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Abstract. We show that interactions with multiple translation-invariant
equilibrium states form a very "thin" set in spaces of long-range interactions of
classical or quantum lattice systems. For example, generic finite-dimensional
subspaces do not intersect this set. This constitutes a severe violation of the
Gibbs Phase Rule.

1. Introduction

The work of Daniels and van Enter [1-3] has shown that phase transitions are less
stable under long-range perturbations than had been believed, so that Ruelle's
"heuristic theory of phase transitions" [7], and the strong form of the Gibbs Phase
Rule that it implies, are violated in spaces of long-range interactions. In this paper
we extend and generalize those results, and show that the instability of phase
transitions is a generic phenomenon, in the sense of Baire category, in these spaces
of interactions. This means that phase transitions occur only on a set which is in a
sense very "thin," violating much weaker versions of the phase rule.

We will consider either a classical or quantum lattice system on 7Lά (see [4] for
notation). In the classical case the configuration space at each site is assumed to be
a compact metric space. The Banach space Sig consists of those translation-
invariant interactions Φ with

OeX
(l.i)

where g is some function on the positive integers, and \X\ is the cardinality of X. In
order to define equilibrium states by the variational principle, we require g(n) ̂  ί/n
[in the case g(ή) = ί/n we will write Sig as 0β~\. Stronger conditions on g [e.g.
g(n)^ean for some α>0] allow the use of DLR equations, KMS conditions, etc.
Our results hold in any of these spaces, and thus are not connected to the
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pathologies found in [5] for 38. On the other hand, they do depend on the
interactions being allowed to be "long-range" in the sense that the weighting g(\X\)
depends only on the cardinality of X and not on its diameter. In particular, a two-
body Ising interaction is in any Stg provided it is summable.

We are concerned with the basic question, "What does a typical phase diagram
look like?" According to the Gibbs Phase Rule, an ^-dimensional subspace of
interactions should typically have an n — ί -dimensional set of two-phase coex-
istence (i.e. where there are two extremal invariant equilibrium states), an n — 2-
dimensional set of three-phase coexistence, etc. Moreover, one would expect these
sets to be manifolds (perhaps with boundary). While these principles may be valid
in spaces of short-range interactions, our results show an entirely different picture
in 33 g: a finite-dimensional subspace which is "typical" in the sense of Baire
category will have no points with multiple phases. One may also start out with a
given finite-dimensional subspace S of interactions and perturb it, i.e. consider
S + M, where M is a finite-dimensional subspace. Our result shows that "typically"
the only multiple-phase points in S + M are those in S itself.

Actually, the result is even stronger than this: S may be any σ-compact set, i.e.
the union of a countable collection of compact sets. In the quantum case, or the
classical discrete-spin case, S may be any Banach space of interactions with a norm

l|φ||,,*Ξ Σg(\x\)KX)\\Φ(X)L (1.2)
OeX

where h(X) -> oo as diam (X) -> oo. (To show this is σ-compact, note that its unit ball
can be approximated by bounded subsets of finite-dimensional subspaces, and
therefore is totally bounded.) So we can conclude that any "typical" long-range
perturbation destroys the long-range order of all short-range interactions.

There are a number of possible ways to defend the physical Gibbs Phase Rule
from the results of this paper. One might say

(1) Physics is not generic, or
(2) Physical interactions are short-ranged.
These objections are related, and both have some merit. Regarding (1), we

might remark that the fact that a property of the members of some space is
"generic" does not mean we should expect any particular member to have that
property, but instead says something about the sort of additional conditions that
might ensure that it does not have the property. In this case, it would seem that the
only reasonable way to save the Gibbs Phase Rule is to insist on short-ranged
interactions.

On the other hand, there are indeed long-range forces in nature, such as the
magnetic forces that occur in real ferromagnets. Admittedly, the magnetic dipole-
dipole interaction does not fit in any of our Banach spaces, but its effects are in a
way analogous to those of the perturbing interactions of [1-3] and Theorem 1:
while negligible on the atomic scale in comparison to the exchange interaction, on
a larger scale it causes the formation of "domains" which interfere with true
"ferromagnetic" long-range order. The energy-minimization considerations that
govern the formation of magnetic domains have some resemblance to the
arguments of these papers. So perhaps our results are not completely devoid of
physical significance.
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In Sect. 2 we basically generalize the results of Daniels and van Enter [1-3] on
existence of perturbations that destroy long-range order. The main new features
are the following:

(1) symmetry is not required, so that we can deal with all interactions and
observables;

(2) the conclusions hold for all invariant equilibrium states, not just those that
are extremal Gibbs states;

(3) we note that we can perturb not just a single interaction Φ, but a large class
of them.

Then in Sect. 3 we combine the existence result with topological arguments to
prove the main result (Theorem 2) of this paper. As an application, we prove a
result similar to a theorem of Sokal [8].

A closely related result in a more general context of affine continuous functions
on a Choquet simplex is Theorem 3.2 of [6]. That theorem includes Theorem 2 of
this paper for the space J*.

2. Existence of Order-Destroying Perturbations

For Φ e @ let

JN(Φ)= Σ \\Φ(X)\\ \X\-ιmin(l,diam(X)/JV). (2.1)
OeX

Note that the sum converges, and JN(Φ)^0 as JV->oo for any Φ. An interaction Φ
may be considered as "short-ranged" if JN(Φ)-+0 relatively quickly as JV->oo.
Given any sequence fN, we denote by Uf the set of interactions Φ such that
JN(Φ)<fN for all sufficiently large N.

Another notion of "short range" is membership in a Banach space c€h of
interactions with a norm

Nh(Φ)= Σ | | Φ ( X ) | | | X Γ Φ O , (2.2)
OeX

where h(X)>0 and h(X)->oo as diam(X)-χx). The following lemma relates
membership in this space to decay of JN(Φ).

Lemma 1. For any h(X)>0 with h(X)-*oo as diam(X)-κx) there is a sequence
fN->0 such that ^hQ Uf. Conversely, for any sequence fN>0with fN^0 as N-^co,
Uf is contained in some Banach space ^h.

Proof. Given h, let

kN{x)-

We have kN(X)^\/h{X)^ as diam(X)^oo for each AT, while
monotonically as iV-> oo for each X, so it is easy to see that /^(JQ-^O uniformly in
X as N->oo. Let fN^0 with maxkN(X)/fN^0 as ΛΓ-xx). Now if Φe%h, then

x

JN(Φ)^ Σ \ \ Φ ( X ) \ \ l l h (
OeX

<fN for JV sufficiently large.
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Conversely, given fN, let Nj be a strictly increasing sequence of integers such that
JV^Oand

00

Σ /*,<<»,

and let ho(X)=j, where Nj^dmm(X)<Nj+1. If ΦeUf then h0(X)-+oo as
diam(X)->oo and

Σ \\Φ(X)\\ho(X)/\x\=Σ Σ \\Φ(X)\\/\X\ί Σ ^ ) < « •
OeX j OeX j = l

Theorem 1. Let A e sίΎ be a local observable, and let fN-+0 as JV—>-oo. Then there is
an interaction Ψ of the form

Ψ((x + Y)u(y + 7)) = J(x-y) (τxA) (τyA), Ψ(X) = 0 otherwise (2.3)

vWί/z α// J(x)^0 swc/i ί/zαί, /or βt βrj; ΦeUf and every t>0, α// ί/ze invariant
equilibrium states for Φ + tΨ agree on A. (In the quantum case, if xΛ-Y and y+Y
are not disjoint, we replace (τxA) (τyA) by ((τxA) (τyA) + (τyA) (τxA))/2 to ensure self-
adjointness.) Ψ is in all the spaces $g.

\CmΓ Σ τji, (2.4)
xeCm

where Cm is a cube of side m. We may define an interaction Ψm of the above form
such that J(x) is the sum of the coefficients of terms (τyA) (τy+xA) and (^+^^4) (τyA)
in the expansion of (cm(A))2. We will then have

Q(ΛΨm) = ρ(cm(A)2) (2.5)

for any invariant state ρ. N o t e that \\Ψm\\g^ \\A\\2g(2\Y\).
00

We will take Ψ = Σ 2~jΨm., where m̂  is chosen as follows: Take a sequence Nj

increasing so rapidly that

Nj>N^l9 (2.6)

2ifNj^0 as ;-*oo, (2.7)

22i/Nj-+0 as 7-^00, (2.8)

and let m^JV^. Note that | | 5P | | ^ M| | 2 ^(2|7 |).
Now if ρί and ρ2 are invariant states with \ρί(A) — ρ2(A)\'^ε, it is easy to show

that ρ = (ρ1+ρ2)β satisfies

+ ε2/4. (2.9)

Of course iϊρί and ρ2 are equilibrium states for an interaction Φ + tΨ, the same is
true for ρ. To show that ρ can not be an equilibrium state for this interaction, we
will find another invariant state ρ such that

s(ρ) - ρ(Aφ + tΨ) > s(ρ) - ρ(Aφ+tΨ), (2.10)

and that will prove the theorem.
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We will obtain ρ from ρ by "decoupling" large blocks of the lattice. Given the
invariant state ρ and a positive integer iV, define ρN as follows: cover the lattice by
disjoint cubes of side JV (which we will call "blocks"). Let ρN be the product of the
restrictions of ρ to each block (in probabilistic terminology, we make the blocks
independent). Let ρN be the average of translations of ρN by all elements of a block.
Then ρN is an invariant state. We wish to prove (2.10) with ρ = ρNk for some k. Note
that s(ρN)^s(ρ), so (using linearity) it suffices to prove

ρ(Λφ) + tρ(ΛΨ) > ρNk(Aφ) + tρNk(AΨ). (2.11)

The idea is that the difference between ρ and ρNk on Aφ or on ΛΨ. for j<k is a
"surface effect," while for j > k we get a "volume effect" which will be dominant if k
is sufficiently large. The following estimates will make that precise.

First, there is a constant Kγ (independent of ρ and N) such that if B e stfx, then

K,\\B\\ dmm(X)/N, (2.12)

since ρN(τxB) — ρ(B) = 0 unless x + X intersects more than one block (this is the
"surface effect"). This implies that if Φ e Uf

N (2.13)

for N sufficiently large. Moreover, there is a constant K2 (depending only on A and

X) such that \(§N-ρ)(AΨJ = \(ρN-ρ)(cm(A)2)\<K2m/N. (2.14)

Since Nk>mj ϊoτj<k, this implies

(UNk-Q)(Σ
j<k

(2.15)

On the other hand, there is a constant K3 (depending only on A and X) such
that / , y.

\ρN(cm(A)2)-ρ(A)2\^K3\^ + [-))• (2-16)

[The 1/JV comes from those terms ρN(τx(τyA τzA)) in the expansion where
x + y + Xorx + z + X intersects more than one block, the (N/m)d from those where
x + y + X and x + z + X are contained in the same block.] Thus for; ^ /c, using (2.9)
andm^iV,2, we get 2 2

(QNk-Q)(ΛΨnιj)< - - + -^ < - - (2.17)

if k is sufficiently large. From (2.13), (2.15), and (2.17), then,

(^ k -^)(^ Φ + ̂ )<^ i/ iv k + ί (^2^ 1 / 2 -2- / c - 2 β 2 ) , (2.18)

and by (2.7) and (2.8) this is negative for k sufficiently large. D

3. Genericity

The following lemma shows that the members of any σ-compact set of interactions
may be considered "short-ranged" in the sense of Sect. 2. Recall that a σ-compact
set is defined as a countable union of compact sets.
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Lemma 2. Every σ-compact subset of 08 g is in some Uf.

00

Proof. Let S= (J Sn with Sn compact. JN is continuous on Mg and decreases
n= 1

pointwise to 0 as iV->oo, so by Dini's Theorem the convergence is uniform on the
m

compact sets Sn. Take an increasing sequence Nm so that JN(Φ) < 1/m if Φ e (J Sn

and N^JVm, and define fN = l/m if Nm£N<Nm+x. D n = 1

Now we come to the main result of this paper. Much of the proof is practically
identical to the first part of the proof of Theorem 3.2 of [6], but is included here for
the sake of completeness.

Theorem 2. Let S be any σ-compact subset of 0Sg, and for each positive integer n let
Gn be the set of n-tuples Ψ = (Ψί9..., Ψn)e(&g)

n with the following property: for
every ΦeS and every c e Rw\{0}, the interaction Φ + c !P = Φ + Σ c j ϊ

i r

ί has a unique
invariant equilibrium state. Then Gn is a dense Gδ set in {βg)

n.

Proof. For each local observable A (i.e. AestfΎ for some finite 7), let G f be defined
in the same way as Gn, except that instead of a unique invariant equilibrium state
we require that all invariant equilibrium states agree on A. By separability and the
fact that local observables are dense in si, Gn is a countable intersection of sets G^,
so it suffices to prove each of these is a dense Gδ.

Let C be the set of interactions in 0Sg which have invariant equilibrium states
that differ on A, and Ck be the set of interactions in Stg which have invariant
equilibrium states that differ on A by at least 1/fe. Using compactness of the set of
invariant states, it is easy to see that Ck is closed. By writing S = uSt and Rn\{0}
= κjKp where the St and Kj are compact, we can express G f as a countable
intersection of sets

% k = { ^ W " : C ί n ( S i + K i 0) = fi}. (3.1)

If geHijk, then dist(Si + Kj g, C k )>0. It follows that Ht j k is open, and hence
that Gi is a Gδ.

In order to prove that G f is dense, we will prove that Gf is dense and then use
the following induction argument: If (gl9 ...,gfII_1)eG^_1, let S' = S
+ span {g 1,..., gn _ x}, which is again σ-compact. If gn e Gf (based on S' instead of
S), then it is easy to see that (gu...,gn_ugr)eGn (based on S). So if G^_ 1 is dense
in (βg)

n~γ and all sets of the form Gf are dense in @ίφ it follows that G f is dense in
(βg)\

In order to prove that Gf is dense, write G^G^nG"4:, where G+ (respectively
Gl) is defined in the same way as Gf, but with the restriction c > 0 (respectively
c < 0). The same argument as above shows that these are Gδ sets, and it suffices to
prove G + is dense. (Then GAL = — G+ is dense as well.) Since increasing S decreases
G+, we may assume that S is a dense linear subspace (noting that 0&g is separable
and the linear span of a σ-compact set is σ-compact). Then if Ψ e G+, it follows that
G+ contains the dense set Ψ + S. Thus it suffices to show that G+ is nonempty. But
by Lemma 2, S is contained in some Uf, and then Theorem 1 provides an
interaction Ψ e G+ as required. D
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Among the consequences of the existence of order-destroying perturbations
are results similar to those of Sokal [8]. The result we present below, being based
on strict convexity of the pressure, requires stronger conditions on the function g
than does SokaΓs.

Theorem 3. Suppose g(ή) ^ 1 (classical case) or g(ή) ^ ean for some a > 0 (quantum
case). Let Vbe a finite-dimensional subspace of £%g, and let Φo e &g. Then for any Ψ
in a dense Gδ set in &g and any invariant equilibrium state ρ for Φ o, there is a
continuous curve ΦteΦ0 + tΨ+V for — oo < t < oo passing through Φ o, such that
for all t =f= 0 the unique invariant equilibrium state ρt for Φt agrees with ρ on all the
observables Av for veV.

Proof. Since Φo + V is σ-compact, Theorem 2 provides the dense Gδ set of Ψ such
that all interactions in Φ0 + tΨ+V for ίΦO have unique invariant equilibrium
states.

By first applying a projection, we may assume that there are no nonzero
elements of V that are physically equivalent to 0. This implies that the "pressure" P
is strictly convex on Φo + tΨ + V for any t [8, Sect. III.4]. Thus Φo is the unique
minimum of P — α on Φo + V, where α(Φ) = -ρ(Aφ). Now (since V is finite-
dimensional) P —α->oo as ||ι;|| ->oo on Φ o + V. Since P is uniformly Lipschitz, this
is also true on Φ o + tΨ + Kfor any ί, and that implies that P — α attains a minimum
on this space. Let that minimum be at Φt. Then the unique invariant equilibrium
state at Φt agrees with ρ on Av for vsV. The continuity of Φt follows easily from the
strict convexity of P on Φ0 + tΨ+V: given t and ε>0, note that
inf {(P - α) (Φf 4- v): ||υ\\ ̂  ε} > (P - α) (Φf). Then for \s\ sufficiently small,
(P-a)(Φt + sΨ + v)>(P-oc)(Φt + sΨ) for Ml^ε. This implies that
\\Φt+,-{Φt + sΨ)\\<ε. Ώ

In particular, if Av for v e V separate the invariant equilibrium states at Φ o then
ρt-^ρ in the weak-* topology as ί->0. Such a V will exist if the set of invariant
equilibrium states at Φ o is finite-dimensional. If, on the other hand, that set is
infinite-dimensional, we may take an increasing sequence of spaces Vn whose union
is dense in <8g, choose Φn on the curve given above for Vn so that Φn-+Φ0 as n-+ oo,
and obtain a result similar to that of Sokal:

Corollary. For any invariant equilibrium state ρ for an interaction Φo e 0#g, there is
a sequence Φn-^Φ0 in £&g for which the invariant equilibrium states are unique, and
tend to ρ in the weak-* topology.
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