submodule of an [-module is always meant to be
Z,-graded, and a homomorphism @: M — M’ of [-modules, means one such that
D(M,)C M., where y:Z,—7Z, is a bijection.

Let £CI be a subalgebra of I, W a -module. Thanks to Corollary 2.5 we can
view U(f) as a subalgebra of U(I). One can consider U(I) as a right U(f)-module and
therefore may form the left U(l}-module V=U(0)®yyW. Le., let M be the
Z,-graded subspace of U(I)@ W generated by the elements of form XY®uv
—X®Yv for all XeU(l), YeU(f) and ve W. Then V is the Z,-graded space

(UH@W)/M. V is made into a U(I)-module by setting
X(Y®v)=XY®v, X,YeU(),veW.

V is called the U(l)-module induced from the U(f)-module W and denoted Ind}(W).
By Corollary 2.5 the homomorphism wi—1®w from W to V is injective. We
identify W with 1® W by this map.

Proposition 2.6. Let fClbe a subalgebra of 1, W a¥-module, V =Ind}(W) and V' and
[-module. Any Y-homomorphism y:W—V’ can be uniquely extended to an
[-homomorphism ¢: V—V'. Furthermore, p— ¢ is a bijection from Homy(W, V") to
Hom,(V, V").

Proof. Let ¢(X®@w)=Xpw). If XeU(l), YeU), then (XYRwW—X® Yw)
=XYyp(w)—Xyp(Yw)=0,s0 ¢isa homomorphism from V to V. The restriction of
¢ to 1QW gives a map from Hom(V,V’) to Hom (W, V’) inverse to
w—¢. QED.
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3. Highest Weight Representations

Let ns (respectively r) denote the complex vector space with basis {L;, G;} (i€ Z,
je} +Z) (vespectively {L;, G;} (i,j e Z)), and set

[Li, Li=(—DLis;,
[Gi9Gj]=—2Li+j:
[Lian]z(i"'l'i)Gi+j~
Let o= (PCL;, and set fs5=rg =1, b7 = (—B CG;. 1= DCG;. Itis easy to see

icZ icZ
that ns and r are Z,-graded Lie algebras and that visasubalgebraofnsandr.visa

Lie algebra in the usual sense. Now let
(L, Lj) =3 0; —j(i3 ~i),
C(G,, G)=%6; _(i*—%
C(L;, G)=0.

It is also easy to see that C satisfies the cocycle condition for Z,-graded Lie
algebras. The central extension? of ns (respectively r) corresponding to the cocycle
C is called the Neveu-Schwarz (respectively Ramond) algebra and is denoted by 1%
(respectively 1) (See Appendix for the definitions of cocycle condition and central
extension corresponding to a cocycle, for Z,-graded Lie algebras.) The central
extension of v corresponding to C|, ., is called the Virasoro algebra and is denoted
by .

From now on, in this section, we let g denote either one of the Z,-graded Lie
algebras M5 and f. The Z,-grading is given by

= <C—D(Eei+>(-|9®e3, ns;= P Ce,r1=PCe
i€Z iet +Z icZ

where e/ =(L;,0), e, =(G;,0), and e;, = (0, 1) in the notation of the Appendix. (We

sometimes drop the superscripts of e/, e; if g=15.)

If lis a Lie algebra in the usual sense, then U(I) is isomorphic to a polynomial
ring. Therefore, by the P-B-W theorem, U(l) is an integral domain. If [ is a
Z,-graded Lie algebra, however, S(I) is not in general isomorphic with a
polynomial ring. Nevertheless one has the following

Proposition 3.1. U(g) is an integral domain.

Proof. We let B={e,IneZ}u{e,|meZ+1i}uie,} if g=1%5, and B={e, |neZ}
vie, ImeZ}u{ey} if g=1% We enumerate the elements of B by X:Z— B, where
X(0)=ep, XQ2n—1)=e;,- L2 X(2n)=e,, X(—2n+1)=e,_,, X(—2n)
=€_(n-1)2s ne]N if g=1s5, and X(0)=e; X(2n—1)=e,, X(2n)=e, |,
X( 2n+1)=etf,, X_,y=ei-,, neN, if g=% Let x,=X(m), meZ. By
Theorem 2.3, a basis of U(g) consists of the monomials x;=x;, ... x; , where
I=(y,...,i,) is an admissible m-tuple of Z. If x;eg5 and I= (zl, vosly) 1 an

3 By Proposition A2 and the results of [21] one sees that these are universal central extensions
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admissible m-tuple of Z, let Z(j,I) denote the set of all i,, k=1, ..., m, such that

either i, =j or x; € g7 and [x;,, x; ] € —2x;4+Cx,. Forie Z set a;=2 if x; € g5 and

a;=1 if x;e g;. We define the j-degree of x; as j—deg(x;)=0 if Z(j,I)=0 and

j —deg(x‘)= > a;,, otherwise. We define the total degree of x; as t —deg(x;)
ix€Z(j, 1)

Z a;. Note that t—deg(x)= Y j—deg(xy). Given I=(y,...,i,) and
J= (]1, ...sjn)s IE=J such that t—deg(x,o)—t—deg(xJ) we choose the leading
monomial between x; and x; as follows: Let j, be the largest evenindex (i.e. x;, € g5)
such that j, —deg(x;) #j, —deg(x;). The leading monomial is the one with greatest

jo-degree. If x= 3" a;x; we set t —deg(x) =max {t—deg(x;)}. If t—deg(x)=p, the
1 1

leading monomial of x is, by definition, the leading monomial of total degree p. We
note: 1) t —deg([x;, x;]) <t—deg(x;x,)if x; or x; € g5. 2) Let x;, x; € g1, i =], and say
i<j. There are k,k’eZ such that [xj, xX;]=—2x,+c;xo and [xi, x;1= —2x;
+¢;;%0. Clearly k> k’. If ¢;# 0, then ¢;;=0, and if¢;;#0,thenc;=0and k>0. Now,
k—deg(x;x;)=1. This implies that x,x; leads the terms of [x;, x,] if i=j. 3) x?
=3 [x;, x;]= —x;+¢;xo, Where x; € gg, if X; € g5. Let agxy be the leading monomi-
al among the monomials of x;x; obtained by bracketing only an odd element
with itself. By 1)-3) t—deg(x;x;)=t—deg(axxg)=1t—deg(x,)+t—deg(xy),
Jj—deg(agxg) =j—deg(xy) +j—deg(x,) for all j such that x; € g5, so that agx is the
leading term of x;x;. Now, if x; is the leading monomial of x and y; is the leading
monomial of y, then the leading monomial of x;x; constructed above is the leading
term of xy. Hence xy=+0 if x+0, y+0. Q.E.D.

Leth=Cegq ®Ce; Cg. We define § € h* by requiring that d(e,) =1 and d(ej) =0,
if =115, and that é(eq ) =1 and d(ep) =0, if g=1. Let Q = 3 Z4, if g =115, and Q = Z4,
if g=t. For neQ, let

g"={Xeg|[H,X]=n(H)X for all Heb}.

We then have 1°=Ce,®Ce;, and ns?’=Ce; for all ieZ\{0},
=Cef ®Ce, ®Ce; and 1 =Ce;* ®Ce;, for all leZ\{O} Hence g = E}—)g and

[g", g™ ]Cg™ " " for all 7, 712 € Q. We write id0 >0 (respectively id <O) if i>0
(respectively i <0), where ie 1 Z. Let Q" denote the set of all # € Q such that #>0.
We define the subalgebras nand n~ of g as n= @ g’andn” = P g¢" Then

g=n"®g’°@®n. Let b=¢g°®n. If M is anbmodule and pebh*, let
M*={ve M|Hv=u(H)v for all Heb}.

Definition 3.2. A g-module M is said to be a weight module if M= @ M*, with
dimM* < oo for all Aeb*. M* is called the u-weightspace of M. "%

Definition 3.3. Let M be a g-module, p€bh*, ve Mg\{0} such that Hv= A(H)v for
all Helh, nv=0and M = U(g)v. Then M is said to be a highest weight module with
highest weight A.

Remark. Any highest weight module is a weight module with weightspace
decomposition M = M*, where A is the highest weight of M, and

ued—Q+u{0}
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=Cv, M "=Um") ", if g=15, and M*=Co@®Ceyv, M*"
=UM")@UMm ey) "vifg=t. Here U(n") "and (Un")® UM )ey ) "are the
weightspaces of U(n™) and U(n" )@ U(n" )¢, , respectively, viewed as h-modules,
and M =U(g)v. Any nonzero homogeneous element of M* is called a highest
weight vector.

Let Aeh* and let Ael)=h, Aey)=c. If g=115, let C(1) denote the one-
dimensional even b-module € defined by e,1=h1, ej1 =cl1, n1=0, deg1 =0. If
g="1 we denote by R(/I) the two-dimensional Z,-graded b-module generated by v,,
where n 0;,=0, eqgv;=hv,, eg,=cv,, deg(v;)=0. If g=*%, and 4 is such that

h=— 1 6 we denote by S(4) the one-dimensional even b-module € defined by

nl1=0,e51=hl, eyl =cl,e51 ——0 deg1=0.Ifh+ — —thus R(4)is irreducible (as

a Z,-graded b-module). If h= —
of R(1) isomorphic to S(1).

Definition 3.4. Let A€ h*, and let V(1) be one of the b-modules €(4), R(4), or S(4) if
Meg )= —A(ep)/16. Set M(V(A))=Indg(V(1)). If V(A)= (E(/l) or R(%), M(V(4)) is
called the Verma module associated with g, b, and 1. If A(eq ) = — A(eg)/16, M(S(A)) is
called the half Verma module associated with g, h, and A. (This terminology will be
justified by Proposition 3.12.)

Remark. M(V(2))=UMn")®cV(4) by Corollary 2.5. We have M(V(1)*™"
=UMm") "®V(A) and M(V(1)= 6—) o MV ().

neQtu
The following is an immediate consequence of the universal property of the

tensor product.

q 6 thenegv, generates a proper U(b)-submodule

Proposition 3.5. If A(eg)= — A(ep)/16, then M(S(2)) is a submodule of M(R(%)).

We denote by p(n) the number of partitions of n and by p(S, n) the number of
partitions of n that belong to the subset S of the set of all partitions. For a subset H
of the set of positive integers, we denote by “H”’ the set of all partitions with parts in
H, and by “H” (=d) the set of all partitions with parts in H, in which no part
appears more than d times. Let H, (respectively H,) denote the even (respectively
odd) positive integers. Finally, let p (2, n) [respectively p,(2, n)) be the number of
partitions of n into an even (respectively odd) number of distinct parts, and let
p(2,n) be the number of partitions of n into distinct parts.

If M is a weight module we set M=M*nM,, peb*, yeZ,.

Proposition 3.6. Let 1eb*,

dim M(C(2))* " = p(n) = p(2n), (1)
where s
p0)=1,p(s)= izZo p(“Ho”, ) p(“H{ (1), s—10), s>0;
dim M(R(A))} "= p(n) , 2
where

BO0)=1,5m= 3 p() p(@;n~1),n>0,yeL,;
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If Aey)= —Aileg)/16, then
dimMSWY " =1pm) for n>0,5(n) asin (2). 3)

Proof. By the remark that follows Definition 3.4, M(R(4))§™"™ is a linear
combination of elements

et .efiel; el ®u ety elel, el ®epuy,
where
i 4y = kg ek L =0,
2 2y > Sk 2 2k > >,

s even, u odd. Hence,
dim M(R())§ ™= ,:Zo () pZ,n—i)+ ;O p() p(Z,n—i)

= 3 p)p@.n—).

Similarly, for M(R(A))3 ". This proves (2).
To prove (3) we use a similar argument and note that

Z p(l)pe(@’n_l)z Z P(i)l’o(@:n‘i)y for all n>0)
i=0 i=0

since

(%’; () q") (§ ACRIRACA n))q") =1

(see, e.g. [10]). (1) is even easier. Q.E.D.
Let v,=1®v; in M(R(A)) and v,=1®1 in M(C(A) or in M(S(A)).

Proposition 3.7. Let M be a highest weight module with highest weight A and let v be
a generating highest weight vector of M. If g=115, we let V(1) =C(A); if g=1 we let
V()=R(A) if eqv+0, and V()=S(1) if eqv=0 (in which case A(eg)
= —Aep)/16). Then there is a unique surjective homomorphism ¢: M(V(A))—»M
such that ¢(v;) =v.

Proof. This is immediate from Proposition 2.6. Q.E.D.

Proposition 3.8. Let M be a highest weight module. Then M has a unique maximal
proper submodule.

Proof. Let A be the highest weight of M. If g=15, or if g=1 and A(eg ) # A(ep)/16,
then every proper submodule of M is contained in @ M*~™. If g=*% and A(ey )

n>0

= — A(ey)/16, then every proper submodule of M is contained in @ M* @M1

n>0
In ecither case, the sum of all proper submodules is itself a proper
submodule. Q.E.D.
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Definition 3.9. L(V(A)) = unique irreducible quotient of M(V(1)), V(1)=C(1),
R(A) or S(4).

Proposition 3.10. Let A(eg)= — A(ey)/16. Then L(R(L))~ L(S(1)).

Proof. Let M(R(A)), [respectively M(S(4)),] denote the unique maximal
proper submodule of M(R(A)) [respectively M(S(4))]. By Proposition 3.5, e (1®
v;) € M(R(4))1). Therefore the image T®v, of 1®v, by the quotient map is
annihilated by e, . By Proposition 3.7, there is a unique surjective homomorphism
¢: M(S(L))— L(R(4)) such that ¢(1®1)=1®v,. This implies that

L(R(A))~M(S(A)/kerg=L(S(4)). Q.ED.
Definition 3.11. If M is a weight module, we define the character of M as
chM= Y (dimM*)gq".

uneb*

From now on we abbreviate ¢" by ¢", né € Q.

[T (+g™)
Proposition 3.12. (1) chM(C(1))= qi%;
(@) chM(R(!)=24" TT g +q::§;
(3 chM(S()=q* TT 8”:2, if Aed)=—Mey)/16.
Proof.
ITA+q™"
2 g "= ngn(1+q‘"+q‘2"+ ) I1 (+q ”)=&I-“[d(1—_ﬁ,
p(n) as in Proposition 3.6. By Proposition 3.6,
[T d+q™
chM(C(2) = Z . pn)q* =g 2 pmaq” "’2—q*%q)*

By Proposition 3.6,
chM(R(2)) = Z dim(M(R(D))* ") q* " =24" Z p(mq"

Cw - . I+q™"
=2¢*TT (1+q "+q " +.. )H(1+q )=24" H( q-n)-
nelN ne]N(l_ )

This proves (1) and (2). (3) follows from (2) and Proposition 3.6. Q.E.D.

Proposition 3.13. Let V(1) = (E(l) V() =C(w), or V(A)=R(1), V(w)=R(w), or

V()=S8(2), V()=Su), if Aeg)=—Ae;)/16 and ples)=—pu(ep)/16. Every
homomorphism ¢: M(V(1))—M(V(w)) is injective or zero.
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Proof. Let ¢: MWV (A)-M(V (1)) be a nonzero homomorphism. Then
¢()=Yv,, Y0, YeUm")@U(n )e, if V(1) =R(4), V(u)=R(w) [respectively
YeUm™) if V()=C@A), V(w=Cu), or V(H=S(), V(w=Sw]. If
ve M(V(AN{0}, say v=Xv,, X+0, XeUn )®Un )e, if V(1)=R(1),
V(w=R(p) [respectively XeUmn™) if V(A)=CA), V(w=C(y), or V(1)
=S(4), Viwy=S(uw)], then XY=+0 by Proposition 3.1. Now,
MR)=(Um)OUM )eg)®cCv,, MC(W)=Un")®cC and M(S(u)
=UMn")®C, hence XYv+0. Q.E.D.

We now define the contravariant form on M(V(4)) for V(1)=C(4), R(1), or
S(A) if Aeg)= — Aey)/16.
We set 6(e )=e?,, o(e; )=eZ; and o(ep) =ej. Clearly,

o(lei", e =[o(e;), o(e )], M
a(le; e; D ="Lale;), ale; )], @)
(e, e; D="[ole;), aleN], &)
a([g, €0)]=0=[o(eo), o(g)]. @

This implies that ¢ extends to a Z,-graded linear bijection from g to q such that
o? =identity and o([X, Y])=[0(Y),qa(X)], for all X, Yeq. By the universal
property of U(g), o therefore extends to a Z,-graded linear bijection from U(g) to
U(q) such that 62 = identity and o(X Y)=0(Y) o(X), for all X, Ye U(g). From the
decomposition g=n"@®g°@®n and Corollary 2.5, one sees that U(g)
=U(@g")®Mm U(g)+ U(g)n). Let ¢: U(g)e U(g®) be the projection on the first
factor, and let ITg: U(g®)—(U(g°%)5 be the projection on the even component of
U(g%). Let B=1II50¢: U(g)—~>U(g°),. For X, Ye U(g), Aebh*, we set

(Xvy, Yvy),=(2° ) (a(X) Y), ©)

where we have extended Aeb* canonically to an algebra homomorphism
2:U(g%5—C, and v, e M(V(A)), V(A)=C(A), R(4), or S(A), if Aeg)= — A(ey)/16.

Proposition 3.14. (a) (, ), defines a symmetric, bilinear form on M(V (1)) such that
(Xv,w),=(v,0(X)w); forall XeU(g),v,weM(V(4), (6)

(b) (M(V(ﬂ))’ylfa M(V(/D)f;zz),l: 0if py=Fpy or yyF 72, Uy, Pl €D*, vy, 7, €Z,;

(c) Theradicalof ( , ),, Rad(, );, is the maximal proper submodule of M(V(1));

(d) (,), is the unique symmetric bilinear form on M(V(A)) such that
MV (X)), M(V(A)1),=0, (v;,v;),=1 and such that (6) is satisfied.

Proof. (a) If Xv,=0, then X is in the left ideal of U(g) generated by n and
{H—XH)|Heb}, if V(1)=C(4) or R(A) [respectively generated by n, Ce, and
{H—A(H)|H e b} if V(A)=S(), Meg) = — A(ey)/16]. Therefore (Xv,, U(g)v,),=0.
Now,

(Xv;, Yvy),=(4° B)(a(X) Y) = (4 B) (a(a(X) Y)) = (4= ) (a(Y) X)=(Yv;, Xv,),,
hence ( , ), is symmetric. Also,

(ZXv;, Yv;),=(4° B)(a(ZX) Y) = (4= B) (0(X) 0(Z) Y) = (Xv,, 0(Z) Yv,), -
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(b) U(e):U(g);CU(9)rz5 a(U(g)) CU(g); i=0,1, and B(U(g);r)=(0). Hence,
Ble(X)Y)=0 if XeU(g); YeU(g)r=; i=0,1. Let now v,eM(V(A))",
v, e M(V(A)* and py#p,. Then (Hovy,v,);=p(H)(vy,0,); and (vy, Huy)
= ,(H) (vy, v,) for all H e h. By (6) (uy(H) — pp(H)) (v1,,), =0, hence (v, v,),=0.

(c) LetveRad(, ),. Then (Xv, U(g)v,),= (v, 6(X) U(g)v,),=0forall X € U(g).
Hence, Rad(, ), is a proper submodule of M(V (1)), since (v,,v,);=1. Therefore
Rad(, ), Clargest proper submodule of M(V(1)). Conversely, let v be in the largest
proper submodule of M(V(4)). Then v e(@ M( V(/l))*‘"") @M(V(4))%, and so,

n>0 B

by (b), (v,v,);,=0. Now, (v, U(g)v;)=(a(U(g))v,v;),=0 and veRad(, ),.

(d) Let ¢, >, be a symmetric bilinear form on M(V(A)) such that
(M(V(A))5, M(V(A))1) =0 and such that (Xv,w),= (v, o(X)w), for all X € U(g),
v,we M(V(1)). Then {(Xv,, Yv,>,=<v;,0(X)Yv,>;. By (b), (v, a(X)Yv,);
=(A°p)(a(X)Y) vz, QED.

Let Aebh* and set h=A(eg), c=A(ey). For ne3Z ., and yeZ,, we denote by
(s In,e,n [respectively (, )y ., JOrby (, ), [respectlvely( )1, ,] the restriction of
(,); to M(V(A)*~™ [respectively M(V(l))‘ "%, where V(4)=C(1) or R(1). We
now state the formulas for the determinant of (, ), ..., (We omit the subscript y if
g=13). The formula for the Neveu-Schwarz algebra was conjectured by Kac [14],

and the one for the Ramond algebra was conjectured by D. Friedan, Z. Qiu, and S.
H. Shenker [7, 8]. Let r,se 3NN, r<s. Set, for g=115

hri(o)=—%["+s)(5—)+|/c?—=10c+9(r* —s*)—8rs—F+ 3], (1)

and, for g=1

hE(e)=—4[(*+5) (5—0) £ /P —10c+9(? —s*) —8rs— % +1c]— 5. (7)

Also, set, for s, p, (h, ¢)=(h—h; (c)) (h—h, (c)), and, for g= ? hc)=h
+ 15 (1 —c) (4r*—1). Let p(i) be as in Proposition 3.6. Then, 1f g=1f

det( b )h,c,n = I_I wr,s(h9 c)ﬁ(n N 2rs), [14] (8)

2rs=n,r—seZ
and, for g=1%,

det( s )h,c,n,y= <h+

C

+p(n)
[1 Wy, o(h, )2 ©)
16 2rsEn,r—sei+1Z ’

if 20, and det(, ), ..0.5=1, det(, )h601—h+ < [7.8].

Note. The nonzero constant depending on the choice of a basis of M(V(4)) has
been omitted in (8), (9).

4. The Representations ¢
and the Proof of the Determinant Formulas

We retain the notation of Sect. 3. In this section we prove the determinant formulas
for the restriction of (, ), to M(V(A))4 (see Sect. 3). The main ingredients are the
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construction of the representations # > of g (Theorem 4.2), which generalize the
construction of [11], and the vertex operator.

Following [6] let t be a one-dimensional space, t=CT, and let <, > be a
symmetric, bilinear form on t such that (T, T) =1. Let 1 =t®C[t,t ' ]@®Cz, and
let

[X(m), Y(W)]=<X,Y)mby .07, M
[t z1=0, (2

where we have set X(m)=X®t" for all xet, meZ. We let
D X®t"Y=n, Xet,nelk, (3)
D(z)=0. 4)
We note that f, = (ne(z—%} t®(Et"> @Czis a Z-graded Heisenberg algebra with the
Z-grading given by the degree map D. Let f = P tecCr Cf*, and
u= n@o t®(Et") ®Czct,. Let €(1) denote the one-dimensin(;r;)al u-module such

that (X®t")1=0 if Xet, n>0, and z1=1, and form the left U(t )-module:
Ind®*C(1). Note that S(t7) is linearly isomorphic with Ind‘*(]j(l) Using  this
isomorphism we can define a t -module action on S(t7) and identify S(t~) with
Ind*@(1). Let C[t] denote the group algebra of t, C[t]= P 7, where e’

=e*"F o, fet, and let wel
De"‘=——M, aet. 5
2
Let V=S(t")®C[t]. We define a representation (r,, V) of  as follows:
1(X)=X®1, Xet,, (6)
,(X) 0®e) =v@R<(X,ade*, Xet,veSE™), aet, (7
7,(z) =identity. (8)
Let
(e (e =ve*F,  « fet,veSE). )

The pair (, C[t]) is called a Heisenberg system ([6]) and (n, 7,) is an irreducible
representation of (t, C[t]) ([6]).

Next we describe the spin representation of [4, 17]. We denote by Z
the set Z+7% or the set Z. Let U= @ Ca(m), UT= P Ca(m), and

meZ m>0,meZ

U = @ Cam). Let {,>:UxU—-C be the symmetric bilinear form
m=<0,meZ
satisfying
Ca(m), a(n)y =0,+4,0 (10)

and let ¥/(U) be the corresponding Clifford algebra. That is, ¥/(U)=T(U)/J,
where T(U) is the tensor algebra of U and J is the two-sided ideal of T(U)
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generated by the elements of the form: v@w+w®v— v, w). Let
Da(m)=m. (11)
We define, for XeU ™, YeU",

Ly A..onv)=X AV A A, (12)

n

Y)Wy Aonv)= 2 (= 1Y Y 0D0 A AG A AT, (13)

o X+Y)=Ly+u(Y), 14)

v;eU7,i=1,...,n. g extends to an irreducible representation of €/ (U) on €£(U ~)
=A(U"™), also denoted by g, called the spin representation corresponding to the
polarization U=U*@U ™ ([4, 17]). Let W=V A(U 7). We let (, C[¢]) act on W
by letting it act trivially on A(U ), and let ¥/ (U) act on W by letting it act trivially
on V. We make W into a Z,-graded vector space W= @ W, by setting degv= 0
for all ve V and degu=T for all ue U. VeL2

From now on we omit the representation symbols and indicate the action of an
element of (, C[]) or ¥/(U) on W by the element itself.

The ordered products: :T(m) T(n): and :a(m) a(n): of the operators T(m) and
T(n), and a(m) and a(n), respectively, are defined as follows:

T(m) T(n) if m<n,
T(m) T(n):=3[T(m) T(n)+T(n) T(m)] if m=n, (15)
T(n) T(m) if m>n,
a(m) a(n) if m<n,
a(m) a(n): = {3 [a(m)a(n)—a(n)a(m)] if m=n, (16)
—a(n) a(m) if m>n.

We now define the operators that give a special case of the representations of g
that will be constructed. From now on, Z=Z+1 if g=1s and Z=7Z if g=1%.
Let, for neZ,

A= 1Y TR T—k):+4 Y k:a(k) a(n—k): 17)
keZ keZ+%
if g="11,
di = =3 3 :T0) Tn—k)+3 3 kial) atn—k): =158, (18)

if g=%, and, for ne Z,
d, = Y Thy®an—k). (19)
keZ

(We sometimes drop the superscripts if g=115.)
The degree map D given by (3), (4), (5), and (11) extends uniquely to a degree
derivation on W which we also denote by D.
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If A, B, C are operators we have the following obvious identities: [AB, C]
=[A7 C]B+A[B> C], [AB> C:I:_[Ay C]+B+A[Ba C]+ and [AB, C]+
=—[A,C]B+A[B,C],, where [4, B], is the anticommutator AB+ BA.

Let df°=—1 3 :T(k) T(n—k):, neZ. Then one has:

keZ

[dy°, T(m)]=nT(m+n),mneZ ([6],see also [12]) (20)
—m
12

([6], see also [12]). The relations of the next lemma were also known ([5]).* We
give their proof for completeness.

Lemmad.l. Let d/'=% Y kak)an—k): if g=0 and dj*!

keZ+%

[d+ 0 d+ 0] (n m)dm+n 5m+n,0’ manez (21)

Z k:a(k)ya(n—k): — 96, if g=1%. Then
(1) [dftam)]=n+im)a(m+n), meZ, neZ;
3

(i) [ d D= (n—m)d i+ 7

Proof. () [d} ', am)]=3%3 k[a(k)a(m—k),a(n)], by (16). Assume that
keZ

m= —2n. Then [d,?, a(n)] =1 [ —na(—n) a(m+n) +(m+n) a(m+n) a(—n), a(n)]
=im+2n)a(m+n), by (10. I m=-2n,  then, [d) 2 a(n)]
=3[ —na(—n)a(—n), a(n)]=0;

(i) [[dn", d, "], at)]=[dy", (k+3n)atk+n)]+[(k+5m) a(k+m), d, ']
:(k+—§-n) (k+n+im) atk+m+n)—(k+im) (k+m+3in) alk+m+n)=mn—m)
(k+1(m+n) am+n+k)=[(n—m)d, 2, a(k)] for all ke Z, by (i). Therefore,
[d)1,d}1—(n—m)d,;}:%, is constant, by the irreducibility of A(U~). Since
[d}- 3 ,d; i 1~ (n—m)d}:Y is homogeneous of degree m+n relative to D, we
conclude that this constant is zero unless m+n=0. Now, if g=1%
[di', d5' ] (111 =df !, d5 M (111) = (1 aB)?) (—1a(—2)%) (1®1®1)
=0=—2d;"'(1®1®1). Similarly,

[d51d5 ' 111N =111®1)= —4d; ' (1®1®1)

Oman.0> MNEL.

and

[di',d5 " 110101 =$(101®1)= —2d§ '(1®1®1)
and
[dy',d5" 1(10101)=3(101®1)=(—4ds ' +H (1®1®1) if g=t.

Proceeding by induction, we assume that (ii) has been proved for n=—m and
1

m=2. Now, write d,,,+1=m—-[d+ Ld51] and df;5 1————[dJr Ldr}
It is now a simple exercise to see that [d;}:Y,d*;L 1]——2(m+1)d0’

3_
L (mt 1 = (m+ 1)’ which proves (ii). Q.E.D.

4 Similar calculations were also carried out in [3]



278 A. Meurman and A. Rocha-Caridi

Lemma 4.1, (20) and (21) imply that the formulas (17)—(19) give a represen-
tation of g on W where the central element acts as the identity operator. To ob-
tain arbitrary central action, we let, for £eC and neZ,

2

o O =d +EnT(m+ 5,0

and, for ne Z,

e, (¢)=d, —2¢na(n).

(We sometimes drop the superscripts if g=1i5.)
We note that [ARQB, C®D]=[4,C]®BD+CA®[B,D] and [ARB,

Theorem 4.2. Let (e € and set ne, ) =e, (§), neZ, n e, )=e, ({), neZ, and

neo)=1—8&%. Then m, extends to a representation of g on W.

Proof. (a) [en(O),e,(O1=[d, % d," T+ &nld, 0, T(m)]+[d, ", dy 11+ Em

3 =

[T(m), d; ]+ E*mn[T(m), T(0)] = (n—m) dpy:5+ ml—zm Omsn,0+En* T(m+n)
3_

+(n—m)d, b+ ﬂﬁ"j Omn,0—Em* T(m+n)+E*m*nd,, ., o by (20), (21), and

Lemma 4.1.

Hence, [en (9, e, (O] =(n—m) [dl +nt&(m+n) T(m+n)+ 52—25,”,.,0}

m* —m
+ T5m+n,0—€2m35m+n,0+m625m+n,0 =(n——m) 3;4.,,(6)

ms—m
+

5m+n,0(:l - 862),

(b) Le (&), e, (O1=[dn°, d,; 1+ [d, ", dy 1+ Em[T(m), d, 1—2¢n[d, ", a(m)]
= Ez [[d,° T(k)]®am—k)+T(k)[d, "', a(n—k)]
+&m[T(m), T(K)]®a(n—k)]—2¢nld,, ", a(n)] = Z [kT(m+k)®@a(n—k)
+m—k+im) T(k)®a(m+n k)] + &m? a(m+n) 2én(n+ z m) a(m+n)
= kZZ [(k—m+n—k+3im) T(k)®a(m+n—k)]+ Em* —2n* —mn) a(m+n)

= kZz(n—%m) T(k)®a(m+n—k)—25(n—3m) (m+n) a(m+n)=(n—13.) €y,

by (20) and Lemma 4.1.
© [, (&), e, (O)]+ = . IZZ [T(k)@a(m—k), T®@a(n—1D],

—2¢n Z [T(h)®a(m—k), a(n)], —2im Z La(m), TH®a(n—1)]
+462mn[a(m) am)], = Z ([T(k), T(l)]®a(m k)a(n—1)

+T() T(ky®[a(m—k), a(n—l)]+] 2¢n Z T(k)®[a(m—k), a(n)] +

—2¢m 2 T(h®[a(m), a(n—10]. +452mn[a(m) a(m)]. = Z [ka(m—k) a(n+k)
+ T(m+ n—k) T(k)]—2énT(m+n)—2EmT (m+n)—4E%m 25m+,, o-

It is clear that ka(m—k)a(n+k)—k:a(m—k)a(n+k):=0=T(m+n—k) T(k)
—:T(m+n—k) T(k):, unless m+n=0. Assume that m>0. If k>m, then both
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differences are zero since also k>0. If k<0, then ka(m—k)a(n+k)
—k:a(m—k) a(n+k):=kd,sno and  T(m+n—k)T(k)—:T(m+n—k) T(k):
—kOpino- Therefore, if g=1s, [e, (&), e, (O],= Z [k:a(m—k)a(n+k):

+T(m+n—k) T(k):]+ zﬁkamﬂ,o 26(m+n) T(m+n) — 425, o
=m 3 a(k)a(mn— T 3 k) almtn—Ry+ X () Tmtn—k):
30N 331 0— 28Gm ) Tm ) — 482025, o = ~ 265 ,(&)

+3(m* =) Opyn,0(1—8 52) If g=t%, [e (©,e, (O] = Z [k:a(m—k) a(n+k):
+:T(m+n—k) T(K):]+ z kim0t = 5,,,+,,0 2é(m+n)T(m+n)
—4E2m? 5m+n0—m2 a(k)a(m+n k) sz :a(k) a(m+n—k):

+ Z T(k) T(m+n k) + m+n,0 26(m+n) T(m+n)—4€2m25m+n,0

keZ

—2e} (O+im*—D 5m+n,0(1 —8¢2). Similarly for m<0. Q.E.D.
For weC, let #*°=S1")®@Ce”"®@A(U ). Then
W= @ s (22)

weC
as representations of g. Let b, nC g be as in Sect. 3. For p € h* we denote by ("% )*
the u-weightspace of "> relative to D). Let (A5 =(A"> (A >?),, yEZ,.

Proposition 4.3. Let £, weC. Then
() A5= @ oy

(ii) (#* ‘°)“=|=0 only if u(ep)=1-8L and pleg)=
2
nei., if g=ns, andu(eo)-—é 2(0 & —n for some nel., if g=*%;
(i) dim(#>?)s=p(n) for u as in (i) and yeZ,, where p is defined in
Proposition 3.5;
(iv) 1®e°T®1 is an n-invariant vector in A >,

—n for some

52_w2
2

Proof. Let ki, ...k, eN, I, ..., ,e3N, and let n= 3 ki+ 3 I,
i=1 =1
Using (20) and Lemma 4.1 (i) we obtain '
e (O(T(=ky) ... T(=k)®e*T®@a(—1}) ... a(—1)
=T(—ky)... T(=k)a(=1,)...a(—1) <63(f)— '21 ki — -21 Ij) (1®e°T®1)
22 = 7=
= <f 2(0 —n> T(-kl) e T(—kr)®ewT®a(_ll) eee a(—ls),
if g=115. Similarly, for g=1%. This proves (i) and (ii), and (iii) follows from (ii). By
2 2 2_ .2
Theorem 4.2, e acts on eZ(1@e°T®1) by ¢ 2w +m if g=15, and by ¢ za)
—4 +mif g=*%. (iv) now follows from (ii). Q.E.D.
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Let { be a formal variable and let e C. Let
xeo=ep( £ T Jowp( - 3 00

nelN nelN n

@ 2@t (23)

where we set
e =T 7 6], (24)

We define X, (b): W—W by
X, ()= bZC X, b). (25)
Then

[T(m), X (b)]=0X (m+b),meZ,a,becC [6], (26)

[, Xo(b)]= <m+b— %fm)Xa(erb), meZ,0beC,[6]. 27)

The vertex operator is given by
Y,(b)= 2 Xalb— ky®a(k), [5]. (28)

Theorem 4.4. Let o.€ C\{0} and let Y,(b) be as in (28). Y,(0) is a g-homomorphism of
2 —
(&, W) if and only if &= %.5

Proof. [e, (&), Y,(b)], = [’EZ T(k)®a(m—k)—2Ema(m), le; L Xolb— l)@)a(l)]+
= Z [[T(K), X (b—D1®a(m—k) a()+ X (b—1D) T(k)®[a(m—k), a(})]]
~2€mX (b+m)= Z [aX (k+b—D®a(m—k)a(l)

+ X (b+m—k) T(k)®5m r+r0l—2émX (b+m) by (26). This implies that
Len (&), Y,(D)]. = kZZ [0 X, (b+m)Q@a(m—k) a(k—m)+ X (b+m—k) T(k)]
—2EmX (b+m). We define : X (b+m—k) T(k): to be X (b+m—k) T(k) if k>0,
I[X (b+m—k) T(k)+ T(k) X (b+m—k)]if k=0, and T(k) X (b+m—k)if k<O0.
Assume that m>0. If k>my then a(m—k)a(k—m)—:a(m—k)alk—m):=
=X, ,(b+m—k)T(k)—: X (b+m—k) T(k):. If k<0, then

o X, (b+m@[a(m—k)a(k—m)— :a(m—k) a(k—m):]=aX (b+m),

and X (b+m—k)T(k)—:X (b+m—k)T(k):=—aX (b+m) by (26). Hence,
[en (5) Y], = Z [oX (b +m)®:a(m—k) a(k—m): +:X (b +m—k) T(k):]

+ Z oX (b+m)+zocX (b+m)—2EmX (b+m)——(b+m) X (b+m)

5 The commutativity of Y,(0) with (z°, W) for g=1% was known [5]
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+moX (b+m)—2EmX (b+m) by (27). Similarly for m<0. Therefore,
[er;(é)a Ya(b)] + = [m (OC'—- 2£ - %) - g:l Xa(b + m) NOW’

a2

X, m) (1@ @ =10 PT@1+0 if m=—of— .

Furthermore the above implies that [e, (¢), Y,(0)]=0 for all n e Z. The result now
follows for g=1t5. The proof for g=1 is similar. Q.E.D.

We now use the operators Y,(0) to construct n-invariant vectors, that is, vectors
that are annihilated by n.
Set, for o e C\{0},

Ei(a,é)=exr)<— HEZN@G"), (29)
and let
E™ (2, 0)= ngo flm, (30)

where f_,eClaT(—1),aT(—2),...] is a polynomial of D-degree —n [see (3)].

Proposition 4.5. (1) The polynomials f_,, f_,, ... are algebraically independent;
2) ClaT(—1),aT(=2),..]=C[f-1, f-2,---]

Proof. For a partition v=(ny,...,n;) of n we write oo, =aT(—n,)...aT(—n) and

proceed by induction on the weight |v|= Z n; of v. By the induction assumption

we see that o,eC[f_,,f_,,...] for all v=|=(n) such that |[v|=n. Now, f_,

aT(—n . .
= % + > ¢,a,, where ¢, e € and the sum is over all partitions v such that
v

[v|=n but v=(n). Therefore o, e C[f_,, f_,,...] for all v. This implies that the
subspace U_, of degree —n in C[aT(—1),aT(—2),...] is generated by the p(n)
monomials in the f_,. Since dim(U_,)=p(n), these monomials are linearly
independent. This proves (1) and (2). Q.E.D.

Let a,weC, ReN, and let {,,...,{ be distinct formal variables.
Lemma 4.6.

X0y, ) ... X(o, ()1 ®e @ RAT

R R
= II (C;—Ci)z"ilz—l1 eIl eXP( >

1<i<j=R nelN

aT
%C >1®ewT,
where o> =2peZ ., aw=q.

Proof. E* (o0, () E™ (o, () =(1 =1 /()P E™ (0, () ET (@, {y) by the Baker-
Campbell-Hausdorff formula. Also,

(TN eX =TT ") eX forall aeC,Xet, by (24).

The result now follows by recurrence. Q.E.D.
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2
Let 4= [1 ({;—{)), the Vandermonde determinant. Let p= a—, q=ow,

1<i<j<R 2

AP =3 a,l*, where p=(my, ..., mg), (F={T1 .. (R®.
u

Proposition 4.7. X, (n,)... X (ng)1®e“ " R®9T£0 if and only if there exist
.»SREZ, such that Y a,+0, where v=(q—p+n,+Sp,,....,4—P+ng+5,.)

v
and 7 ranges over the set Sg of all permutations in R elements.

Proof. X,(ny)... X, (ng)1®e®"%* is the coefficient of (}'...(% in
X(, (1) ... X(o, () 1®e@ ™ R9T By Lemma 4.6, the coefficient of f_ ... f_,, ®e®”
in X,(n,)... X,(ng) 1®e“~R97T is a non-zero multiple of > a, with v as in the

statement of the Proposition. The result now follows from Proposition 4.5
(1. QE.D.

Corollary 4.8. Let Re N, a®=2p, where P =p— }is a prime number, and aw=q e Z
if g=1v% aw=qgeZ+Li if g=%t Then Y 0)R(1®“ *T®1)%£0, and
Y (0R(1®e“ R9T®a(0))+0 if g=1%, provided that p>R-+3, and that

R A 1 R
Rp—q—§§0 if g=ns, RP“‘I—T“E%O if g=t.

Proof. Let g=1s. The coefficient of a(—%a(—3)...a(—R+1) in
YR @@ ®IT1 is X,4)X,0)... X,(R—1) (1@e® k7). Set S=Rp—q

— §GZ+. The coefficient of fR;®e*T in X ,(3)... X (R—DH (1 ®e“ R is q,,

=

where the coefficient a, is as in Proposition 4.7 and v=(P(R—1), P(R—1)
+1,...,P(R—1)+R—1). From the elementary properties of determinants one
sees that the coefficient of (871 ... ,’%‘1 in 4% is + R! Now,

AP = 2P Z sgn(m)(0 (L . (R, AP =A%, .., () (mod P),
and the coefficient of (F®~Y  (FR=1 in A42P is 4+ R!(mod P). Hence, a,+0, for
v=(P(R=1),P(R—1)+1,...,P(R—1)+R—1)if P>R. For g=£{, the argument is
the same except for the following changes: Instead of a(—1%)...a(—R+3),

X,3) ... X, (R—1H (1®e* *) and S=Rp—q—§, take a(—1)...a(—R)

[respectively a(—1)...a(—R) a(0)], X, 1)...X (R)1®e° ®* [respectively

X,1)... X (R)1®e* **®a(0)] and S=Rp-q—5—%el+, respectively.

QED. 2

Next, we will prove the determinant formulas 3 (8) and 3(9). The proof will
consist of two parts: the calculation of the h-degree of det(, ), . . y and the
divisibility of det( , ), ., 1., bY ¥, (b, ¢)’®~#9. We note that formula 3 (9) is obvious
if n=0, so we assume that n>0. From now on V(4)=C(4) or V(4)=R(J).

For neiN, let 2, be the set of all (d+ f)-tuples I=(iy, ..., iz jy,....j;) in
N*x Z' such that i;=...21i,, j; >...>] 0, Je>0, k=1,..., f, and |I|=i, +... +i,
+ji+...+jy=n. Let g’e (respectively £,)) be the subset of &, consisting of those
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I=(iy, ..., 045 J1> ..., jp) With f even (respectively f odd). We say that I as above is
equal to I'=(,....ip; ji,....J;) €D, if d=d, f=f', and i,=1},...,i;=10,
j1=j1, - jy=jp. Let Aeb* and set h=A(ey), c=Alep). If IeP, set
e;=el; ...ele”; ...eZ; . We now consider the basis of M(C(2)* " formed by
the elements ey, and the basis of M (R(A)&7" [respectively M(R(L))3~ "]
consisting of the elements ey, exe, v;, where I'e 2¢, K € 29 (respectively I e 22,
K € 7). [Recall from the proof of Proposition 3.6 that the number of such e, is
equal to the number of such exeg v, and is equal 4 p(n).]

If F e C[h, ¢] we let h-deg(F) denote the h-degree of F, that is, the degree of F
regarded as a polynomial of h.

The following lemma is the analog for g of [26, Lemma 4]:

Lemma 4.9. Let I=(iy,...,i4 ji5...,jp) and K=(ky, ...,
(1) h-deg (e, exvn e n,, Smin{d+ f,g+m},
h-deg (ereq v;, exeo Vn,c,n,, Smin{d + f,g+m}+1,
h-deg (eyeq Vs, €xV ) con, =min{d+ f,g+m}.
(@) If d+f=g+m and 1%K, then h-deg (e, ex0 ) cn,<d+f and
h-deg (eeq vy, exe0 V) comy<d+f+1.
(3) h-deg (e, e cn,=d+ f and
h-deg (eseq v, €€ V) eon,=d+f+1.

l) € P, Then

g> 1500

Proof. Let ve {v,,eq;v,}. Let d>0. Using the bracket relations in g we obtain:
e;, exv= 3 ex(agXp, )+ b exv, (31)

where the sum is over all the K’ = (k7, . ,Epl, .. k’ ks lql, ----i;:) such
that Ky ook 0+, <y, K+ +kg+l’ +o 2y,
K'=(,, s Iw), and Xy, gy =ex if £ is even, me,K«):eA} if ¢ is odd, where
M=i,—k, —...—k, =l —...—1, ag, b, € C. Since (, ), is symmetric we may
assume that k=degew <degegw. The lemma now follows immediately from 3 (6)
and (31) by induction on k. Similarly if d=0, f>0. Q.E.D.

Proposition 4.10. For ie;N, set d(i)=#{(r,s)|2rs=i, r,s€IN, r—seZ} if
g=15, and d(i)= % {(r,s)|2rs=1i, r,s€iN, r—sel +Z} if g=*%. Then
(1) h-degdet(, )y,c,n= Z pln—iyd@) i g="1;

ietN
isn

@) hdeg det( e, =100+ X pn-dl) i gt

Proof. Let N=%p(n), and let y,, ..., yy be the elements {ev,}, I € 2¢ (respectively
1e2?) in some order and yy,q,...,y,y be the elements {ege;v,}, Ke#°
(respectively K € 2¢) in some order, so that y,, ..., y,y is a basis of M(R(A)E™ "
[respectively M(R(/l))%_ms] Now det( > )h,c,n,y Z sgn(a) 1—[ (yn ya(t))h c,n,y*

Then, by Lemma 4.9 the term corresponding to the 1dent1ty permutatlon is the

only term of h-degree p(n)+ Z kp(n, k), hence, by the same lemma,

h'deg det(a) h,c,n,y—% (I’l)+ Z kp(n k) Here, ﬁ(n,k)= #{Iz(llaalda
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Jis - ,]f)eg’ld+f k}, for g=%. Similarly, h-deg det(,) , . ,= Z kp(n, k), if
g=1s. Now,

”I;L(H-xq") ) o
Ty~ S0 Chodl. (32)

Taking dd at x=1 in (32), we get

7 7 T}N (1+4"
<nezml—q" + neZNHq") ,En(l_qn) = Z]N< Y kp(n, k)) (33)

Let, for ie N, d(i)=# of divisors of i, and set d(i)=d(i)+ Y (=1L If

reN,rs=i

i e 2N —1, then d(i) = 2d(i). Noting that if i=rs then r, s € 2N — 1 andl—-2§s=2r§,
we see that d(i))=d(i). If i€2N, then d(i)=2(#{re2N|rs=i, se2N—1})
=2#{reN(rs=i, se 2N —1}=d(). From (33) we obtain

> (Z p(n—1) d@)) Z < 2 p(n, k)) q". (34)
neN \ieN eN \k=1
This proves (2). Similarly, if g=115,
ne!;[_l (1 +xq") .
W = ngw kEZN p(n,k)x*q", where p(n,k) (35)

d
is as before, Taking I at x=1 in (35) we obtain

q” qn ne%:_[—é(1 +qn) A
<nezm =" neg_% 1 +q”> FL aI=q¢) EN (,EN kp(n, k))q - (39)

Let, for ie N, d(i) = #{(r, s) e N?|rs=i} + > (—=1yF*L. IfieN, then
re]N 3, rs=i,seN

d(i)= # of even divisors of i=d(i). Ifie N— 1, then d(i)=d(2i)=d(i). From (36) we

obtain )
2 (Z ﬁ(n-i)d(i)> q'= X <Z kp(n, k)> (37
neiN\iei N ne3 N
Hence Y p(n—i)d(i)= Z kp(n, k). This proves (1). Q.E.D.
ieiN
Lemma 4.11. Let r,5€31N be such that s—reZ, if =15 and s—re> +Z, if

(2p—1)?
p 2

g=1%. Let pe3+N be such that p—% is prime and p>2r+3. Let c=1—
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_ (2p—1)*—4Q2rp—s)? 2p—1)>—4Q2rp—s)* 1
VeZ,, and h= i6p if g=ns, h= ) T

g=%. Then det( Inye, 2rs,3=0-

if

— 2_
2rp—s 2p and R=2r. Then &= u, and so

o >

Y,(0)® intertwines the action of g on H#““"R* and #'>“ by Theorem 4.4.

Therefore, by Theorems4.2 and 4.4, and by Proposition4.3, u, ,

=Y, (0)* (1®e“ *T®1) and ey u, , x are n-invariant vectors of (Jif &) where
2 2

2——
ey =1—822 and pler)=© &-ot — e if

R
g=*%. Let g=2rp—s. Then qge Z and Rp—q—— >0 if g="1i5, and geZ+% and

Proof. Let é—

ga) —2rs if g=15, pleg)=>——

R 1
Rp—q— 775 >0 if g=*%. Also note that «®>=2p and aw=gq. By Corollary 4.8,

Uy o= Y(O)R (1®e® *T®1) and g u, , g are both nonzero. Let % denote the
g-submodule of ¢ ® generated by 1®e®T ®1. By the above and Proposition 3.7
there is a unique surjective homomorphlsm oM (V(A))—»% such that &(vy)
oT _ 2 _ ‘f 2 é —(,U
=1®e*"®1, since c=1—8&%, and h= 5 T
Let w=iod: M(V(A)>H >, where i:U—A>" is the inclusion map. If
Uy g €Imyp=7% and if e u,, , r € Imy, then the assertion follows from Proposi-
tion 3.14. If u,, p¢Imy, then dim(Imy)d~ 2’ <p(2rs)=dim M(V (1))~ .
Therefore, (Keryp)§ >°=+(0), and so, det(,); ,,,5=0, by Proposition 3.14.
Similarly, if eq u,, , g ¢Imy. Q.E.D.

ifg="5s, h= 1fg t.

Let v, ; be as in Sect. 3 if r, s€ 3N, and let yq o(h, ¢)= h+—1fg—r Let 7,

denote the variety in C? consisting of all points (h,c) such that y, (h,c)=0,
(r,s) e2 N x 3 INU{(0,0)}.

Lemma 4.12. Let r,s€ 3N, r<s. Then

0 7 {((2p—1)21—6;(2pr—s)2, . (2p;1>2> et} ¥ oo
@ v = {(G =L G0 o) o=
Proof. Let pi=5*Cil C;~1OC+9. Then (2p* —1)?>=p*(1—c), ie. c=1
—-(2172—:1)2. Now, h= hfs(c)ch— 16 ;'Zpi+rs—4;—2i if g=1%, and
h= 1_6C —r2pt +rs—1—2—i——]%ifg=ft. Henceh=hfs(c)©h=#[(l—c)pi

- 1 .
—4Q2rp* —5)?] if g=11s, h:W [A—c)p* —4Q2rp* —5)?]— 75 if g=*1. Let

_1)\2
Y,uh)=0.  Then  h=hX(c).  Therefore, c=1_<2p_21L and
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2p—1)*—4Q2rp—s)? . N Q2p—1)*—4Q2rp—s)* 1
—_— f = = _—— =

16p if g=1i3, h 16p T if g=%, where
2p—1)° _@p=1)’—4@rp-s)* .
5 and h= 16p if g=nis,

h:

p=p*. Conversely, let c=1—

212 —4Qrp—s)> 1
h= (L*)‘qu(*u — ¢ if g= Then p=p* and h=h?, i, (h,0)=0.
QE.D.

Proposition 4.13. Let h,ceC, yeZ,. Let r,se3N, r<s, and r—seZ if g=1s,
r—ses+Z if g=%. Then det(, ), . ., vanishes on ¥, .. Furthermore, if g=%,
ne.,, then det(,), . , , vanishes on ¥ q.

Proof. Assume (r, s)=#(0 0). Let 0:C[h,c]->C[p,p "] be the homomorphism
2 —_1)2_ —9)?
defined by 0(c)=1— 2P~ ; D™ and o= E=D" =34Cm=9" o & om

16p
2p—1)2—4Q2rp—s)> 1 . |
_@p-1) 16p( rp—s) ~ i¢ if 8=1. By Lemma 4.1, 0(det(, ),c,2rs,,) vanishes

at infinitely many values of p. Therefore, G(det( Ih,e,2rs,,) =0. This implies, by
Lemma 4.12, that det(, )y, 2,5, vanishes on 7, .. Also, if g=1%, we saw that

M(R(A))DM((S(A) if h= —1—66 (Proposition 3.5). Hence, for each neZ,,
det(, )y c,n,, vanishes on ¥ o. Q.E.D.

Proof of the Determinant Formulas. We proceed by induction on n. Let r, s be as

. .\ o(u, v) 0
< — = — T ——
in Proposition 4.13, neZ,, 2rs<n. Let u=q, (h,c), v=c. Then aho)| ~ o
9, (h,c). Hence, if r=s, g‘EZ:—gzi#O, and if r=s, ggz: 2 =0<=h
— h:s(c)"'hr—,s(c) + 5(“, U) L. .
== Thus, at h=h7(c), a0 =0<c=1 or ¢=9. This implies

that {u, v} is a local system of coordinates near all (h, ¢) € 7, \(hE(1), 1), (h(9),
9)}. By letting n act on the basis of M(V(4))}~™ described in the proof of
Proposition 4.10, we see that det( , ), ..., =0 if and only if there is a non-zero n-
invariant vector in M (V()L))’1 @ g<m. Therefore, if (h,c)€ ¥, , then there is a
non-zero n-invariant vector in M (V(A))}~%, q=<2rs, by Proposition 4.13. Let

,Vr:s = %,s\ <{(hfs(1)3 1)’ (hrfs(g)’ 9)} U ﬂVr’,s)

Y
if (r,5)=(0,0), ¥ 0="7%,0- Arguing as in [23, Lemma 3. 2] we see that ¥
contains all but a finite number of points of 7, .. Let 4, ¥} ,. By the 1nduct10n
hypothesis there is then a non-zero n-invariant vector in M (V(A )22 Let % be
the submodule of M(V(4,)) generated by this vector. Then dim(M(V (4o))f° ™"
NU)=p(n—2rs), where p(n—2rs)=p(n—2rs) if (r,s)=+(0,0), p(n)=3p(n), by
Propositions 3.1 and 3.6. Therefore,

detn( > )h(u, v),c(u,v),n,y = ui’(” h ZrS)f(ua U) s (38)
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where f is analytic near (uy, vy) and ug, v, are the (u, v)-coordinates of 4. Let g(h, ¢)
be an irreducible divisor of det( , ), ., , in €[, c]. If g(h(u,v), c(u,v)) = uk(u,v),
with k analytic near (1, v,), then g(h, ¢) =0 for infinitely many (h, ¢) in ¥, . Hence
0(g(h,c))=0 for all (h,c) and g(h,c)=0 for all (h,c) on ¥, ; as in the proof of
Proposition 4.13. Thus g(h, ¢) is a nonzero multiple of y, (h, ¢). This, (38) and
Proposition 13 show that v, (h,¢)*"~ 2 divides det(, )., , The degree
computation of Proposition 4.10 gives (8) and (9). Q.E.D.

5. The Irreducible Subquotients of a Verma Module
We retain the notation of Sect. 3.

FornejzN,let ¢, (h,c)= T1 w, (h, c), where the product is over all r, s e 3N
2

such that s—reN if g=115, s—_—reN—% if g=%. As in [22], we set, for Aebh*,
GEN),(A)={neiNjg,(h,c)=0}. Let u,Aeh* We write ufi if u=A4 or if
u=i—1{ ¥ m; o for some m,,...,m e+ N such that

i=1
i-1
m; e GN) (D), mie(%N)Jr(l_ > mj5>’ 2gisr.
=t

A subquotient of a module M is a quotient N/U where UCNCM,U,N
submodules of M. From now on, unless otherwise stated, V(1) =C(1) if g =115 and
V(2)=R(4) if g=*1.

Theorem 5.1. Let A, ueb*. If L(V(w)) is a subquotient of M(V (1)), then utA.°

In this section we prove Theorem 5.1. The construction of filtrations of Verma
modules given below is a straight-forward generalization of the one given in [23].

Let V=U(Mn"), ueb* Let T,: V—M(V(n)) be the linear (Z,-graded) isomor-
phism defined by T,(X)=Xv,, X e V. Weset1(Y)v=T, (YT, (v))for Yeg,veV.
Then (¥, t,)is a representation of g. On V' x V we define 4,(v, w) =(T,(v), T,(w)),. It
is automatic to see that 4, defines a symmetric bilinear form on V x ¥V such that

At (Y)v,w)=A4,0,7,(c(Y)W)) (1
for all YeU(g), v,we V.
We now let A be fixed and for each te C, we set
(ch V) = (Tﬂ +10 V) s (2)
Bt( ’ ):A11+t6( ’ ) (3)
Now, V= @ yAon,

neQ T u{0}
Let O(C) denote the space of germs f of complex valued holomorphic functions

f at 0. Let O(V)" denote the space of germs f of holomorphic functions at 0 with
values in a finite sum of spaces V*~". For X eg, ¢t near 0, fe O(V)T, set

(X)) () =7 X) (f (1)) - “)

® For g=1% this result was first stated in [14]
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For keZ ., set

OV )= OV IB(f(1),w) e *OT)Ywe V} . )
Now, set
Vio={f(0)fe O"(V) o} , (©6)
and
MV (2))g=T:(Viy)- ™

Clearly, M(V(2)=M(V(@)0> MV (@)1 .... By (1, () Bm(X) (O, w)
=B,(f (1), n(a(X))w) € t*O(C) for all fe O(V), i.e., m(X)O(V )4y CO(V) > bY (4).
This implies that 7o(X)ViCVy. Therefore, XM(V(A)g=X ’1}(1/(,())
=Ty(0(X) Vi) CT,(Viy) =M (V(2))@) This shows that (M (V(/l))(k))k€Z+ is a
g-module ﬁltratlon of M(V (4)). We now show that this filtration is Z,-graded. We
note that BV}, Vy"j) 0 if y,&y, or n,#+n, Let P,: V-V, be the obvious
surjection. Let v € V) and f e 0" (V) be such that v= f(0). Now, v=1v5+ vy, v,€ V,
and v, = f,(0), where f, is the germ of P, f. Let we V,. Then B,(f (1), w) € t*O(C).
But B,(f(t), w)=B,(f,(t), w) by Proposition 3.14 (b). Applying Proposition 3.14(b)
again we see that B,( fy(t) w) € *O(C) for all w e V. Therefore, f, e OF(V), and so
v, € Vi for all y e Z,. This proves that (M (V (1)) g)iez, is Z,-graded. For any finite
dlmenswnal vector space M we let (M, C) (respectively Sym(M)) denote the
space of all symmetric bilinear forms on M (respectively symmetric endomorph-
isms of M). Let ®(M) denote the space of germs of M-valued holomorphic
functions at 0. Let Bf=Byjy+-1xya-n and let (| ), be any symmetric bilinear non-
singular form on V" " Set B"(t)=B!, t~0. Then B'e O(L2(V* ", C)) and
JA"e O(Sym(V*~")) such that B'(v,w)=(A™|w) for all v,weV* ". Here
A(t)= A}, t~0. Set

OV* Ngy={eOV* "|AIf(1)=t"g(t) for some geO(V* "), all t~0},

)
(V* My ={f O e O(V* ™"} . ©)

Then (VA "), =ViHnV* 7" Also,
ChM V(D)= ; dim(V’l"’)(k)qk" , (10)

where ne Q" u{0}.
If fe O(C), let f(t) = Z a;t’, t~0.1f a; %0 for at least one i, we can define the

number ord, f'(¢) as the smallest i with this property. Applying Lemma 1.2 of [23]
to V47" and A", we obtain

Y (dimV*7"),, =ord,detBy. (11

k=1
Combining (10) and (11) we obtain
> chM(V(A)g= > ¢* "ord,detBy. (12)
k=1 n
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Now, ord,y, (h+t,c) is one or zero according to whether y, (h,c)=0 or
1y, (h,c)#0. Let a(i)={(r,s)|2rs=i}. 3(8) and 3(9) imply

ZchM(‘E(i))(k)— > a() Zéﬁ(ﬂ*i)ql"", (13)

ie3N+(4)

kg'l ChM(R(A))(k) = 5,1, e 2p(n)q T Y a() X pn— l)ql ",

16 n=né iedN+(4) n=nd

Therefore, we have (13

Proposition 5.2. The following are valid:
) kgl chM(C(A)g = ‘Z a(i) ch M(C(1—i9)),

(1) X chM(R(A)g=06, - < ch M(S(A)+ Za(z) ch M(R(1—i0)).

kz1 €3N +(

If f,ge O(V*™"), set {f,g> (t)=BI(f (1), g(t)). Now, let v,we V*~ ", v=f(0),
w=g(0), f,geO(V*"). The argument in [23, Sect.1] shows that {(v,w)
={f,9>(0) defines a symmetric, bilinear form on V*~" which factors to a
symmetric, bilinear, nondegenerate form on V*~"/(V*~"),, ([23, Lemma 1.3]).
This implies that M(V' (1)), is the maximal proper submodule of M(V'(4)).

If M is a weight module, M = ) M*, we set P(M) = {ueh*|M*=+(0)}. Let € be

u
the full subcategory of the category of all g-modules M such that

M= @ M*, dimM* < o, (14)
ueh*
P(M)C{v—(Q*u{0})} for some vebh*. (15)

If uy, 1, €eh* we set py <p, < p, —py >0. Arguing as in [9, Lemma 4.4] (see also
[24, Lemma 5.1]) we obtain

Lemma 5.3. Let Me%. For each i€ Z, there is a submodule ;M of M such that
O)=gMcC,McC..., U ;M=M, ;M/;_,M is a highest weight module with highest
i=0

weight v;eh*. Furthermore, u,<p;=i>j, and if v;=v;,, then dim(;M/;_M)"
>dim( ., M/;M)".

Using Lemma 5.3 we can define for each M € € the multiplicity (M : L(V (n))) as
in [24, Sect. 5] by first defining (M : L(V ())) for a highest weight module M of %.
The only distinction here is in the case g=%: If M is a highest weight module with

highest weight A=(h, ¢) such that dimM*=2 and A(eg)+ (eO) =0, then we set

(M : L(V(4)))=2. Otherwise, (M : L(V(2)))=1, for a hlghest weight module of
highest weight A.

Proposition 54. Let M e%. Then
chM= % (M : L(V (1)) ch L(V (n)) - (16)

Proof. We will show that
dimM¢=Y (M :L(V(w))dimL(V(u))* for all ¢eb*. 17
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Let M be a highest weight module with highest weight v. If M = L(V(v)), then
(M:L(V(w))=1if u=vand (M : L(V(n))) =0, otherwise. So, we may assume that
M is reducible. Now, dimL(V(v—#"))'+0 only if #’=0. Furthermore, if
dim M" =2, then either v(eg ) + 15 v(e;) =0 and dim L(R(v))’ = dim L(S(v))’ = 1 (see
Proposition 3.10), or v(eg )+ 15v(ep) #0 and dim L(R(v))'=2.

In any case, for £=v, (17) follows from the definition of (M : L(V (u))). Assume
that (17) was proved for all £ =v—y’, with " <#. There are two cases to consider:

1) dimM’=1. Let {;M,}{2, be a filtration of M, as in Lemma 3.5,
and let s be the largest index such that (;M)/s+ M)’ "+(0). Now,
dimM"""=dimLV(v))" "+ dim M{;)" and dim My, "=dim(, M{;,")
+dim((M(1)/1M(1)" ")+ ... +dim(((M /s M )" "), where each
(M 1y/i-1M(y)) is a highest weight module of highest weight v'<v, hence
v—n=v—n’, n'<n. Equation (17) now follows from the induction hypothesis;

2) dimM"”=2. This case is similar but we need to apply the argument of 1)
twice. Finally, for general M € €, we apply Lemma 5.3 and the proof for highest
weight modules. Q.E.D.

Remark. Proposition 5.4 implies that the numbers (M : L(V (u)) are independent of
the choices apparently made in their definition.
We denote by N(%) the set of all characters of elements of %.

Proposition 5.5. Let aeN(%). If a=3 a,chL(V ()= b,chL(V(w)), then
a,=b, for all peh*. # »

Proof. Let u, be maximal so that a,#+0. Then a, dimL(V(u;))*'q"
=b,, dim L(V(u,))*'q"*. Hence a,, =b,,,. Suppose we have showed that a,=b, for
all usuch that yu; —u<ne Q*u{0}, and let u be so that u; —u=ne Q*u{0}. Then
> achL(V(@)= ¥ b,chL(V(w).
p=p1tn u=prtn
Then  a,, ., dimL(V (uy +n)* *1g* *1=b, o, dimL(V (uy +n)* gt e,
a,, +n="b,, +, The result now follows by induction. Q.E.D.

Proposition 5.6. Let M € 4. Then L(V(y)) is a subquotient of M if and only if
(M L(V&w) +0.

Proof. If (M : L(V(w)) =0, then L(V (1)) is a subquotient of M, by the definition of
(M : L(V (). Conversely, let MDNDP, N, Pe % such that N/P~L(V(u)). Then
chN=chP+chL(V(u). Also chM=chN+chM/N. By Proposition 5.4
(M:L(V(w)=1. Q.E.D.

If a=chM e R(%) we define (a:ch L(V(w)) as (M : L(V(w)).

Proof of Theorem 5.1. Let L(V(u)) be a subquotient of M(V(4)). We saw
earlier that the maximal proper submodule of M(V(4)) is M(V(4)),, There-
fore, p=4 or L(V(w) is a subquotient of M(V(4))y, By Proposition 5.6,
either u=4 or (M(V(A)y:L(V(w))=*0. By Proposition 5.2, pu=Ai or

> a(i)(chM(V(A—id)):chL(V(w))+0. Hence, u=4 or L(V(n) is a

ieiN+(4)
subquotient of M(V(4—id)) for some ieiIN, (1), by Proposition 5.6. By
induction, we obtain u1A. Q.E.D.
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Appendix. Central Extensions of Z,-Graded Lie Algebras

In this appendix we extend some definitions and classic results on central
extensions of Lie algebras to Z,-graded Lie algebras.

As in Sect. 2, all homomorphisms of Z,-graded Lie algebras preserve the
Z,-grading. Furthermore, all short exact sequences

0—b—e—>a—0 0

of Z ,-graded Lie algebras are Z,-split, i.¢., are such that 7 has a linear right inverse
that preserves the Z,-grading (or equivalently, 1 has a linear left inverse that
preserves the Z,-grading). (1) is called an extension of a by b. A morphism of (1) to
another extension

0-b 5 ¢ s a0 2)

is a triplet (, ¢, ¢) of homomorphisms: p:b—b’, ¢:e—¢’, and g: a—a’ such that
por=1opand n'ogdg=gom.

For any Z,-graded Lie algebra a we denote by 3(a) the center of q, i.e.,
3(a)={X eaq|[x,a]=0}.1fbC3(e)in (1), then (1)is said to be a central extension of a.
A morphism of the central extension (1) to a central extension

0-b 5 ¢ an0 (3)

is a morphism (v, ¢, ¢) of extensions from (1) to (3) such that ¢ =id|,. (Here, id|,
denotes the identity homomorphism of a, for any Z,-graded Lie algebra a.) The
extension (1) is said to be equivalent to

0—b—5 ¢ ams0 )

if there is a morphism (y, ¢, ¢) of extensions from (1) to (4) such that p =id|, and
¢=id|,. ¢ is necessarily an isomorphism, i.e., ¢ has a two-sided inverse homomor-
phism which preserves the Z,-grading. Therefore, equivalence of extensions of a by
b is an equivalence relation.

Let Vbea Z,-graded vector space: V= V;@® V;. A bilinear map o : a x a—V will
always mean one that preserves the Z,-grading, in the sense that a(a, xa,,
CV, 490 V1572 €Z,. A bilinear map o:ax a—V is skew-symmetric if

wX,YV)=—(=1y"a(Y,X),Xeq,,Yea,,,7,Y,€Z,. (5

71
We denote by Z*(a, V) the space of all skew-symmetric bilinear maps o.:ax a—V
such that the following condition holds:

(=) X, [V, ZD+ (- D)"Y [Z, XD+ (= 1) (Z,[ X, Y])=0, (6)

where X ea,,, Yea,,, Z€a,,, }y, V2, 3 €Z,. The elements of Z*(a, V) are called
cocycles and (6) is the cocycle condition for Z,-graded Lie algebras. Let B(a, V) be
the space of all skew-symmetric bilinear maps «:axa—V such that
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a(X,Y)=g([X, Y]) for all X, Yea and some linear map g:a—V such that g(a,)
CV,, for all yeZ,. The elements of B*(a, V) are the coboundaries. We note that
condition (L2) of Sect.2 implies that B?*(a,V)CZ?*(a,V). Set H?*(a,V)
=Z*(a,V)/B?*(a, V). H*(a, V) is the second cohomology group of a with coefficients
in V.

Next, we show how to associate to each element o in Z2(a,b), b abelian, a
central extension of a by b. Let a, denote the Z,-graded vector space a@®b, where
(adb),=a,®b,, yeZ,. For (X,v), (Y, w)e(a,),, set

[(X,0), (Y, w)],=(X, Y], a[X, Y]). (7

Clearly, [, ], extends to a bilinear map from a,x a, to a, and [(a,),,, (a,),,]
C(ay);, +y9 V1> V2 € Z,. Condition (L1) of Sect. 2 follows from (5) and condition (L2)
of Sect. 2 follows from (6), so that (a,,[ , ],) is a Z,-graded Lic algebra. We
associate to a € Z*(a, b) the central extension

0—b— a, — a—0, (8)

where 1, is the obvious inclusion and =, is the projection onto a. Furthermore, let
o, € Z*(a,b) and o« —ae B*(a,b), i, there is g:a—b linear, preserving the
Z,-grading, such that («'—o)(X, Y)=g([X,Y]), for all X,Yea. If we define
#:(a,),~(a,), by ¢((X,v))=(X,v+g(X)), Xe€a, veb,, then (idf;, ¢, id|,) is a
morphism from (8) to

0-b—" a4, am0. )

Conversely, if (1) is a given central extension of a, i.e., be 3, let f:a—e be a linear
map which preserves the Z,-grading and is such that no f=id|,. Set ay(X,Y)
=[p(X), B(Y)]-B([X,Y]), X, Yea. Clearly, n(ayX, Y))=0, so that ay=100,
where o is a skew-symmetric, bilinear map from a x atob. Now,let X ea,,, Yea,,,
Zea,, Then
(=17 o(X, X, ZD + (= 1) ao(V [Z, XD+ (= 1) ao(Z, [X, Y])
=(=1)""([B(x), B(LY, ZD]1-B(X,[Y, Z]1])
+(=D)"([(Y), B([Z, XDI - (LY. [Z, XTD)
+(=1)7([B(2D), BILX, YD]—B(Z. [X, YT])
=(=1)"7([BX), LY, ZD]1—[BX), [B(Y), B(Z)1])
+ (=1 ([Y), BLZ, XDI-[B(Y), [F(2), B(X)ID
+(=1)""([B(2), p(LX, YDI-[B(2), [B(X), B(Y)ID
=(=1)""[X), BLY, ZD)—[B(Y), B(Z)]]
+(=D)7B(Y), B([Z, XD —[B(2D), B(X)]]
+(=1)72[B(2D), p(LX, Y])—[(X), B(1)]]
=(=D)"[BX), —ao(Y, )]+ (=D [B(Y), —o(Z, X)]
+(=D)"[B(2), —ao(X, Y)]=0,
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by Sect. 2 (L2) and since (1 - o) (a x a) C 1(b) C3,. Therefore, « € Z*(a, b) and we have
associated to each central extension of a by b, an element of Z2(a, b). It is immediate
to check that the equivalence class of the latter in H?(a, b) does not depend on the
choice of the map ff used above. Now, suppose that there is a morphism (id|s, ¢, id|,)
from the central extension (1) to the central extension (4). Let 8 be a right inverse of
n that preserves the Z,-grading, as before. Let o be the element of Z2(a,b)
corresponding to (1) and constructed via f. Since ¢ o f§ is a right inverse of = that
preserves the Z,-grading, it is easy to see that (4) corresponds to the equivalence
class of o in H*(a, b), by the previous observation. We have, thus, associated to each
element [o] of H*(a,b), an equivalence class @ [«] of central extensions of a by b,
and, to each equivalence class [(z, )] of central extensions of a by b, an element
¥Y([(1,)]) of H*(a,b). Here (1,m) denotes the central extension (1). Let CE(a,b)
denote the set of all equivalence classes of central extensions of a by b.

Theorem 1. The map @ : H*(a,b)— CE(a, b) is a bijection with inverse ¥ : CE(a, b)
—H?(a,b).

Proof. Let (1,m) denote the element (1) of CE(a,b). Let Y([(:,n)])=[c] as
constructed above. Let (i, 7,) be the central extension (8). It is easy to see that ¢ : a,
—e defined by ¢((X,v)) =B(X) +1(v), (X, v) € a,, where f is the right (Z,-graded)
inverse of 7, is a morphism from (i, 7,) to (1, @), so that @ o ¥ is the identity map on
CE(a, b). It is immediate from the above constructions that ¥ o @ is the identity on
H%*(a,b). Q.E.D.

As in Sect. 2, we consider, for any Z,-graded vector space V, the tensor algebra
T(V)= @ TP(V). Let K be the two-sided (Z,-graded) ideal in T(V) generated by
the elements of the form X® Y +(—1)""2 Y®X XeV,,YeV,, v, v2€Z,. The

71
exterior algebra of Vis A(V)=T(V)/K= @ AP(V), where AP(V) is the image of
T?(V) in A(V) by the quotient map &: T(V)—»A(V)

Forany Z,-graded Lie algebra a, let L be the subspace of 4%(a) generated by the
elements of the form

(1) X ALY, Z]+ (1) Y A[Z, X]+ (1) ZA[X, Y]. ©)

The second homology group of a with trivial coefficients is H,(a, €)= A*(a)/L.
Following [10, Lemma L.10], we set a(X, Y)=36(X A Y). By (9) one sees that
ae Z*(a, H,(a,C)). Let @([«]) be the central extension

0—H,(a,€)— a,—> a—0, (10)

as constructed prior to Theorem 1.

A central extension (1) of a is said to be universal if, given any central extension
(3) of a, there is a unique morphism from the central extension (1) to the central
extension (3). Proceeding as in the proof of Lemma .10 of [10] we obtain the
Z,-graded analog of that lemma.

Proposition 2. If [a,a]=a then the central extension (10) is universal.
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