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Abstract. Consider a viscous incompressible fluid in the half-plane and let ut be
a solution of the Navier-Stokes equation. In this paper we prove that the
product formula {EtjnGtjnφu)nu0, where Et is the Euler flow, Gt is the heat flow
and φ is a suitable operator describing the vorticity production due to the
boundary, converges uniformly to ut in the limit n-»oo.

1. Introduction

The time evolution of a slightly viscous incompressible fluid in the presence of
obstacles exhibits features which are difficult to investigate both from an analytical
and a numerical point of view, even in the simplest two-dimensional case. In
particular, large gradients of the velocity field, localized near the boundary, make
difficult the use of the conventional algorithms, which are essentially based on
projections on low frequency quantities.

To overcome this difficulty, Chorin [1] developed an algorithm which can be
briefly described, as suggested by Marsden [5], in the following way. Denoting by
Et and Gt the Euler and the heat semiflows, respectively (Gt satisfying suitable
boundary conditions), then an approximation at time t of the Navier-Stokes
semiflow will be:

(EφGtlnφ)n, (1.1)

where φ is a suitable operator describing the vorticity production due to the
boundary and making the nonslip boundary conditions (in general destroyed by Et

and Gt) approximately satisfied.
The interest of the above method lies on the possibility of describing both Et

and Gt by means of particle dynamics (the particles are localized in points where
the vorticity is sharply concentrated) thus taking into account, just from the very
beginning, the high frequencies of the problem.

* Research supported by "Ministero della Pubblica Istruzione," CNR contract No. 84.00016.02
and GNFM



428 G. Benfatto and M. Pulvirenti

Beyond the approximation problems of the single step algorithm, for which we
address the reader to ref. [2] and references quoted therein, the convergence of
the formula (1.1) to the Navier-Stokes semiflow, when n-»oo, is a problem
of conceptual and practical interest, See refs. [3-5] for a better introduction to
the problem and for partial results concerning the convergence.

In the present paper we prove the convergence of the formula (1.1) in the simple
situation of a fluid in the half-plane. Our proof is rather direct and explicit, thus we
take a considerable advantage of the geometrical simplicity.

We remark that the techniques of this paper could be extended also to the half-
space case, obviously for short times only.

The estimates occurring in the proof are locally elementary. However, the
general strategy may appear rather involved. We make use of the next section to
outline the general ideas and to separate the single steps of the proof. The rest of the
paper is devoted to the technical estimates necessary to prove the statements
contained in Sect. 2.

2. Results and Outline of the Proof

Consider the Navier-Stokes initial value problem in the half-plane in terms of the
vorticity:

(2.1)ot = curl ut = - dyu
{1) + dxu

(2),

ut e R 2 is the velocity field, the density and the viscosity coefficients are assumed to
be one and, finally, the initial value u0 is a given function. If u0 decays at infinity, the
velocity field can be recovered by the vorticity ωt by

ut=VLAD^t, (2.2)

where V1 = (— dy, dx) and ΔD denotes the Laplacian with Dirichlet boundary
conditions.

The initial value problem (2.1) has been widely investigated and global
existence and uniqueness theorems are known under suitable hypotheses on u0

[8, 9].
The Chorin algorithm is defined, for ε > 0, as

ω\ = Efiεφω\-i, (2-3)

where

Eεω = ω-ε(VλA^ ιω) Vω (2.4)

is the infinitesimal Euler flow,

Gεω = eεANω, (2.5)

where ΔN is the Laplacian with Neumann boundary conditions and, finally,

φωl(x, y) = cφ, y) + εfn%x)δ(y), (2.6)
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where

2δyAD

ίωε

n(x,0+). (2.7)

The purpose of this paper is to prove that, under suitable hypotheses on u0 (or
ω0), the approximate velocity field converges to the solution of the Navier-Stokes
equation, i.e.:

lim VLΔ^ωε

n{x, y) = ut(x9 y) (2.8)

for each ί, uniformly in x and y, where ut solves uniquely the initial value problem
(2.1) with initial datum u0.

We spend some words to explain the meaning of the algorithm (2.3). It is rather
obvious that the limit

lϊm (EtlnGt/n)
nω0 (2.9)

if it exists, does not solve the problem (2.1) but only the analogous one with
boundary condition

dyωt(x,0+) = 0 (2.10)

[u{

t

2)(x,0) = 0 is automatically satisfied by (2.2), while u{

t

1)(x,0) + 0 in
general]. The insertion of the vortex sheet given by (2.7) has the goal of
restoring the correct boundary conditions at each time step. This action is
actually equivalent to extend the velocity field in the lower half-plane in an odd
and even way for u(ί) and u{2\ respectively (ω is also extended as an even function
consequently), therefore sfε expresses the jump discontinuity of u(1\ The
subsequent application of Gε will smear out such discontinuity and the nonslip
boundary conditions will be approximately satisfied.

The vorticity produced by the action of φ at each time step is expected to be of
the order of ε and this explains the somehow arbitrary ε appearing in (2.6).
Therefore, fε can be interpreted as the rate of vorticity production of the process.

We give a flavour of the difficulty in proving the limit (2.8). It is natural, as a
preliminary step, to look for bounds on ωε

n which are uniform in ε. If one tries to do
it iteratively, a naive estimate of the amount of vorticity produced at each time step
gives [see Eq. (4.18) below] two terms. One is linear in the previous total vorticity,
but is of order j/ε"; the other one is of order ε, but is bilinear. Therefore, to avoid a
catastrophic error production, we look at formula (2.3) globally in time, by means
of an appropriate expansion which is the time discretization of the usual
perturbation of the Stokes semiflow. Namely, after some trivial algebra, it is easy to
realize that the following identity holds :

ωε

n = Sε

nω0-
nΣ sSl^^bi-VSlωl, (2.11)

fc = 0

where

Sε

n = (Gεφ)n (2.12)

and

' S \ ω ε

k . (2.13)
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Moreover we have, for an arbitrary initial vorticity profile y:

Sε

ny = Gnεy + " Σ εG^-vWδ) + GJμ^, (2.14)
k=l

where

a\x) = 2dyΔcίy(x,0+) (2.15)

is the initial sheet of vorticity to insert if y does not satisfy the boundary condition
at time zero [like bε

k VS\ωε

k in formula (2.11)], fk

y'εδ(x,y) and ayδ(x,y) stand for
fk

y'\x)δ(y) and ay(x)δ(y\ respectively, and, finally, the function fk

y'ε is determined
by the condition

efr-

The formal

where

and

= 2<ylI) Gfcβω0+ Σ
L s = l

limits of (2.11), (2.14),

ω t = Sf ω 0 +

Sty = Gty+ίd,
0

εGε ( f c_ s )(/;

and (2.15)

0

sGUfJS)

for ε-»0, n->co,nε =

). (2.16)

ί are

(2.17)

(2.18)

^+) = (). (2.19)

Since we are interested in the convergence of ωε

n given by (2.11), it is natural to
investigate first the structure of the formal limit expressed above by Eqs.
(2.17)-(2.19). This analysis has been performed by the authors of the present paper
in ref. [6]. In particular, Eq. (2.19) can be explicitly solved (due to the simple
geometry of the problem). The results concerning Eq. (2.19) are reviewed as Step 1.
As Step 2 we try to carry out the same analysis for the identity (2.16).
Unfortunately in this case we do not have an explicit expression for fk

y'ε but only
bounds following suitable algebraic manipulations. On the basis of such estimates
we are now able to give uniform bounds on Sε

nω0 and ωε

n (the Stability Theorem).
This is Step 3. At this point we notice that the stability for Sε

nω0 (but also for ωε

n) can
be obtained in the energy norm, rather easily, realizing that the operator φ is
energy preserving and the whole algorithm dissipates energy (see ref. [3]).
Nevertheless, in such norm, while the convergence of the linear problem is quite
natural, the approach to the non-linear problem seems more problematic. In fact
the non-linear limit problem (2.17)—(2.19) can be more efficiently investigated (see
ref. [6]) by the use of different and, in some sense, more natural norms, which will
be used also in this paper.

As Steps 4 and 5 we prove the convergence of Sε and ωε

n, making use of the
above preparation.

We now analyze the various steps in more detail.
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Step 1. Equation (2.19) may be better understood in terms of the Fourier
transform. Denoting by F the Fourier transform of any function F: R-*R or
F : R x R + ->R with respect to the x variable, we have:

] ί), (2.20)

^

(2.21)

where ε(x), x e R, is the sign function.
By (2.19) we have (omitting the index y on f and a for simplicity):

t

rht(p) = 2 J ds
o o

t

= )dsφ(\/p (t~s))fs(p)> (2.22)
o

where, by definition,

-- °?

ze ' z , (2.23)

mt(p)= - 2 1 ^ ^ - ^ ^ - ^ Γ^yi^(y-yi)y(p,y)-2T^^~ I p !^-^2^ t(y)αθ7)5
0 - o o 0

(2.24)

and

gt(y) = e~y2/4t/]/4πt. (2.25)

In formula (2.24) (we shall do the same very often in the rest of the paper) we
have denoted by the same symbol the even (with respect to the y variable)
extension of γ in the whole plane in such a way that Gt can be easily expressed in
terms of the free heat kernel.

Differentiating Eq. (2.22) with respect to the t variable, we have:

(2.26)

where

fit = dtmt, (2.27)

and

(τT)t(p)=t

o

(2.28)

The Neumann series associated to Eq. (2.26) can be explicitly calculated and
the result is

= (P2 + dt)mt(p) + (|p|/jA) ί dslγϊ^s(e-^-^{p2 + ds)ms(p)). (2.29)
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Formula (2.29) has been obtained in [6], where the Stokes problem was
investigated in this light. In Sect. 3 we give (also for the sake of completeness) an
alternative, and in some sense more natural, proof of Eq. (2.29).

Step 2. One can hope to deal with the approximated problem (2.16) in the same
way. In fact, by the same algebra, we obtain:

m=ί

from which

nε(p)= Σ εφ(γεp2(n-m))t(p) (2.30)
m=ί

(2.31)
k=l

where

ίfn = (Dfh)kε = (mkε - m{k _ 1 ) ε)/ε (2.32)

and

(T)ι)n(p) = "Σ δn_ x _m(λ)fim(p), (2.33)
m=ί

where λ = εp2 and

/(k+l)λ

J dze~z2. (2.34)
]/kλ

To estimate / it is convenient to separate the first two terms of the right-hand
side of (2.31) from the rest, denoted by Rn(p). We have

k = 2

n-ί n-k H-(fc-l) n-ί

2^ 2-ι 2—t '•' 2—t ^nik n—1—mι mi —1—nt2 " mk-1~ l~mk

k = 2 nik= 1 m; c-i=mj c+l mi=m2+l

n — 2 n — m « — 2

= Σ/4Σ Σ Vi Vi=Σ^,-^) . (2-35)
m = l k = 2 s i . . S k ^ l m = l

where

Jm(X)=Σ Σ δSl(λ)...δSk(λ). (2.36)
fc = 2 s i + . . . + S k = m — fc

The basic estimate is the following

Proposition 1.

(2.37)

Proof in Sect. 3.
By virtue of Proposition 1 we can prove, more or less straightforwardly:
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Proposition 2. |/n 1 ^ c ( | p | + i/i/^) S U p 1 ^ , y ) | . (2.38)

Proof in Sect. 3.

Remark. The bound (2.38) is not so good as in the limit situation for which we have,
after a direct inspection of (2.29) (see Sect. 5 or [6])

|/ t |(p)^(c/[/ί)sup|f(p,y)|. (2.39)

A similar bound for ft

ε (if true) is very difficult to obtain: the estimate (2.39) is a
consequence of the lucky circumstance that Eq. (2.26) is exactly solvable.

Step 3. We find convenient (see also ref. [6]) the use of the following norms:

m l , 2 ,
(2.40)

= ίdp\f(p)\, / R^JR1.
To obtain uniform bounds on \\ωε

n\\ and ||ftj;||, we first need to estimate ||SJωo | |
[see (2.11)]. This estimate is rather easy by virtue of Proposition 2. More involved
is the estimate of || Sε

ny ||, where y = (bε

k V)S\ω\. In fact the same strategy in this case
leads to bounds involving norms of derivatives of Slωε

k. Nevertheless, using the fact
that b\ is almost zero for y = 0 and the fundamental theorem of calculus, one can
estimate \\Sε

ny\\ by a multilinear form in ωε

k so arriving to an integral inequality of
«-i

the type Yε ^ 70 + c Σ (l?)a> f° r some a > 1, where Yε is a positive quantity larger
fe=l

than H&jJII and ||ωj;||. From this we obtain a stability result, for short times. More
precisely we have:

Lemma 1. Let b=V1A»ίSε

ιγ. Then

\b^(p,0)\Sc]/ssup\γ(p9y)\. (2.41)
r y

Moreover,

| ^ ( p , y)\ S c ί\ίε sup \γ(p, y)\+y sup |Sfy(p, y)\\. (2.42)

Proof in Sect. 4.
The following proposition is the basic ingredient for the stability and

convergence. In proving such a proposition we improve the estimate (2.38) making
use of Lemma 1.

Proposition 3. The following bound holds:

/ ^ (2.43)

Furthermore, assuming γ of the form y = (b V)F, where bis a vector field satisfying
V b = 0, we have:

\\S°ny\\ ^c(\\dx(bF)\\ + \\bF\\/)/n~ε), (2.44)

(2.45)
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Moreover, if

\S(p9y)\£c(\Γe + y)H(p) (2.46)

for some function H^O, then the following is true:

\\Sε

ny\\ ^c(J dpH(p) \\F\\ + 1/ |/^ | |6F| | ) . (2.47)

Proof in Sect. 4.
The above proposition, combined with Lemma 1, allows us to obtain the

following stability theorem.

Theorem 1. Let u0 be the initial velocity field satisfying the boundary conditions
M O (X,0 + ) = 0. Let ω o = curlwo and

M\= supmax{||α4ll, \\S\ω*J, WJ} (2-48)

Then there exist ί0, ε0, and c such that

(2.49)

for kε ̂  ί0 and ε < β0.

Proof in Sect. 4.

Step 4. To prove the convergence of the Stokes algorithm we need to introduce
norms involving derivatives. In fact, we need to compare / with fε. Since ε appears
always in the combination sp2, to prove that the difference f—fε is infinitesimal in ε
we have to control some extra \p\a appearing in the estimate. Putting, for any scalar
or vector valued function F defined on R 2 :

\\F\\{n>m)= max | |δίδjF| | , (2.50)

and, for any real valued function defined on R 1

\\F\\W= max | |δ iF | | , (2.51)

we have:

Theorem 2. For sufficiently small ε > 0 and t = nε, n ̂  1,

0 1 / 4 | |α | |< 2 ) ), (2.52)

α| | ( 1 ) ). (2.53)

Proof in Sect. 6.
The proof of Theorem 2 is based on the layer theory discussed in Step 1 and

Step 2 and on some regularity properties of the Stokes semiflow to which Sect. 5 is
devoted.
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Step 5. We are now in position to prove the convergence of bε

n to unε. This is based
on the expansion (t = nε):

Γί n-l Ί

ωt-S\ωε

n = (Snε-Sε

n+ί)ω0 + ίdsS t- 8(u s-V)ω 8- Σ εS{n_k)ε(ukε V)ωkε

|_o fc=o J

, (2.54)
k = 0

and a similar expansion for the velocity field.
Since we know, by [6], regularity properties of ωt, we can apply Theorem 2 to

the first and third terms of the right-hand side of (2.54).
By Theorem 1 we have uniform bounds on \\bε

k\\. Therefore, we establish a
linear integral inequality for max {|| ωt — S\ωε

n ||, || ut - bε

n ||} to prove the convergence
for short times. Arbitrary times are recovered by standard arguments since we
know that | |ω t | | and \\ut\\ are bounded in any finite time interval. The precise
statement is the following:

Theorem 3. Suppose | | ω o | | ( 6 ' 2 ) < +oo, uoεWf, uo(x,0+) = 0. Then, for all ί > 0 ,
0<α<l/4

lim | |ω;-ω f | | ε- β = lim Hfe - ^ H ε - ^ O . (2.55)

Proof in Sect. 7.
Some additional remarks are needed.
The approximate rate of production of vorticity of the full nonlinear problem,

i.e. fε in Eq. (2.6), has not been explicitly estimated. A direct estimate of fε, which
seems difficult in our norms, has been avoided by perturbing the approximated
Stokes semiflow Sε

n. Nevertheless, in the limiting situation, the explicit knowledge
of the solution of Eq. (2.26) allows a direct estimate of the rate of production of
vorticity (see estimate (2.45) of ref. [6]) which is interesting in itself.

More general geometry seems difficult to deal with. The basic reason is that the
operator T appearing in (2.26) has || ||-norm larger than one: this, obviously,
creates problems for general situations.

The estimates in this paper are certainly not optimal. The rate of convergence is
εα with α = l / 4 . This can be improved up to α = l/2 by the use of the present
techniques with some extra technical effort. Further improvements, if possible,
could require new ideas.

A similar product formula was studied in ref [7], the main difference being that
in (1.1) Gtιnφ is replaced by the operator Sf/π, the Stokes semiflow (this greatly
simplifies the proof of convergence). The results obtained in ref. [7] are weaker as
regards the regularity properties, but are valid for any smooth bounded domain.
Our techniques could be applied (in the case of the half-plane or the half-space) as
well to this product formula.
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We conclude this section by fixing some conventions. We shall denote by c any
numerical positive constant and by c(ξ,η,...) any positive constant depending
only on the quantities ξ, η,... . All the constants appearing in this paper are
computable, but we shall not give their values.

3. The Stokes Problem: Technical Details

Let us consider the Neumann series associated to Eq. (2.26):

ft(p) = UP) + Σ (Tkh)t(p), K = dtmt, (3.1)

where Tk is the feth power of the operator T defined by Eq. (2.28) and mt(p) is defined
by Eq. (2.24). We want to show that this series can be explicitly calculated [under
suitable hypotheses on the function mt(p)~\.

Notice that, if/c^2:

(fkh)(p)= j dsfίs(p)e-P2«-%(t-s), (3.2)
o

where

(3.3)

00

Γ{u)~ J dxxti~1e~x. (3.4)
o

Equations (3.3), (3.4), and the formula

n! = (2"/|/^)Γ(n/2 + ί)Γ(n/2 +1/2) (3.5)

imply that

Σ h(t-s)=P

2

k=2 M=0

(3.6)

Therefore,

Σ (T*fc),(p)=
fc = 2 0

(3.7)
0

where φ(x) is the error function [see Eq. (2.23)].
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Equations (3.1) and (3.7) imply that

ft(p) = dtmt γ

+p2 } dsdsms(p) [2 - φ(γp2(ts)n. (3.8)
0

Equation (2.29) follows from Eq. (3.8) and an integration by parts in the last term of
its right-hand side.

It is worth noticing that the use of Eq. (2.29) in place of Eq. (3.8) was essential in
the treatment of the Navier-Stokes equation explained in ref. [6]. However, in the
discrete case, there is a formula similar to Eq. (3.8) (in the sense that it obeys similar
bounds) for /, but it seems difficult to obtain a formula similar to Eq. (2.29). This
forced us to use, in the discrete case, a different approach, with respect to the
continuum one, in order to get good estimates for ωε

n and bε

n (see also the comment
following Proposition 2).

The analogue of Eq. (3.8) in the discrete case is [see Eqs. (2.31) and (2.35)]:

/Λp) = to + CΓA(P) + *;(P)> (3-9)

and the claim that Eq. (3.9) allows essentially the same bounds, uniformly in ε, as
Eq. (3.8) is an immediate consequence of Proposition 1, that we are going to prove.

Proof of Proposition 1. If m = 2, by Eq. (2.34):

J2(λ) = δ0(λ)2S(4/π)λ. (3.10)

If m ̂  3, we can write:

Jm(λ) = SJiλ)-Sm.1(λ), (3.11)

where, for ra^2:

sm(λ)= Σ ΛW (3.12)
fc=2

If we put ftε

m = ί in Eq. (2.35), we obtain

S»-i(A)= *Σ Jn-mβ)=ΛΣ Ilk, (3.13)
m = l k = 2

where
n 1 in i — 1 mjς — \ — 1

1U= Σ <5n-!-m iα) Σ <5m i-!-m 2W... Σ <_ 1 - 1 - m k (A) (3.14)
mι=k ni2 = k—l wik=l

Let us observe now that δk(λ) can be written in the following way:

)
(du/]/u)e-\ (3.15)

λk v

Therefore,
w - l A(mi + 1)

Σ ί dsάλn-sJ-We-**-'*...
mι=k λniί

k - i - l λ(mk+l)

Σ ί dsk(λmk^-sk)-1'2e-^'<-^\ (3.16)
mk = 1 λmk
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An important point in the proof is that the sums in Eq. (3.16) can be calculated
"almost" exactly. Let us consider the simplest case k = 2.

H - l λ(mι + l)

mi = 2 'Ami

Ami

x j ds2(λm1-s2)-ll2e-(λmί-82)

x
n-ί A(mi + 1)

= (l/π) Σ ί dSι{λn-SίY
ίl2e-(λn~Si)

ni\ = 2, Ami

= (l/π)"/ dsάλn-sj-1'2 J ds2(s1-s2)-ίl2e-^-^, (3.17)
2A A + ε^1)

where ε (1) = s1 — [si/T] is a non-negative function of s t smaller than λ.
In a similar way it is easy to show that

kλ (k

J ^k\βk-i—^k) ^ > (3.18)

w h e r e εu\j = l, ...,/c — 1, is a funct ion of sί9s2, . . . ,S/, such t h a t

0^εU)^jλ. (3.19)

Equations (3.3), (3.18), and (3.19) imply that

n λ — — 1 ^M — — 1
J dsc \λΐi — s) 11 (/c/2) ̂  i π fc^ J wSέ? (/in — 5) 11 (/c/2). (3.20)
fcλ ' 0

It is w o r t h noticing, at this point, that, for the purposes of this paper, it should
be sufficient to prove an upper b o u n d for \{T^ίf)n\ similar to the one appear ing in
Eq. (3.20), tha t is: λn ,

\(T?fϊ)H(p)\^ J ds\hs(p)\e~iλn~s\λn-s)2 /Γ(fc/2). (3.21)
0

In fact, this should allow to bound Rε

n(p) by the corresponding continuum
expression (3.7) [with \hs(p)\ in place of /zs(p)]. However, this is possible only if
\hs(p)\ is an increasing function of 5, which is not the case in the applications that we
are interested on. Nevertheless, the more refined result of Proposition 1, in which
we use also the lower bound of (3.20), is sufficient for our needs.

Let us now complete the proof of Proposition 1. By the same calculations
leading to Eq. (3.7) and by Eq. (3.13):

Sw_ i(>l) S ί ds(2 - φ(]/~s)). (3.22)
Moreover, 0

n-lVλn &__, λk fc__i Ί

S»-i(A)^ Σ ί dse-{λn-s\λn-s)2 /Γ(k/2)- J ds(λn~s)2 /Γ(k/2)
k = 2\_0 0 J
λn

^ j ds(2 — φ( |/s)) — A\ — A2, (3.23)
0
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where
oo λn — — 1

Δι

n= Σ ί dse-iλ"-s)(λn-s)2 /Γ(k/2)
k = n 0

= f dse-{λn-s)(λn-s)2~~1/r(n/2-l)
o

Δ2

n = " l ί ds(λn-s)J" VAfe/2) = " I (λk)k/2/Γ(k/2 +1) . (3.25)
k=2 0 fe=2

We defined, as usual:

β(u9 v) = Γ(u)Γ(υ)/Γ(u + ϋ). (3.26)

Since /?(w, r) is decreasing in u and ϋ, if n ̂  3, we have

λn n

Λ\ Sβ(l, 1/2) J ds[(An-s)* " /Γ(n/2-1)](2- φ(l/λn-5))
o

^25(1 l/2)(λiϊ)n^2/Γ(ft/ΐ) (3 21)

It is easy to prove that there exists λ0 ^ 1 and a positive constant c such that, for

Δlύcoληn, ηn > 0,
«-> oo

A2

nύc0λ. (3.28)

Therefore, if λ^λ0 and m ^ 3 , by Eqs. (3.11), (3.22), (3.23), and (3.28), there exists
cί>0 such that

A(m+1) Am

Jm(A)^ J ds(2-φ(]/ ; ) )- J ds(2-φ(]/s)) + A1

m + A2

mSc1λ. (3.29)
o o

The case λ^λ0 can be treated by induction. Notice that, by Eq. (2.36):

Jm(λ)= V<5A,-2- s+ V ί Λ - 1 - r (3.30)
s=0 s=0

Let us suppose that there exists a constant c such that, if2^fc^m — 1 and λ^λo\

Jk^cλ Σ e-{s~2)λ. (3.31)
s = 2

If we use the bound (3.31) in the right-hand side of Eq. (3.30), we find, using Eq.
(3.15), if m^3:

m-2+
mΣ Q/π) f Λ 1 (A(m-2)-ί 1 )- 1 / 2 β-W"- 2 >-^

s = l A(s-l)

λ(s +1) m — 1 oo

x J .ΛatJ^e-^ + cλ Σ e- ( s" 2 ) 1 Σ 5*. (3.32)
Λs s = 2 fc=0
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00

Since Σ <>k = l> w e c a n write:
fc = 0

1

e~ ( s ~ 2 μ . (3.33)
s = 2

Therefore, the bound (3.31) is true also for k = m, if cΞ> 1 +4/π. By (3.10), for any
m ^ 2 and any /l^A0, we have:

Jm(l) ^ d ^ - l o s = a/(l - e ~ λo). (3.34)
s = 0

0/ Proposition 2. Equations (2.31), (2.33), (2.35), and (2.37) imply that

Σ 2 λ\ίfm\. (3.35)
m = l

Moreover, by Eqs. (2.24) and (2.32):

and

) J dσ\dσma\ (3.36)
(fc-l)β

+00

— 00 — 00

(3.37)

where we did some integrations by parts and used the even symmetry of γ as a
function of y. Equation (3.37) implies that

Then, by Eq.

Equations (3.

(3.36), if n ̂  1

35) and (3.39)

\fn\t

^ c ( | P | + l/|/(7)e-"sup|f(p>3;)|.

|p| + l/ |/εn)e" ε p 2 ( n" υ sup \γ(p, y)\.

imply that

I \ίie

n\ + cλ\ίfn\ + c sup \γ(p, y)\Kn,
y

(3.38)

(3.39)

(3.40)

where

(3.41)
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By Eqs. (3.36) and (3.38),

λ\fι\\ ^ cp2 J dσ(\p\ + l/l/eθe-p 2 σ sup \y(p, y)\
o y

Scsup \γ(p, y)\ \p\ f dx(ί + l/|/ϊ)β-*
y o

^ φ | s u p | f ( p , y ) | . (3.42)

Moreover, by Eqs. (3.15) and (3.41),

m=2

n-ί

m = 1

m = 2

n-2

+ \p\ Σ
m=2

mλ

(m-l)λ

Proposition 2 follows from

n - l .

m = l -^/(|A-m+v

n — 2 mλ

Σ J (du/\/u)e °
m = 2 (m-l)λ

Eqs. (3.39),

00

0

m =

(3.40),

n-ί

m= 1 n

0

,m

(3.42), (3.43),

m

0

-m-f-

and

-n,

•l/n

the

^ )

(3.43)

bounds

(3.44)

(3.45)

In the following section, in order to prove Proposition 3, we shall need a more
refined version of Proposition 2, valid if γ is of the form

y = (b-V)F, (3.46)

where b is a divergenceless vector field.

Proposition 4. 7/ y is of the form (3.46), then

|/M

ε| S c(\p\ + ί/]/m) sup |p fe>(p, y)\. (3.47)

Moreover, if

% / ~ (3.48)

) J dqHip-q) sup |J?(β, y)|. (3.49)
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Proof. E q u a t i o n s (3.37), (3.46), a n d V-b = 0 i m p l y t h a t

\dσmσ\ £c(\p\ + l / | / ί )β-^sup \pbF(p9 y)\, (3.50)

which leads to Eq. (3.47), proceeding as before. If b satisfies the bound (3.48), we can
write:

l | l ] ( 3 . 5 1 )

where

B(p) = J dqH(p - q) sup \f(q9 y)\. (3.52)
y

Equation (3.51) implies that

\dσmσ\ ύ cH(p) UP\ (1 + ]/φ)e->2"2 + 7 / ^ 2 σ ] , (3.53)

which gives very easily, for n ^ l , using Eq. (3.36):

l^l^cflίpJDple-^^-^^ + l/j/εήe-^' 1"^]. (3.54)

Equations (3.35) and (3.54) imply that

(3.55)

where Kn is very similar to Kn [see Eq. (3.41)] and allows essentially the same
bounds. The only important difference is in the term λ\h\\, which can now be
estimated in the following way:

(3.56)

Equation (3.56) allows us to get the bound (3.49) only if λ^λ0, where λ0 is an
arbitrary constant greater than 0. If λ^λ0, it is necessary to use another strategy.
Observe that the | / I in Eq. (3.56) comes only from the first term in the right-hand
side of Eq. (3.54) and that it is possible to write ίfn in the form hε

n = ίι\fn + fιε2,n, so that

n-^2, (3.57)

^-χK (3.58)

This decomposition of h implies a corresponding decomposition /«ε=:/i% + /2%
/£„ can be bounded as in the proof of Proposition 2 for any λ. As regards /£„, we
observe that, by Eq. (2.30),

m = l

Let us suppose that, ifl^mrgn — 1,

(3-59)

_ m

\fU^H(p)\p\ Σ e-w-V'2. (3.60)
k=ί
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Then, by Eqs. (3.59) and (3.57),

\fU£cH(p)\p\e-*'-1>i2 + cH(p)\p\'Σe-λik-1)l2 Σ K
k=ί m = l

= cH(p)\p\ Σ e-λik~1)l2. (3.61)
k=ί

Therefore, Eq. (3.60) is true also for m = n and it implies, if λ^λo>0,

| / U ^ Φ I # ( p ) ( l - < Γ λ 0 / 2 Γ 1 . (3.62)

This completes the proof of Proposition 4.

4. The Stability Bound

Proof of Proposition 3. Equation (2.14) and Proposition 2 imply that

S \\y\\ + ||αΊ/|/4roΪ8 + c||y|| {sup "Σ λe~λk/]/λk+ "Σ ί/\/k(n-k)\.
iλ^Ok=\ k=ί J

(4.1)

The bound (2.43) follows from Eqs. (4.1), (3.44), and the inequality

n— 1 oo kλ

/
k=l fe=l ( k -

oo kλ oo

^ Σ ί (du/]/u)e-u= j (du/\/u)e-\ (4.2)
fe=l ( k i μ 0

Let us now suppose that γ = (b V)F. By Eqs. (2.14) and (3.47) we have (by some
integrations by parts and using V b = 0), if n ̂  1:

\ )/ (4.3)

Furthermore,

), (4-4)
o

which implies

(4.5)

The bound (2.44) follows from Eqs. (4.3) and (4.5).
In a similar way we obtain Eq. (2.47), using the bound (3.49).
Finally, by using Eqs. (2.14), (2.20), (2.21), and (3.47), we have:

x8up\bϊ(p,y)\£c\\bF\\. (4.6)
y
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Proof of Lemma 1. By Eq. (2.14),

00

S\y = Gεy-2gly)e-"2° J dye"'"""ftp, y). (4.7)
0

Then,i fb=Γ 1 ^^ 1 S ε

1 y,

^ ( p , 0)= J dye-My(S\y)(p, y) > 0, (4.8)
o ε~*°

which becomes, using Eq. (4.7):

,0)= I dσ J djκΓ^S f f{G>G?,y)-2^(y>- p 2 σ J d ^
0 0 (. 0 J

(4.9)
which implies very easily the bound (2.41).

Equation (2.42) follows from Eqs. (4.9), (2.20), (2.21), the trivial identity

#'>(?, y) = £(ί)(p, 0) + { dyfiVfa Vl), (4.10)
o

and the fact that ί ( 2 )(p,0) = 0.

Proof of Theorem 1. First we shall estimate ωε

n. By Eq. (2.11), if n ^ l ,

llω l̂l̂ ll̂ ωoll + llε^^F^ω^JI + Vεll^^^^.FSlω^ll. (4.11)

If ω 0 satisfies the boundary conditions, we can apply the bound (2.43) with
ay = 0 to obtain

| | S > O I I ^ | K I | . (4.12)

Furthermore, Eq. (2.13), Lemma 1, and Proposition 3 imply that

n-2

fc = 0

k = 0

where M\ is defined as in Eq. (2.48).
In order to bound ||ωj;||, we have still to bound ||εfcj- I ' ^ i ω π - i l l Ifn = l, we

have:

j j ( 4 . 1 4 )

If n> 1, we observe that

S f α ί - ! = GεVn_ t -2e-*g.(y)B*}.\(p, 0), (4.15)

where

B (4.16)
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Furthermore, Eq. (2.11) implies that

ω;_ 1 = Sβ

1ω!i_2-εft;_2.PSβ

1ωί_2.

By Eqs. (4.16) and (4.17) we have, using Eqs. (2.13), (2.21), and (2.41)

445

(4.17)

,y)\. (4.18)

Equations (4.15) and (4.18) imply that

ϋ - ^ H - i - |
(4.19)

Putting together the bounds (4.12), (4.13), (4.14), and (4.19), we can write:

{ *|| ωε

n || ̂  c { || ω0 \\ + V ε(Mε

fe)
2(l + MQ + Σ ε(MJ)2/|/ε(H-fc)}. (4.20)

I k=0 k=0 )

To complete the proof of Theorem 1, we need to estimate also S\ωε

n and bε

n. By
.(2.11),

" (4.21)

which implies, using Eqs. (4.12) and Proposition 3:

\\S\ω*n\\Sc\\ω0\\
k = 0

w - 1

Equation (4.21) implies also, together with Eq. (2.13), that

(4.22)

(4.23)

By Eqs. (2.14), (2.20), and (2.21), we can write:

\ + Uv Σ εe-^-^l/Γ'WI (4.24)

Notice now that, since uo(x9 0) = 0,

Gtω0 = GtεyV
λ 'U0 = Vλ Gt(syu0), (4.25)

where ε̂  is the sign function in the y variable. Gt(εyu0) is, for y ̂  0, a divergenceless
vector field; therefore, by using Eqs. (2.20) and (2.21) with F= VLGt(&yu0) and
integrating by parts, we obtain:

(4.26)
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Furthermore, by Eq. (2.38)

/ c = l fc=l

^c|/i(^I)||ωoll (4-27)

We have also, using Eqs. (2.14), (2.20), and (2.21):

\V^Δ~D

ιS^M• VS\ωΐ)(p,y)\ί sup\Gε{n_k)blS\ωl(p,yj\

\&(P)\, (4-28)
r = l

where y = b\VS\ωl. By Eqs. (2.42) and (3.49),

n-k-l

• Σ
r = l

Σ ε(l/|/ε(n-/c-r) +

^cγε(n-k-ί)(Mε

k)
2. (4.29)

Finally,

\dp\a\p)\^c\\bl\\ \\S\ω{\\ ^c{M{f. (4.30)

Equations (4.24), (4.26), (4.27), (4.29), and (4.30) imply that

fc-l)). (4.31)

Putting together the bounds (4.20), (4.22), and (4.31), we find:

+ c Σβ[(MD2(l + γε(n-k-ί) + M£) + (Mί)2/j/ε(n-fc)], (4.32)

which implies very easily Theorem 1.

5. Some Properties of the Stokes Semiflow

Our aim in this section is to give some estimates on the Stokes semiflow which will
be useful in the sequel.

Suppose γ(x, y) is an initial profile of vorticity, not necessarily satisfying the
boundary conditions. The Stokes semiflow is defined, according to Sect. 2, as

tγ t(y ) \ t s ( f s ) , (5.1)
where °

a(x)=-2u$\x,0+), and uo = VLΔD

ιy. (5.2)

Moreover, / satisfies Eq. (2.22) [or Eq. (2.26)] and has the explicit solution (2.29).
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By (2.24), integrating by parts, we have for the first and the second time
derivatives of m the following expressions:

(dtm)(p) = 2|p| ί dygt(y)γ(p, y)e~»2t + (2\p\/)/4^)ά(j>)e-»2', (5.3)

(dfm)(p) = 2\p\ ί dyl(-p2 + d2)gt(y)-]γ(p, y)e~ pH-\v\l(]f^tm)ά{p)e-"H

-2{\pΫlγ^t)ά(p)e-^. (5.4)

Lemma 5.1. For t > s > 0, we have

\(f,-ti(p)\Zc\p\(Γ'(p)]/tΞ-s + \ά(p)\(t-s)^/sm), (5.5)

where
Γ(p)= sup I Fy(p,y)|. (5.6)

y

Proof. By (2.22),

(ft -fs) (P) = (dtm - dβί) (p)+p\mt- A)

+ \dτ
0

x (dτ + p2)fhτ(p). (5.7)

We denote by Tb ί = 1,..., 4, the four terms appearing in the right-hand side of
(5.7) and estimate them separately:

ITxIS ί dσ\dlma(p)\ ύ ί dσ{2\p\ \\ dyί( - p 2 + df)gσ] (y)γ(p, y)e~p2ff|
s s

+ c[(|p|/σ3/2) + (|p|7σ1 / 2)]e~p 2Ίά(p)|}

S c\p\ (r'(p) { da(\l]β) + \ά(p)\ ί dσ/σ312)
\ s s /

(5.8)

By virtue of the estimate

V y I

we have
|T3|gcr^(e-"2vi/i^7)(|p|r(p)+p2|a(p)/T)

ί c\/t=s\p\Γ'(p) + c jj \ \ J

/ ^ ' T (5.11)
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Finally, again by (5.10),

U

Φ)l/lA). (5.12)

Making use of the inequality, valid for any α e [0,1],

2s(t-s)*p2a

9 (5.13)

we obtain for the first term in the right-hand side of (5.12) the bound

s)^/s3μ). (5.14)

For the second term in the right-hand side of (5.12) we have the estimate

φ|(Γ'(p) |/ ί^+|p |e- ' 2 ' |d(p) | }dτ[( l/ |A^)-(l/[/ί^7)]/ |A). (5.15)
0

Since

J dτlγ~τ[{\lγJ^τ) - (l/|/ί^7)] ύ ]/t=~s J dτ/γτ(s-τ)(t-τ)
o oo

s)/sY'\ (5.16)

(5.15) turns out to be bounded by

^ )1 / 4A3 / 4) (5.17)

Collect ing all the a b o v e est imates a n d realizing t h a t yt~s^(t — s ) 1 / 4 ί 1 / 4 , we
c o n c l u d e t h e p r o o f of t h e l e m m a .

Lemma 5.2. Putting Γ(p)= sup\γ(p, j/)|, we have the following bounds:
y

(5.18)

(5.19)

\\rs,y\\ Sc(\\Vy\\ + | |α|rV|/ί+ ||α||/ί) (5.20)

Proof. Estimate (5.18) is obvious after (5.10) and (2.29) and (5.19) is suddenly
obtained after inserting (5.18) in (5.1).
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To obtain (5.20), consider the equality

VSty = VGty + VGtaδ + } dsVGt_s(fsδ). (5.21)
0

We have

\\VGtγ\\Sc\\Vy\\, (5.22)

\\VG,aδ\\ ίc$dpe-'2'supK\p\ + \y\/tMym(p)\^(Φ)\\a\\, (5.23)

)dsdyGt-Jsδ(p,y)
o

(5-24)
0

The first integral in the right-hand side of (5.24) is uniformly bounded. Inserting
(5.5) in the second one, we get:

\dsdyGt_Jsδ(p,y)
o y

^c{\ft(p)\ + Γ'(p) + |p| \ά(p)\/]/t} . (5.25)

A similar estimate holds replacing dy by dx. Therefore, by the use of (5.18), we
obtain (5.20).

Lemma 5.3.

/ (5.26)

(5.27)

Proof. Proceeding as in (4.25), putting uγ= VλΔply, we have

Gt(γ + aδ) = Gt(εyV\) - 2Gί[u<1)( , 0)5] = GtV\εyuy)

= V^Gt(εyuy). (5.28)

Hence, by Eqs. (2.20) and (2.21),

\\V^Δ^G{y + aδ)\\ = \\V^Δ^VLGt{£yuy)\\Sc\\Gt{£yuy)\\^c\\uy\\. (5.29)

Moreover, by (5.18):

] (5.30)

and this estimate achieves the proof of (5.26).
Expression (5.27) follows easily by the inequality H P 7 1 ^ 1 ^ ! ! ^c||y|| and by

estimating as in (5.18) the new / generated by the initial condition Vy.
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Lemma 5.4. Suppose α = 0. Then, for all ηe(0,1],

Proof.

(Ga-ί)y(p,y)=

II(Gβ - i ) y || ύ c J d

(5.31)

(5.32)

(5.33)

sup | Pf(p,

(5.34)

On the other side, by (5.18) (since α = 0),

j l ( 5 . 3 5 )
0 0

Therefore, the norm of the right-hand side of (5.35) is simultaneously bounded by

(5.36)
and by

(5.37)

Interpolating the bounds (5.36) and (5.37), we complete the proof of (5.31).
Finally, by (5.33), (2.20), and (2.21),

l \Gσ - (5.38)

(5.39)

which imply (5.32).

6. Convergence of the Stokes Algorithm

Consider Eq. (2.26) associated to an initial vorticity profile and its discrete version

(6.1)

It will be convenient to think of Eq. (6.1) as defined for all times t ^ 0 by considering
If and fε as functions defined on R + by

(6.2)
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and Tε extended on arbitrary functions by

(Tεl)t=

451

(6.3)

With these conventions we take the difference between Eqs. (2.26) and (6.1):

To estimate ξ we need two preparatory lemmas.

Lemma 6.1. For t = nε, n ̂  1,

\ί(Tε - T)fl\ (p) ̂  /

Proof. We have, for n > 1:

ί(T-Tε)fl(p)

V*) ί ί d s { e - p H t γ

By Lemma 5.1 and estimate (5.18):

ε

+ cp2Γ(p) I ds/]/7^s + cp2^ " p 2

0

Sc(\p\Γ(p)γl+\p\\ά(p)\(Φ3)114)

+ cp2Γ(p)]/~ε + cp\]βl]ft^i) \ά(p)\e-"2'.

On the other hand

ί(T- TE)fl(p) ^cp2e- »2%\ά(j>)\ + ]/lΓ(p)),

and this achieves the proof.

Lemma 6.2. For t = nε and n ̂  1,

\fϊn-ίint\ίkc{γ~s\p\Γ(p) + {φψ2\p\ \ά{p)\).

Proof. Let n > l ; recalling Eq. (5.4):

'(p) f

(6.4)

(6.5)

(6.6)

(6.8)

(6.9)

(6.10)

t

J dσ(dσm — dtm)
t-ε

= β-i

t

t t

t-ε σ

t

(6.11)
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For n=ί:

0 0

+ cε~1 1 dσ(\p\/]ft)\ά(p)\ £c(]/ε\p\Γ(p) + \p\ |d(p)|/|/i). (6.12)

Hence (6.10) is proved.

Lemma 6.3. For t = n and w ̂  1:

2ί)^(p) + ce^^lpl/ί3^) (p2ί +1) |d(p)|. (6.13)

Proof. By Eqs. (6.4) and (2.31)

(6.14)
where

ln = l(Tε — T)/] π + Φ — ίt)n (6.15)

and

Rn=
nΣ (τε

ki)n. (6.16)

By (2.35), Proposition 1, Lemmas 6.1 and 6.2

Σ \lm\ύc\]/ε\pγΓ'{p)t + \v\\&ip)\λ Σ ( ε 1 / 4 / ε 3 / > " 3 / 4

m = 1 ί m = 1

^ ^ ' 4 } . (6.17)

Moreover,

|(ΓA(P)I ^ cp2 { ds{e-^γ

% ) | (6.18)

This, together with estimate (6.17) and Lemmas 6.1 and 6.2, concludes the proof
of Lemma 6.3.

Proof of Theorem 2. By (2.14) and (2.18), for t = n,

(S t -S Jy= - °Σ
fe=l ε

+ f dsGt.Jsδ + } dsGt^s(fs-fs)δ. (6.19)
0 ε

Denoting by Wh i = 1,..., 4, the four terms appearing in the right-hand side of
(6.19), we have, by Lemma 6.3:

"Σ ε(e-^"-kηy^Wε)\ξl(p)\, (6.20)
fc=l

l ( 2 ) , (6.21)
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since

k=ί k=1
(6.22)

Furthermore,

\W2(p,y)\^\ds\(Gs_s-ί)Gt-Jsδ\(p,y)
ε

v l / 2

ίdτ\dτGt+,-s(fsβ)(p,y)\

l/ss(P)Γ/2/(ί-s)1/4

(6.23)

I ( 1\ (6.24)

I W3(p, y)\Zci ds(l/]/i^~s) \p\ (Γ(p) + |<ί(p)|/j/i), (6.25)

. (6.26)

By Lemma 5.1

IW4(p,y)\ίc\p\ίds{Γ'{p)γ~εlγt̂ s + \ά(p)\ει'4/(^~ss^)}e-"^-s>. (6.27)
ε

Whence

/ O 1 ' 4^!! ' 1 '). (6.28)

This proves the first part of Theorem 2.
Finally, again by (2.14) and (2.18),

εG{n+ί_k)εξlεδ

(6.29)

The first term in the right-hand side of (6.29), using (2.20), (2.21), and some
integrations by parts, can be bounded by

c (γεΓ{p) + J (dσ/jA) \p\ |ά(p)Λ. (6.30)
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Therefore, proceeding as in the estimate leading to (2.52), we have:

(6.31)

In a completely analogous way, using decomposition (6.19), we have:

ί) 1 / 4l |α| |] (6.32)

This concludes the proof of Theorem 2.

7. Proof of Theorem 3

We consider a time interval [0, T], with Tto be fixed later. Our starting point is the
expansion (2.54). We denote by ah i = 0,..., 4, the five terms appearing in the right-
hand side of (2.54) and estimate each of them separately.

Z l β H / - G > o | | (7.1)

by virtue of Theorem 2 and Proposition 3 [recalling that V1A^1ω0(x, 0+) = 0].

It is easily seen that the last two terms in the right-hand side of (7.1) can be

bounded by cj/ε | | ω o | | ( 1 ' 1 ) and by (cε/|/εn)| |ωo | | ( 1 ' 1 ), respectively. Therefore, for ε

small,

llωoir3'^. (7.2)
Furthermore, otί =βλ +β2, where

βx = ί ds(St_s-St_s)[(uSE F ) ω J , (7.3)
o

β2 = { dsSt_s[(«s V)ωs - (uSε • V)ωJ. (7.4)
0

Then, by Lemma 5.4, (5.19) and (5.20),

ί IIS^Ov VjωJ1'2

\ds(\\(uSe- V)ωsf
1 »/(t-s)1i*+ R J | ( 1 ) / ( ί - s ) 3 / 4 ) , (7.5)

0
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where άSε is the velocity field generated, on the boundary, by (uSε V)ωSε.
Furthermore,

I \\ωs\\{ul). (7.6)
o . - _

Therefore,
\\β11| ̂  c(ω0, T)ε1 / 4 (7.7)

by the use of Theorem 4.1 of [6], for which | | M S | | ( 1 ' 1 ) and | | ω s | |
( 1 ' 1 } are bounded

functions of the time, while | |ωj ( 2 > 2 )^c(ω o)/j/s provided that | | ω o | | ( 4 ' 2 ) < +oo.
We have also

β2 = β\ + βl, (7.8)
where

(us-us)-Fωs (7.9)

and ί
β\ = J dsSt_s(uSs • V)(ωs-ωs) (7.10)

0

satisfy the bounds

\\us-uSε\\\\vωs\\ + \\us-uSε
o

(7.11)
υ

\\β2

2\\Sc\ds\\ωs-ωJ{\\ωJ + \\uJ/y7^s}
0

^]/βc(ω0, T)\ds(\\ωj + | |uj|/|/ί=s). (7.12)
0

For the bound (7.11) we have used Lemma 5.2, the obvious bound

and the estimate (see [6, Theorem 4.1])

\\Btut\\^c(ω09T). (7.14)

For the bound (7.12) we have used the estimate (2.47) of Proposition 3 with Sε

n

replaced by St (and H = \ωSε\), the bound

Jllω^ωJ, (7.15)

and the estimate (see [6, Theorem 4.1])

\\dtωt\\^c(ω0,T)/}/t. (7.16)
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Hence

\\β2\\^]/~εc(ω09T) (7.17)

and

IM^φ^Γ). (7.18)

By Theorem 2

Ve[||^

] 1 / 4 . (7.19)
fc = O

By Theorem 4.1 of ref [6] it is easy to argue that | |M ί | |
( 3 ) 1 ) is bounded and

\\ωtr
 2)ύc(ω0,T)lft (7.20)

provided that | |ω o | | ( 6 2 ) < + 00. Hence

| |α 2 | |^β 1/ 4c(ωo.Γ). (7-21)

By Proposition 3, Eq. (2.44),

IM ύ "Σ ε{(\\ukε-K\\ • \\ωkε\\/Y(n-k)ε)+ | | (% £ -^KJ ( 1 ' 0 ) } (7-22)
fe = O

Since

Kukε-bi)ωa{1'O)S\\ωkε-S\ωl\\ \\ωkε\\ + \\ukε-bl\\ \\ωkε\\{ί>°\ (7.23)

we conclude that

||α3 | | ύc(ω0, T)"Σ s(\\ukε-bl\\ + \\ωkε-S\ωl\\)/γ(n-k)ε). (7.24)
k = 0

Finally, by Lemma 1 and Proposition 3, since V1bε

k = S\ωε

k,

( | | co^ | |+S>M. (7.25)

Collecting all the above estimates, we obtain:

\\ωnε-S\ωε

n\\ ^c(ω 0, T)fε1/4+ *Σ εηe(kε)/)/(n-k)ε) (7.26)

for T smaller than any time for which the stability result of Theorem 1 holds. In
(7.26) we have used the notation

f?Xnε) = max{| |ω n ε-S> £

π | | , | | « π ε -^ | | } . (7.27)

Therefore, we need an analogous estimate for ||unε — bε

n\\. Applying to both sides
of (2.52), we obtain:

une-K= Σ VLΛ~D\. (7.28)
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According to Theorem 2:

oll(3 1 ) (7-29)

Moreover,

V^B'a^V^^iβ. + βl + βl) (7.30)

and, by Lemma 5.4 and Proposition 3

l γ ^ J Sε \\s\Uγ(0). (7.31)

By Lemma 5.3 and the bound (7.14),

W^βlW Sc\ds\\us-uJ ||ωjgφ>o,7>. (7.32)
0

By the same argument, using (7.16), we have:

| |F 1 ^ 1 /J | | | ^c ίds | | t t β J | | |ω β -ω β J |^c(ω 0 J ϊ
t ) ]/ i . (7.33)

By Theorem 2

\\V1A^2\\^c(T)ε^nΣs(\\(ukε V)ωai2'ί)+m
fc = 0

(7.34)

By virtue of (2.45),
| | F 1 ^ 1 α 3 | | ^ c ' ' Σ 1 ε | | M k ε - ^ | | | | ω , ε | | ^ c ( ω 0 , Γ ) " Σ 1 ε | | M t ε - ^ | | , (7.35)

fc=0 k=0

\\V±A^aJ^cnΣε\\bl\\\\ωkε-S\ωl\\^c(ω0,T)nΣs\\ωkε-S\ωl\\. (7.36)
fc = 0 k=0

In the last bound we assume that Γis so small that the stability result of Theorem 1
holds.

Therefore,

\\unε-K\\ ^c(ω 0, T)(s^+ "Σ εη%kε)). (7.37)

Combining (7.26) and (7.37), for T small enough, we conclude that

η%ns) ̂  c(ω09 T) (ε1/4 + V sηε(ks)/\/(n-k)ε), (7.38)
V k = 0 J

implying

π—• oo
= 0 for nε^T. (7.39)
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To extend the validity of (7.38) to arbitrary times, we observe that, by (4.31),

there exists a positive decreasing function <5(||ωo||, ||woll) for which the stability

result holds if nε<<5(||ωo||, l|wo||) Choosing, for any fixed f,

ΛSf2sup K| | , 2sup \\ωt\\\9 ί), (7.40)

we divide [0, T] in intervals \tb ti + 1~\\ = Q such that \ti+ x — tt\ < δ. In the first interval

we obviously have convergence. Then, for ε sufficiently small, we have

II& J ^ S U J J I M I , | |<| |^2sup||cυ ( | | . (7.41)

This allows us to obtain the stability and hence the convergence also in the

second interval of time. The procedure can be iterated up to the last interval and

this concludes the proof.
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