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Abstract. We provide bounds on resolvents of dilated Schrodinger operators
via exterior scaling. This depends crucially on a non-trapping condition on the
potential which has a clear interpretation in classical mechanics. These bounds
imply absence of resonances due to the tail of the potential in the shape
resonance problem.

1. Introduction

This paper is motivated by recent work on the shape resonance problem [CDS 2],
[CDKS] for Schrodinger operators H = — k4Δ + V in the classical limit k [ 0 and a
related treatment of the predissociation problem for molecules given by a system of
coupled Schrodinger equations [K].

In the analysis of the shape resonance and predissociation it is crucial to know
that the operator H in the exterior of some suitably chosen ball with Dirichlet
condition on its boundary K = {\x\ = r0} does not possess any resonances in a
sufficiently big neighborhood of some fixed energy E > 0, resonances being defined
by exterior complex scaling introduced by Simon [S] (see also [GY]). Fur-
thermore a bound on the dilated resolvent (H($) — z) ~1 is needed for z near E. We
refer to [CDKS] for further details on the shape resonance problem and all
motivation concerning the specific choice of the boundary sphere K and the
energy E under consideration.

In this paper we prove absence of resonances by an a priori estimate via a
simple inequality which was used in the work of Mourre [M 1, M 2] to discuss the
propagation properties of quantum states for fixed Planck's constant k = ί. The
method allows us to handle potentials which are not — A-compact. It depends
crucially on negativity of the commutator i\_A, if] localized in energy, where A
denotes the infinitesimal generator of the exterior scaling group. Classically this
corresponds to negativity of the Poisson bracket {h, a} between the principal
symbols of H and A at some fixed energy £ and is to be interpreted as a non-
trapping condition on the potential [see (C3) below].
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We remark that conditions involving more general "escape functions" a(x, ξ)
have been used in the approach of Helffer/Sjostrand [HS] to the problem of
resonances in the classical limit.

x
With α(x, ξ) = (\χ\ — r0)—- ξ, a simple computation gives (|x| = r)

c)V r — r r (FΎ
Λ / \ r\ / \ 0 0 Ί Δ. \ ^

• ( L 1 )

Our non-trapping condition (C3) requires the first two terms on the right-hand
side of (1.1) to be negative. Thus a increases strictly along the integral curves of the
Hamilton field Xh9 and these will eventually leave each compact set in h~ί(E). For
Quantum Mechanics in the classical limit this is shown to imply absence of
resonances for the Dirichlet operator in the exterior domain.

The plan of this paper is as follows. In Sect. 2 we review exterior complex
scaling and introduce the assumptions imposed on the potential V. In Sect. 3 we
prove our main result, Theorem 1, granted a linearized version in Theorem 2. The
proof of Theorem 2 is given in Sect. 4 using a simultaneous localization in energy
and space. This is possible in the classical limit since, roughly speaking "each
commutator term occurring in the proof is of order k2 when restricted to a
subspace of finite energy." Estimates of the latter type are contained in the
Appendix.

2. Exterior Complex Scaling and Basic Definitions

In L2(Ωe), Ωe = {x G R": |x| > r0}, we transform to polar coordinates r = |x|, ω =

via the unitary map

The radial derivative — in L2([r0, oo) xS""1) is mapped into D = — \-ωV, and

we have — Δ = — D2+ -^, where A corresponds to B + \{n — \){n — 3), B^O being

the Laplace-Beltrami operator onS"" 1 .
Letting rd = r0 + e\r — r0), (r > r0, 5 e R) one defines the exterior scaling group

in polar coordinates by

ω) = e*2f(r&iω), (2.1)

and obtains for the scaled Laplace operator

-A(9) = U($)(-A)U(Sy1 = -e-2*D2 + ή[. (2.2)

We consider Schrodinger operators H = — k4A + V on L2(Ωe) with a Dirichlet
boundary condition on K = {|x| = r0}, where V is supposed to satisfy the following
conditions:
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(Cl):

V(β) = U(3)VU(S)~1 possesses an analytic continuation as a bounded
r

operator to some strip Sa= < |Imθ| < α < —

(C2):

V is a positive C3-function on Ώe with bounded derivatives δαF (|α|^3) and
Πm V(x) < E for some E > 0.

(C3):
"The constant

(NT1):

(NT2):

There is 5>0

r-

r

E in

> . w

such

^0 /T/

(C2) is

that

a non-trapping energy

+ (r r ) a F ( x ) < S0 δr

for

(x

V,"

eΩ

i.e.

(2.3)

Assuming (Cl) the operator H(ff) = U(9)HU(9)~1 with Dirichlet condition on K
extends analytically to the strip Sα as a self-adjoint family of type A [Ka] with
domain D(-ΔD) = H2{Ωe)r\Hl{Ωχ

Note that we require (NT2) outside the region JE forbidden for classical
particles with energy E. JE is stable under small variations in E and (NT 2) actually
holds on some slightly larger set. This will be convenient when we consider
quantum states with energy near E, and we state it as

Lemma 2.1. The energy E> lim V(x) is non-trapping if and only if there is S>0
x->oo

and a compact set ΩcIR" such that

(NTT):

KCΩ and ΩcJEv{\x\<r0}.

(NT20:

(NT30:

Proof. It suffices to show (NT) >̂ (NT7). Since the left-hand side of (NT2) is
continuous in x and dJE is compact by (C2) we can find δ > 0 such that (2.3) holds
for x e Ωe\Mδ, where

Mδ = {xεJE: dist(x,dJE)tδ}.
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For sufficiently small <5, we have K C Mδ and furthermore Vδ: = Min V(x) >Eby
xeMδ

definition of Mδ. Choosing E such that E < E < Vδ the set Ω = J^u {|x| < r0} satisfies
(NTO.

3. Bounds on the Dilated Resolvent

This section contains our main result concerning the absence of resonances
[defined as eigenvalues of H(ff)'] in some fc-independent neighborhood of a non-
trapping energy E and an explicit bound on the resolvent of H(9):

Theorem 3.1. Let V satisfy (Cl)... (C3). Let H(β) be defined by exterior scaling
).Let

: |Re(z-£)|<C1? -C2Im5<Imz<C3(Im5)-1},

with suitably chosen constants C{ > 0 independent of $ and k. Then there is α0 > 0 and
C e R such that for 0<Im5<α 0 we can find k$>0 such that

| | (//(9)-z)" 1 | |^C|Im9Γ 1 (zeW&, k<k&). (3.1)

Remark. One can take Ct = —, C7 = —9 C* = -— provided min V>E + iS,
1 20 2 10 3 40 F dΩnΩe ~ 5 '

where Ω is the set appearing in (NT'). In [CDKS] 9 is taken as a function of k. Then
a slight variant of Theorem 1 is applicable. The bound (3.1) remains true for
$ = CNkN (N E N), z E Wm and k small enough. This follows from inserting S ~ kN

in our proof below and keeping track of the fc-dependence (see the remark
following Lemma 4.2). In the form stated above Theorem 1 has been used
in [K]. D

Let us indicate briefly the main idea of our proof while introducing some
notation needed later on. It clearly suffices to consider imaginary 9 = iβ and in a
first step we look at the linearization in 9 of

with wuw2 real and small. This leads to

H(S,k,z) = Hr + iβHi, (3.2)

where

dV r0 AΛ _1
-r0)——f-2 — k ^ — 2wi — β w2.or r r

The main difficulty in proving an a priori estimate for H(S, k, z) which then leads to
(3.1) comes from states φ with energy near E, since then Hrφ is approximately zero.
For such states Ht plays the crucial role. In fact for states φ with energy near E the

rotational energy fc4-^ will be approximately E—V. Inserting this into Ht (see
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Lemma 4.1) it follows from (NT) that Ht is a strictly negative operator outside the
classically forbidden region JE, for \z — E\ small. Since in the classical limit quan-
tum states with energy near E are localized outside JE (Lemma 4.2) the following
well known inequality can still successfully be applied.

Lemma 3.2. Let A be self-adjoint with domain D(Λ) and B^C>0be bounded. Then

\\(ΛTίB)φ\\^C\\φ\\ (φeD(A)). (3.3)

This leads then to:

Theorem 3.3. Let H(S, fc, z) (SezR) be given by (3.2). Then there is an interval
l = [E-δ,E + δ~] such that the following holds: Let P = Pj(H) be the spectral
projection for HonI and letQ = l—P. Then there are constants a, b, α0 > 0 such that
for 0 < l m θ < α 0 and W$ as in Theorem 3.1 there is k$>0 such that

(3.4)

\\H($,Kz)Qφ\\^b\\Qφ\\ (φeD(H)9 fc<fc» zeW,). (3.5)

Remark. Given S and Ω in (NT') and assuming min V > E + f S, we may choose
dΩnΩe

s s s
δ= —, α = — , b= —. δ,a,b depend on V only via S and Ω. D

Granted Theorem 3.3, we complete the

Proof of Theorem 3.1. We start deriving an a priori estimate for J7(θ, k, z). From
now on we suppress the explicit dependence on 9, k, z in H. For φ e D(H) we have

\\Hφ\\2^\\HPφ\\2+\\HQφ\\2-2KQφ,H^HPφ}\, (3.6)

where

Since Hi — l-^k^A is multiplication by a C2-function with bounded derivatives, it

follows readily from Lemma A2 in our appendix that [H, HJP is of order k2 and
that HfP is bounded uniformly in k.

Thus we obtain from (3.6) applying Schwarz inequality and using Theorem 3.3

(3.7)

for |θ|, k<k& sufficiently small. The Taylor expansion in θ is controlled by

+m2c\\φ\\

(3.8)

for some constant C independent of 3 and k. Using Lemma A2 it is easy to see that

(3.9)
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for \&\ sufficiently small, and combining (3.7), (3.8), (3.9) we obtain

\\(H(S) — z)φ\\ ^ ( 1 — C|5| 2) | | i?φ| | — C|5| 2 | |φ | | ^^a\S\ \\φ\\ (3.10)

for |5| sufficiently small. Now it follows from standard arguments that (H(S) — z) ~1

exists and obeys (3.1).

4. Localization in Energy and Space

We prove two lemmata employed in the subsequent proof of Theorem 3.3 as
outlined in Sect. 3.

Lemma 4.1. Let F e Cg)(R) and let FH be the operator associated by the spectral
theorem. Let £ + > s u p s u p p i 7 and let geC2QR.n) be nonnegatίve with bounded
derivatives. Then there is C ε R such that

r2 ~

Proof. Let P be the spectral projection for H associated to suppF. Then [#, FH~\P is

O(k2) by Lemma A3 and so is P k4^,g . Thus we have computing modθ(fc2)

Ftf/c4 ~2 g2FH = PgFHk4 -j FHgP <£ PgFH(H — V)FHgP. (4.2)

Commuting g with FH proves (4.1). D

Next we show that in the classical limit quantum states with energy near E have
very low probability of being within the classically forbidden region JE.

Lemma 4.2. Let I = [0,E] for some EeK and let P = P^H) be the associated
spectral projection. Let χe C^(Ωe) with suppχC JE. Then there is C G I R such that

WχPWSCk2. (4.3)

Proof. Let Eχ = min{V(x): xesuppχ} and choose E<E+<EΓ Then there is
χeC°°(Ωβ) equal to 1 on {V(x)^E+}, and such that suppχnsuppχ = ̂ . Let
FeC^(lR) be equal to 1 on / and supported within (— oo,JE+). Then
H+=H-\-E+χ^E+ and thus FH+ =0. This implies using χχ = 0,

χP = χ\ dtF{t){e~iHt — e~iΉ+t}P = iE+\dtF{t)]dτ[_χ,e~iΉ + {t~τ)]χe~iΉτP.(4A)
IR 0

But

o

and

(4.6)
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since commuting V through everything generates bounded terms and gives in
leading order k4VP = 0(k2). Inserting (4.5) into (4.4) and using (4.6) yields

(4.7)

for some polynomial q(t) which proves (4.3).

Remark. Estimate (4.3) can be sharpened to

\\χP\\^CNkN (JVeN). (4.8)

This may be proved continuing the commutation process of [ — k4A,χ] with

e-iH+s i n ( 4 5 ) o r u s i n g b o ι m c j s on \\x(H-z-ikNy^\\ (zel)- see [CDKS] - and
Stone's formula. We need (4.8) when generalizing Theorem 3.1 to the case θ = CNkN

as indicated in the remark following Theorem 3.1. D

Proof of Theorem 3.3. We start proving estimate (3.4) which is the difficult part of
the theorem. We assume the non-trapping condition in the form (NT'). Thus given
Ω in (NT') we fix the range of energy / = [E — δ, E + <S] by requiring E + δ < VΩ

= Min V. Let F e C^(1R) be equal to 1 on / and supported within ( - δ, VΩ). Then
dΩnΩe

we have using boundedness of k~2{Hb H~]P (which follows from Lemma A2) and
Lemma A3

\\HPφ\\ ^ WiHr + iβFnHiFjάPφW moά\β\k2\\Pφ\\. (4.9)

Next we choose a C°°-partition of unity on Ωe, 1 = χ2 + χ2, with χ = 1 on ΩnΩe and
suppχC JE+δ- Lemma 4.2 combined with a simple commutator estimate yields

(4.10)

Thus we get, letting B = FHχHiχFHi

\\HPφ\\^\\{Hrχ
2 + ίβB}Pφ\\ mod(|θ|fc2 | |Pφ||,fc2 | |Pφ||). (4.11)

/ γ \l/2

Applying Lemma 4.1 with 0 = 1 2 — 1 χ and observing supp χ C Ωe\Ω we get from

(3.2) mod(Cfc2),

^ sup 2(V-E) + (r-ro)
d^-2w1-β-1w2 + 2r±(E+-V), (4.12)

xeΩe\Ω or r

where we may choose sup supp F<E+ < E + fδ. Assuming

\2w,\<^ w 2 > - ^ , δ = | , (4.13)

which can be achieved decreasing our previous choice either for δ or for 5, we find
from (4.12) and (NT30,

B^ (k sufficiently small). (4.14)

Thus (3.4) follows from (4.11) using (4.14) and Lemma 3.2. To prove (3.5) let {Eλ} be
the resolution of the identity associated with H and let ψ = Qφ. Then <φ, Eλψ} is
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constant in λ e I and with Hr = H — (E + w1 + 2βw2) = H — E one obtains

\\Hrψ\\2 = ί (λ — E)2d(\p,Eλψy^[-\ \\xp\\2 (4.15)
σ(H)\I \2/

for IwJ < - , \w2\ < | θ | ~ 1 - . Combining this constraint with (4.13) defines a region

Ŵ  as fixed in Theorem 1. Our specific choice δ = — corresponds to the remarks

following Theorems 3.1, 3.3. Since using Lemma A2

\\Hβφ\\£2\\HrQφ\\ + C\\Qφ\\, (4.16)

estimate (4.3) follows from (4.15) for |θ| sufficiently small.

Appendix

We prove some technical estimates needed in Sect. 3.4. Throughout the Appendix
we let H= —k4A + V, where V is supposed to satisfy (C2). We let I be any finite
interval and denote by P = PT(H) the associated spectral projection.

First we prove a quadratic inequality which will imply i/-boundedness of the
radial and rotational kinetic energy operator.

Lemma Al. In the sense of quadratic forms on HQ(Ωe)nH2(Ωe) = D(H):

-JSΔ' + ̂ Λ (BΦ2), (Al)

(n = 2). (A2)

Proof. —D2 and A are positive operators in dimension w#=2 while A^ — \ for
n = 2. First consider n φ 2. Then

where

since the first term is negative and D2,- , - = 2 D , - = -τ
LL d r] L d ^

(A2) follows replacing A by A + J and zl by Λ + 1 in (A3). D

We use Lemma Al to prove

Lemma A2. For φ e D(H) we have

A

^jψ ^ | | //φ| |+C| |φ | | . (A5a)
r
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Furthermore for any g e C2(Ωe) with bounded derivatives the following commutators
are bounded uniformly in k:

b) [#,£>]?,
c) k2ίH,D2lP,

d) k2

e) [ί

f) k2

(A6)

[#,ί
Proof. Taking expectation values in (Al) we get from Schwarz inequality

M - 2

Since V is bounded this proves (A5a) for n φ 2. For rc = 2 (A5a) follows from (A2). (b)
follows from (A5a) since

[ # , / ) ] = - ^ + -fc 4 4 (A7)
or r r

For (c) we only treat the first term in [fί, jD2] = [ff,/)]/) +D[JΪ,/)]. Using (A7)
and neglecting bounded operators appearing to the left of derivatives estimating
k2{H, D2~\P is reduced to estimating

(A8)

(A9)

(A10)

Clearly the first term is bounded and

^k2\\HDPφ\\+Ck2\\DPφ\\,

using (A5a) and DPφeD(H). But

\\HDPφ\\ ^ \\DPHPφ\\

using (b) which proves (c). (d) follows from (c) since -^, H \= ID2, H~\ + [F, Δ~\. As

in (A9) one proves boundedness of k6V^P which implies (e). (f) follows

immediately from (e) and (d).

Lemma A3. Let F e C^(SR) and FH be the associated operator. Let W be a linear
operator in L2(Ωe) such that [W, i ϊ]P is uniformly bounded in k. Then [W, FH~\P is
uniformly bounded.

Proof. We use the formula FH = \ F(ήe~iHtdt to obtain

[W, FH]P= $dtF(i)] dse~iH(f-s)[H,
o

(All)
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Since P commutes with e ιHs the assertion follows from the rapid decrease
of F. D
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