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Abstract. Under the general assumptions of quantum field theory in terms of
local algebras of field operators fulfilling the split property, we prove that any
two local covariant implementations of the gauge group (or, in the case of a
connected and simply connected Lie gauge group, any two choices of local
current algebras) relative to a pair of double cones &19(929

 are related by a
unitary equivalence induced by a unitary in the algebra of observables localized
in Θ2 which commutes with all fields localized in Θl, where Θ1 is any double cone
contained in the interior of &19 and @2 any double cone containing $2 in its
interior.

1. Introduction

Recently the possibility of implementing locally the symmetries of a local quantum
theory has been studied ([1-3]). One of the main motivations was to give a
quantum version of classical Noether's theorem.

In [1,2] a sufficient condition, the split property, is given for the local
implementability of gauge transformations. Under this hypothesis, all the other
symmetries which are present in the theory can be locally implemented as well (e.g.
space-time symmetries and supersymmetric transformations; see [3]). The split
property can be grounded on general properties of quantum field theory; see [4,3].

A local implementation of the gauge transformations is a representation of the
gauge group in a local field algebra, say F(U2)9 which induces the gauge
transformations on the field algebra F(Θl) associated to a "smaller" region @1.

The aim of this paper is to prove the next result. Two local implementations for
the regions @ί9&29 will be equivalent by a "well localized" unitary in the observable
algebra.

To simplify, we deal with theories with only localizable charges [16]. We
suppose in fact that we have given local net of fields on a Hubert space ffl and a
gauge group G representated on 2tf. The local fields generate a field algebra J^ and
the observable algebra stf is derived from J* by the principle of gauge invariance.
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We assume that the field algebra verifies all the general properties 1 -7 of [5] 1 for
terminology and further details we refer to this paper (see also [6]).

According to this assumption one can prove that there is a one-to-one
correspondence between the "physical spectrum"2 of stf and the set G of the
irreducible representations of G. However these sectors can be described via
localized morphisms of j/.

For every double cone (93 and σeG, there exists a localized morphism4 p such
that

πσ = π^p (1.1)

(see footnote 7 of [6]) where in (1.1) πσ is in the physical spectrum of stf and π0 is the
vacuum representation.

In this paper the following two assumptions play a fundamental role.
(i) The normal commutation relations for the field algebra: there is yeG with

y2 = e so that, if we set

F±=i(F±αy(F)), (1-2)

then

F + F'+-F'+F+=0, F + F'_-F'_F + =0, F_F'_ +F'_F_ =0, (1.3)

if Fe^((9l),Ffe^(&2),(91 c=0'2.
The F + ,F_ in (1.3) are called respectively the Bose and Fermi part of F.

Necessarily γ is in the center of G.
(ii) The split property for the field algebra (see assumption (iii) of [2]): for each

pair of double cones with fi^cc: (92

5 there exists a type / factor Jf such that

^(Θl)d^^^((92). (1.4)

Actually the triple {^(Θ^^(Θ2\Ω] is a standard and split inclusion of von
Neumann algebras; necessarily ffl is separable ([8] Proposition 1.6).

1.1. Definition Let 0 l 502 be two double cones with G± cc= (92. A strongly con-
tinuous representation g -> <%(g) of G is called local implementation (of the gauge
transformations) for the pair &i,&2 if

(a)

(b) ocg(F) = ®(g)F®(gΓl; Fe&φj, geG. (1.5)

1 The property 7 is assumed in the strengthened form of [5 Eq. (1.23)]. The property 5 of [5] is
redundant in the presence of the normal commutation relations for the field algebra
2 The physical spectrum of si is the set of equivalence classes of irreducible representations appearing in
the defining representation of jtf
3 A double cone Θ is a compact region in Minkowski space such that & = x — F + n y + P + , x — yeV+.
We indicate with &' the causal complement of the double cone φ t stf(Θ'} is the C*-algebra generated by all
^((9,) with 0,^(9'
4 A morphism p is said to be localized in the double cone Θ if p(A) = A,A<=s/(&'); see [7]
5 We write &ί cue &2 if 01 c interior (02)
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is said to be covariant if

(1.6)

As already mentioned, the split property assures the existence of covariant local
implementations for the pair Φ^Φ2 with Φ± c=c= Φ2.

We want to prove under our assumptions the following uniqueness theorem for
local implementations.

Theorem. // ^ί(g\ 1^(g) is a pair of local covariant implementations for the double
cones Θί9 Φ2, then we can find a unitary operator in ̂ (^1)

/nj/((^2) which realizes
the unitary equivalence between ^l(g) and i^(g). Then pair Φ^Φ2 is chosen so that
Φl^aφl and Φ2^Φ2.

The theorem is proved in Sect. 3; in Sect. 2 we discuss some mathematical
preliminaries.

According to general principles the most natural approach for a local quantum
theory is that where the only input are the observable quantities [15]. One can then
describe the superselection structure of localizable charges by a semigroup of
endomorphisms determined by the local structure of jtf (see [7, 12]).

In this case one can "reconstruct" the field algebra and the compact group of
internal symmetry6. This algebra of fields verifies, by construction all the structural
properties recalled above, including the normal commutation relations and, if all
charges are localizable in arbitrarily small regions, also the Reeh-Schlieder
property with the exception of the split property (ii) that is postulated here. In this
case the above theorem is still valid.

2. Some Mathematical Results

The contents of this section have been adapted to our aims from [9, 10].

2.7. Definition. Let Jί be a von Neumann algebra7. A norm-closed linear subspace
H c Ji is said to be a Hubert space in M if

(a) for each pair x,yeH,x*yeCI,
(b) for every non-zero a^Jί there exists an xeH with ax ^0.
By the property (a), H is indeed a Hubert space. It is easy to prove that, if Jt is

finite, then H is unidimensional and is spanned by a unitary operator. Conversely, if
M is properly infinite, it contains Hubert spaces of any denumerable cardinality.

If {Uj}jeJ is an orthonormal basis for H, then {UjUf}jeJ are mutually orthogonal
projections and £ u uj — I.

jeJ

An endomorphism pH of Jί is associated uniquely to H by

6 The abelian case is well described in [13] while, for the general case, these results are announced in the
recent paper [14]
7 For the general theory of von Neumann algebras see, for example [11]
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The morphism pH is characterized via the equation

pH(a)x = xa; xeH, a^Jt. (2.2)

Now we speak about von Neumann algebras carrying a continuous action8 of a
compact group. Then the pair \M> α} will be a von Neumann algebra together with
an action of a compact group G. We call this pair a coυariant system.

Let H be a Hubert space in Ji globally stable under the action α, then the
mapping geG~+oίg(x)eH, xεH, defines a strongly continuous unitary represent-
ation of the group G. We indicate with Jtif(a) the set of such Hubert spaces.

Obviously, in our case [3?(Φ\ α} (with α the action of the gauge group) is a
covariant system and we can find in Jf(α) a Hubert space H(p) carrying a
representation of class p for every peG. H(p) is given by

(2.3)

where p is a morphism of class σ, i.e. verifying (1.13), localized in Φ (see Sect. 3 of [6] ).

2.2. Definition. Let {^,α} be a covariant system. According to [10], we define the
monoidal spectrum of α, Msp(α) in the following way. One element σeG belongs to
Msp(α) if and only if there exists /f eJ^(α) carrying a representation of class σ. If
Msp(α) = G we say that α has complete monoidal spectrum.

Hence the gauge action α on F(Φ) has complete monoidal spectrum for every
double cone Φ.

According to [9], we only treat covariant system {Ji, α} with Jί σ-fmite and G a
separable9 compact group.

2.3. Definition. We will say that an action α is dominant when

(a) the fixed-point algebra Jΐ* is properly infinite,
(b) there exists a unitary VεJί ®3%(<e2(G)} such that

(xg®e)(V)=V(l®p(g}\ geG, (2.4)

where g -> p(g) denote the right regular representation of G on ^?2(G), the if 2-space
relative to the normalized Haar measure.

2.4. Proposition. Let {Jί,a} be a covariant system. Suppose that JίΛ is properly
infinite and Msp(α) = ύ. Then α is dominant.

Proof. We construct a Hubert space HeJ^(a) carrying a representation unitarily
equivalent to the right regular representation. Let Jσ be an index set for every σe<5
such that I JJ = dim σ and JσnJτ = 0 if σ φ τ. Let J = (J Jσ. We choose, for every

αe<3

je J, a Hubert space H^ Jjf((x) carrying a representation of class σ if/eJσ. Since M* is
properly infinite, there exists a sequence of isometries (w^j c ̂ α such that

8 A continuous action of a locally compact group G on a von Neumann algebra Jt is a homomorphism
α of G into Aut(^) such that the functions ^eG-> α9(x)e^ are all σ-weakly continuous
9 In this paper with separable group we mean a topological group with a countable basis of open
neighbourhoods
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[WjwJ}jej are orthogonal projections with ]Γ W y W ? = /. Then, by construction, the
JeJ

norm-closed linear span of {WjHj}jeJ is a Hubert space in J"f(α) carrying a
representation equivalent to the right regular representation of G. The proof now
follows from Proposition 3.6 of [10]. Π

Given an action α on M, we can easily construct other actions on Jί by
perturbing α via unitary cocycles. We need the following

2.5. Definition. Let {^,α} be a covariant system. A strongly continuous function
g -» a(g) of G in the unitary group of Jί is called an α-cocycle if

a(gg') = a(g)ag(a(g')\ gg'εG. (2.5)

Two α-cocycles a, b are said to be equivalent if there exists a unitary ueJί such
that

(2.6)

In this case we write α ̂  6.
If a is an α-cocycle, then we can define a new action of G on Jί by the formula

Jt, geG. (2.7)

A cocycle is dominant if the corresponding action is dominant. It is easy to prove
(see III. 2.4 of [9]) the next result.

2.6. Proposition. Let α, b be ίwo oc-cocycles. If α, b are dominant then a = b.

3. A Uniqueness Theorem for Local Implementations
of Gauge Transformations

In this section we prove the previously announced uniqueness theorem for local
implementations. We need some considerations.

We have seen that, for any given double cone @, there is a Hubert space H(p) c=
3F(&) carrying a representation of class σ,σeG. Of course p is a morphism of class
σ localized in (9. One can prove that, if σ is a bosonic (fermionic) sector (i.e. the
statistics parameter associated to σ is positive (negative); see [6]), then H(p)c
& +(ΰ))(H(p) c ̂ _(0)), where & ±((5) are respectively the Bose and Fermi part of
&(G). Of course

^±(0) = i(*±αy)^(0) (3.1)

and yeG verifies (i) of the introduction.
Now we consider a pair of double cones with Θ1 c=d (92. By Theorem 2.1 of [2]

there exists Uye^(Φ2] which implements γ on 3F(β^ With (90 c β?Ί n $2> we define
a "locally twisted algebra" «FLt-(00) by

^Lt-(00) = ̂ +(^0) + Uy^.((90). (3.2)

Hence ^-'-(^o) c #r(0lyn#r((92). By the previous considerations «^Lt-(00X
 and

therefore ̂ (^J7 n ̂ ( 2̂), contains a Hubert space carrying a representation of class
σ, σeG. Further j^(00)

 c (^Γ(^ι)/πJΓ(^2))α and J/(^0) is properly infinite except in
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the trivial case (see Remark 2.5 of [1]). Therefore we have proved the following.

3.1. Proposition. Let O^Θ2 be double cones with β^cciβ^. Then on
' r\ ̂ ((92), the gauge action α is dominant.

We fix our attention on a fixed pair of double cones 0 l 5 (92 with (91a c &2. As we
have seen, by the split property, the set of local covariant implementations is
nonvoid. Choose one of these representations, say tft(g)9 as reference representation.
^(g\ induces, in a natural way, an action θ of G on J^J'n ^((92):

θg(F) = W(g)F®(gΓ\ geG. (3.3)

It is immediate that every local implementation i^(g) is related to ^(g) by the
formula

gεG, (3.4)

where X(g) is a #-cocycle in 3F(GJl 'n^"(02)
Further, if i^(g) is covariant, the associated cocycle verifies the analogous

covariant property:

(3.5)

In other words, there is a one-to-one correspondence between θ-cocycles (covariant
θ-cocycles) in ^((9γ}

f r\ ^((92) and local implementations (local covariant imple-
mentations) relative to the pair &19&2.

We prove the uniqueness theorem in several steps. We start with the following.

3.2. Proposition. Let g-+i^i(g), i = l , 2 be a pair of local implementations (not
necessarily covariant) for θ^(92. Then, for any double cone (9 such that (9 cc 0 l 5

there exists an unitary VeέF(&}' r\ϊF(@2) that realizes the equivalence between

Proof. The actions obtained by perturbing θ with the cocycles related to the
coincide with the actions θi naturally induced by i^^g) on &(G)'
Furthermore 0^(0)' c\^(Φ^ - α. Hence, by Proposition 3.1, Msp(^) = (5, i = 1, 2.
The proof now follows by Proposition 2.4 and 2.6 10. Π

Note that the last result is independent of the covariance property which will
play a fundamental role in what follows.

3.3. Lemma. Let g -> 1^(g) be a local covariant implementation relative to the pair
( 9 l , ( 9 2 . Suppose that i^(g) is equivalent to the reference representation %(g) by a
unitary VE^((9^' r\^((92\ Then w(g)=V~la,g(V) is an a-cocycle in

Proof. It is easy to check that α induces automorphisms on (^(G^l n ̂ ((92))θ and
vv(^) verifies the cocycle property (2.5). But, by covariance Vtfί(hgh~^)V~l =
uh(V)fy(hgh-l}κh(Vy\ i.e. ^(hgh'1) V-1och(V)^(hg~ίh~1)=V~1och(V)', since for
every given h, varying g,hgh~l spans G, the proof now follows. Π

Of course Λ(00) c (F(0)'nF(&2))θ, i = 1,2 if &0 c &'nΦ1 and A(ΦQ) is properly infinite
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3.4. Lemma. Let w(g) be as above. Then there exists a unitary V E(^ (Θ ̂  r\ ̂  ((9}}θ

such that

^Γ-1); geG (3.6)

for every double cone (9 with &2 cc (9.

Proof. Set Si = (&(GJ n^(Θ))θ. Then &=>&(G2)' n&(G) and the action (wα),
obtained perturbing α by the cocycle w(g), is equal to α on ̂ (&2)' n &*(β\ The proof
now follows as in the Proposition 3.2 (j^(00)

 c ̂ (wα) if ^o c #'2 n $)• Π
Now we can prove the following

3.5. Proposition. Under the hypothesis in Lemma 3.3 there exists an unitary
U <=&((!) Jnjtf(e)) such that

1; geG.

The double cone (9 is chosen so that (92 c c 0.

Proof. Let V be as in (3.6). Set U = VV. Then it is immediate that £/e J^J n
and, for every ge 0,^(0)= U<%(g) U~l. Π

Combining the results of Proposition 3.2 and 3.5 we immediately obtain the next
uniqueness theorem for local covariant implementations.

3.6. Theorem. Let Θ^02 be a pair of double cones with Oλ c=c β?2. Let g^>i^i(g),
i= 1,2 two strongly continuous representations of G in ^(&2) ^hat verify (1.15) and
(1.16). Then, for any pair of double cones 0^,Φ2 with ®γ c=c Φ1 and (92 c=c= ^2, there
exists a unitary l/eJΓ(^1)

/n^/(^2) that realizes the equivalence between i^Ί(g) and

A physically relevant case is when G is a Lie group. In this case, differentiating a
local covariant implementation relative to the pair Φ ί 9 ( 9 2 , we construct a "local
current algebra" as in [2]. However, if G is connected and simply connected, there is
a one-to-one correspondence between "local current algebras" for the pair (9l9 (92 as
in (2.6) of [2] and local covariant implementations for the same pair Φl9(92. Hence
we have an analogous uniqueness theorem for the choices of local current algebras.

3.7. Corollary. Let G be a connected and simply connected compact Lie group. Let
uE^f ^>/(u\i= 1,2 be representations of the Lie algebra ^ of G as in (2.6) of [2].
Then there exists unitary ί7eJ^Γ(^1)

/n ^((92] such that

The pair &lί@2 is chosen as in Theorem 3.6.

3.8. Concluding Remark. The last result would have a role in the construction,
starting with the local current algebras, of local current densities that verify the usual
"current algebra hypothesis" in elementary particle physics. See [2] for further
details about this problem.
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