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Abstract. Open string models are classified using modular invariance. No good
candidates for new models are found, though the existence of an E8 invariant
model in RiΊ' *, a similar one in R5' 1 and of a supersymmetric model in R2' x

cannot be excluded by this technique. An intriguing relation between the left
moving and right moving sectors of the heterotic string emerges.

Due to the conformal invariance of string theories, quantities defined by integrals
over function spaces defined on the string world sheet can be described by
holomorphic forms in Teichmuller space, i.e. the space of classes of conformally
equivalent metrics on a compact Riemann surface of given genus. For genus
g= 1,2,3 this space is given by the coset space H(g)/Sp(g,Έ), where H(g) is the
Siegel upper half plane of dimension g(g +1)/2. Thus one obtains holomorphic
forms on H(g) which are invariant under Sp(g,Έ).

In particular this applies to various partition functions using light cone
variables which can be defined as suitable traces or supertraces in the Hubert space
of a non-interacting string [1,2]. Such a trace is given by a functional integral with
the condition that the states of the string at light cone times t0 and tί are the same.
For closed strings a state at time t is specified by functions /(σ, t),σeR mod2π, but
for constant σ0 the functions f(σ, t) and /(σ + σ0, t) denote the same state. This
introduces a complication which will not be discussed in the present paper, which
deals exclusively with open strings.

Open strings are described by functions /(σ, i), σe[0, π]. For functional
integrals yielding traces one must have f(σ9t0)=f(σ,t1), as the boundaries at
σ = 0, π are fixed. The string surface over which one integrates then is the annulus
[0, π] x (R mod(ί! — ί0)). However, one can go over to a compact double cover of
this annulus, namely the torus (Rmod2π)x(Rmod(tί — toy), with projection
σ-»|σ|. Physically, the double covering corresponds to the separation of right
moving and left moving excitations of the string, which due to the conformal
invariance do not interact at all, apart from the boundaries, where they are
reflected and transform into each other.
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For a functional integral over the annulus, the normal modes exp(mσ) and
exp( — inσ) are related by an involution. In the corresponding unrestricted
functional integral over the torus, this restriction is removed. As the contributions
of different normal modes are independent, the torus integral is just the square of
the annulus integral, apart from the zero mode factor with n = 0, which is not
squared. Up to this zero mode factor open string partition functions are given by
the square root of integrals over functions on a torus.

Tori have genus g = 1, and the corresponding iί(l) just is the ordinary complex
upper half plane with coordinate w, which continues i(t1 — t0)/2π to complex
values with arbitrary real part. On H(l) the modular group Sp(l,Z)/Z2

= SL(2,Z)/Z2 acts by

aw + b fa b\
w->——, eSL(2,Z).

cwΛ-d \c a)

The invariance under the modular group can be used to classify string models
by specifying the partition functions for the non-interacting string. This does not
necessarily yield a unique determination of the model, as e.g. the two possible
bosonic sectors of the heterotic string [3] with E8 x E8 and Spin+(32) symmetry
respectively have identical partition functions, such that the existence of two
different models was not recognized, when this partition function first turned up in
a string model classification [2]. Moreover, the method yields no constraints on
Chan-Paton variables attached to the ends of the string, as these do not change the
dynamics of the non-interacting string. Nevertheless, the following results indicate
that for open strings new models may not exist within the presently established
framework.

Consider an open, non-interacting string in RD+1Λ. For fixed light cone
momentum p+ and zero transverse momentum, all states of the string can be
classified according to their mass m and their transformation properties under the
transverse rotation group SO(D) or rather its double covering Spin(D). Let r be
the rank of Spin(D) and T(Spm(D)) = Rr/Λ its maximal torus, such that A is the
weight lattice of Spin(D). For each weight λeA, let dB(m,λ) be the number of
bosonic states with mass m and helicity λ and dF(m, λ) the corresponding number
of fermionic states. Of course dB(m, λ) only can be positive for weights of SO(D)
and dF(m,λ) only for the remaining weights of Spin(D).

If no fermions are present, the annulus functional integral yields an ordinary
trace, but with fermions one obtains a supertrace. Thus we define

d(m, λ) = dB{m, λ) - dF(m, λ), d(m) = Σ d(m, λ),
λeΛ

and the partition function

A(w) = Σ d(m) exp (2τriwm2),
m

where masses are measured in some suitable unit. For physically reasonable mass
spectra A(w) is well defined and regular in the interior of H(l).



A Classification of Open String Models 3

Let ζ = (ζl9..., ζr) parametrize the maximal torus Rr/Έ = SO(2)r of SO(D) and
its double covering Γ(Spin(D)). Define the helicity partition function

A(ζ,w) = Z(ζ)Σ Σ d( 2

m λeΛ

Here we use zero mode factor [2]

| +2πζiL
i/(t1-t(ή = Π

where L\ i = l , . . . , r denotes the Lie derivatives given by the generators of
T(Spin(D)) and the differential operator acts on the maps from (R mod(ί1 — ί0)) to
RD. Note that Z(() is double valued on SO(2)r, but single valued on T(Spin(£>)).

For physically reasonable dim, X), analytic continuation in ζ yields a mero-
morphic function A(ζ, w) defined on CjA xH(l). The relevant transformation
law for helicity partition functions is that of Jacobi forms [2,4].

Definition. A meromorphic function F(ζ, w) on C x H(l) is a Jacobi form of weight
α G Z/2 and index ke<E with respect to a lattice A C Rr, if

1) as function of g1/2 = exp(π/w) it is meromorphic in a neighbourhood of

2) F(ζ + λ9w) = F(ζ,w) for λeΛ,

3) for arbitrary ( , I e SL(2, Έ) it satisfies
\c dj

\cw + d cw +

with εe{ + l, — 1}.
In the degenerate case r = 0we call F(w) a modular form, as usual.
In the terminology of [4] our F(ζ,w) might more precisely be called

meromorphic Jacobi forms.
We shall not distinguish between functions defined on Cr/Λ and functions

defined on Cr with period lattice A. Thus the helicity partition functions are
candidates for Jacobi forms. We tentatively admit sign factors ε, as our partition
functions are given by square roots of functional integrals on tori. The functional
form of the cocycle in the Jacobi form transformation law is the only possible one
[5]. A cocycle appears, when the relevant functional integrals are sections of non-
trivial line bundles over C/(Λ + wΛ). This happens e.g. for [6]

If one expands the logarithm of this determinant in powers of ζ, the coefficient of ζ2

is logarithmically divergent, which explains the form of the cocycle. This
phenomenon is general, because the operator multiplying ζ must be of dimension 1
to yield an SO(D) symmetry current, whereas the ̂ -independent operator yields an
energy-momentum density and must have dimension 2. It is easy to see that the
cocycle index k is real and quantized.
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Lemma 1. For a Jacobi form of index k with respect to the lattice λ

F(ζ + λw + λ', w) = F(ζ, w) exp( - kπi(2ζλ + wλ2)),

for all λ^λ'eΛ.

Proof. Conjugation of a A translation by the modular transformation w->( — 1/w)
yields the first formula. Applying the transformation w-+(w+ 1) to this equation
yields the second one.

If A(ζ, w) is a Jacobi form of weight α, then A(w) is a modular form of weight
α —r. This weight can be determined as follows [7]. On strings no long range
correlations should exist, such that for fixed L e (0, L) the space of strings of length
L modulo translation should essentially be the tensor product of the correspond-
ing spaces for lengths L and L — L. Certain quantum numbers like momentum are
distributed additively among the two parts. A natural measure for the length of the
string is the light cone momentum p+ = (po—Pι)/2. Let ρ(p) be the density of string
states with momentum p. Then one expects

For the Laplace transform in p_ = (p2_ + m2)/2p + ,

one obtains
(2πp Jt)D/2A(ίt/2πp+) ~ exp (cp+/t)

for some constant c, which yields a weight factor w~D/2 for the transformation
from A(w) to A(— 1/w). Thus the weight of A(ζ, w) should be r — D/2, i.e. zero for
even D and —1/2 for odd D.

Actually w~D/2A(w) should be a sum of exponentials in - 1/w with integral
coefficients. Our argument just has recovered the dominant term, but along the
lines of [7] it might be possible to explain the whole series.

Another physical argument can be used to control the poles of A(ζ, w). As the
zero mode factor Z(ζ) has single poles at ζ e Έ\ Lemma 1 yields single poles at all
points of the lattice TU + wΈr. Poles in ζ correspond to the linear Regge trajectories
of the string [2]. The leading trajectory is given by rigid rotations in RD, as for a
string with length L and total momentum p = (£, 0) one has a geometric angular
momentum J<LE<E2 = m2, whereas internal contributions to the angular
momentum should only be proportional to E. Thus changes in the internal
structure of a string only should affect the Regge intercepts. In particular the poles
of A(ζ, w) should be independent of the details of the string structure, and no new
poles should occur besides the ones at Zr + wΈ\ which are due to the basic
kinematics. When we divide A(ζ9 w) by the standard bosonic string contribution,
the resulting reduced helicity partition function,

thus should be holomorphic in CrxH(\).
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We use the standard notations

= 2qlll2η(w)sinπz Π (l-e2πίzqn)(l -

z,w) = 2qlll2η(w)cosπz Π ((1
« = 1

w) = q~lιz4 Π (( l±e 2 π V" 1 /

/ j = l,2,3,4.
i = 1

Note that ?/ ~ 3r(w)#i (£, w) is a Jacobi form of weight — r and index 1 with respect to
A, such that H(ζ, w) is a Jacobi form of weight — D/2.

The dominant Regge intercepts are determined by the index k of H(ζ, w). For
k> 1 one obtains sister Regge trajectories of arbitrarily high intercept [2], which
for the corresponding interacting string theory should be incompatible with
unitarity. The snag with this argument is that closed string theories apparently
reconcile unitarity at least with a graviton trajectory of intercept 2. Thus the
existence of a loophole for k> 1 is perhaps conceivable, but this possibility will be
ignored in the following classification.

Theorem. Let H(ζ, w) be reduced helicity partition function of a Lorentz invariant
string theory ίnRD + 1>1 with at most a finite number of tachyon states. Let H(ζ, w) be
holomorphic in CrxH(l) and transform as a Jacobi form of weight — D/2 and index
fc^Ξ 1 with respect to the weight lattice A of Spin(D). Then H(ζ, w) can be obtained
by integral linear combination from the following functions:

For ε=l:

for e φ l :

D = 0: H?(w)=-η-12(w)E6(w)χ(wγ, n = 0,l,2,.

and finally
D = \: H3(w) = O.

Here a 5 .

£6(w)=l-504Σ r Λ .
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and

=i l-qn

The lower index of H in this list denotes the space-time dimension D + 2. For
D = 26 the list yields the standard bosonic string. For D = 8,16 note that χ(w) is the
character of the basic representation of the euclidean Kac-Moody algebra £ 8

1 } [8].
Its square can be interpreted as character of £(

8

1} x £(

8

1) or D[^. Thus Hf0 is the
partition function of the bosonic sector of the heterotic string. H*Q is the reduced
helicity partition of the superstring for chirality +. Its notation in the theorem
corresponds to its original construction from the Neveu-Schwarz and Ramond
strings [9]. With the triality transformations,

one may write

which corresponds to the formalism of Green and Schwarz [10].
For D > 1 the function H6 is the only one in the list which transforms with a

non-trivial phase factor ε. Though χ(w) is the basic £ 8

υ character, H6 cannot come
from a theory with unbroken E8 symmetry, as otherwise the SO (4) vector multiplet
at m2 = 1/2 would lack a singlet to complete the SO (5) vector which is required by
Lorentz invariance.

One has to list the possibility H3(w) = 0, as for D^ 1 bosonic and fermionic
contributions to the partition function cannot be distinguished, such that a
supersymmetric string model in R2'* cannot be ruled out by the present approach.

For D = 0 one just expects partition functions of conformally invariant field
theories in 1 +1 dimensions, with space compactified by suitable boundary
conditions. A free scalar field taking values on an 8w dimensional torus with even
integral, self-dual period lattice yields, e.g. a linear combination of the H™,
m = 0, ...,n.

The proof of the theorem will be given as a series of lemmata.

Lemma 2. // Dφ4Z, H(ζ, w) vanishes.

Proof. For w purely imaginary and ζ either real or purely imaginary, H(ζ, w) is real.
Comparing the phases after a modular transformation w->(— 1/w), one finds that
i m must be real. D

Lemma 3. fce{0,1}.

Proof. For D ̂  4 the weight lattice of SO (D) contains weights λ with λ2 = 1. Thus
Lemma 1 yields k e Έ. Applying Cauchy's theorem to H ~ ^^dH/dζi, one finds that k
is non-negative. The restriction k ̂  1 has been stated in the assumption. D

Lemma 4. For the sign factor ε in the transformation law
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one has the two possibilities

1) e=l> Λ 1\ / 0
2) ε is the character of SL(2, Έ) defined by εl I =ε.

/. ε must be a character of SL(2,Z) which is trivial on all group elements
generated by squares, in particular on

SL(2,Z,2) =
a b\ (\ 0

c d V0 1
mod2>.

J

The quotient group SL(2, Z)/SL(2, Z, 2) is the symmetric group S3, which just has
the two homomorphisms into Z 2 used above. D

Lemma 5. H(ζ,w) can be extended to the compactificatίon of /ί(l)/SL(2,Z)
given by the local coordinate q in the neighbourhood of w = zoo. For ε=l, H(ζ, w) is
meromorphic in q, for εφ 1 the same is true for q1/2H(ζ, w).

Proof This is a direct consequence of the assumption that there are at most a finite
number of tachyonic states and of the behaviour under w->w+ 1. D

Lemma 6. For k = 0 or D = 0 one obtains the list of possibilities given in the theorem.

Proof For k = 0 the reduced helicity partition function is a doubly periodic
holomorphic function in all components of ζ, i.e. H(ζ, w) = A(w). In particular, the
string is purely bosonic. Define N by A(w) ~ q ~ N at q = 0, where N e Έ for ε = 1 and
JV £ Z +1/2 for ε φ 1. Let n0 be the number of zeros of A(w) at generic positions in
iϊ(l)/SL(2,Z) and n2,n3 the degrees of zeros at exp(πί/2), exp(πi/3). Then [11]

N-no-n2/2-n3/3 = D/24.

Because of Lorentz invariance, tachyons form unitary representations of
Spin(D, 1). These are infinite dimensional or trivial. Thus d(m,λ) = 0 for m2<0,
λ Φ 0. For D > 0 this yields iV ̂  1, and consequently n0 = 0. Thus A(w) is given by a
suitable product of powers of the holomorphic modular forms η24(w), E4(w),
£6(w), which have simple zeros at zoo, exp(πz'/2), exp(πz'/3) respectively and
nowhere else. The cases with n2 = 0 have been listed in the theorem, with the
exception of

H14(C,w) = ̂ -1 2(w),

which violates Lorentz invariance, as it does not yield a representation of SO (13) at
m2=l/2. Nevertheless the corresponding bosonic string in 14 dimensions is of
some interest, as compactification of 4 dimensions on Z 4 leads to the superstring
[12].

A zero at w = z is incompatible with d(m, λ) = dB(m, λ) ̂  0. In fact for n2 = 1 one
obtains

D=12: HB

1l(ζ,w)=-η-2\w)E6(w),

D = 4: HB

6%ζ, w)=-η~ 2 » £ 4 ( w ) £ 6 ( w ) .

In these cases, d(m, 0) = — 1 for m2 = — 1. Perhaps there are corresponding models
with tachyonic ghosts, which might have some use. The B in HBe stands for
bosonic, the g for ghost.



8 W. Nahm

For D = 0, one considers the holomorphic modular form η24N(w)A(w), which is
of weight 12JV and has ε = 1. All such forms are polynomials in £4(w), E6(w) [11].
As £4(w)3 — E6(w)2 is proportional to τ/24(w), one obtains the list given in the
theorem. D

Lemma 7. For k=\ one has

_ift/w)0XC,w).

Here hx{w\ ft/w) are modular of weight 0 /or SL(2, Z), SL(2, Z),, j = 2,3,4, w/iere

SL(2,Z)2=<|( JeSL(2,Z)c = 0mod2>

i?^0mod2J>

are conjugate subgroups of SL(2, Z). 77ιe ft/w) are related by the same conjugations.

Proof. With respect to each ζi9 H(ζ, w) is a holomorphic section of a line bundle
over C/2(Z + wZ), with cocycle given by Lemma 1. For k= 1 these sections are
linear combinations of the θj{ζi9 w)J= 1,2,3,4. Imposing periodicity oϊH(ζ, w) on
yl one finds that H(ζ, w) must be a linear combination of the θrfζ, w). Applying
modular transformations of all cosets SL(2,Z)/SL(2,Z,2) one obtains the
remaining statements of the lemma D

Lemma 8. For k = 1, H (ζ, w) mwsί be the reduced partition function of a super string.

Proof. Let Hj(w)~q~Nj at q = 0. Invariance under w->w+l yields
N3 = N±GZ/2 + D/\6; NuN2eZ for ε=l; Nl9N2eZ+l/2 for εφl. To avoid
tachyon states transforming non-trivially under Spin(D) one must have N^^^O,
N2^0, N4^l-D/l6 for ε = l and JV^ -1/2, JV2^ -1/2, N4S 1/2-D/16 for
εφl .

In particular, ft^w) is a modular form of weight 0 without poles, i.e. a constant,
which even must vanish for εφ 1.

In the fundamental domain #(1)/SL(2, Έ)2 of Λ2(w) there are two inequivalent
cusps at w = 0, ioo, and the special point w = (1 + 0/2, which is left invariant under

the involution I I of SL(2, Έ)2/Έ2. Using the transformation w-»( — 1/w) one

sees that /i2(w)^^" iV4 at $ = 0, where $ = exp( —2πΐ/w). Let n0 be the number of
zeros of/i2(w) in general position in fί(l)/SL(2, Έ)2 and n2 the degree of the zero at
w = (l + 0/2- Using Cauchy's theorem for (/z2)~

1d/z2/dw one obtains

For βφl and for ε = 1, D ̂  12 one finds n0 = 0, thus ft2(w) is given by a product of
powers of the functions 02(O,w)8, Θ3(O, w)8θ4(0,w)8, Θ3(O, w)4 + θ4(0, w)4, which
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vanish at ίoo, 0, (1 + ϊ)/2 respectively and nowhere else. One finds
D = 1 6 , e = l :

4(w) [ ± θ\{ζ, w

= 1 2 , ε = l :

= \η ~ 2 4 ( [

w)θt(ζ, w) + φ2(w)θl(ζ, w)

+ φ3(w)θi(ζ,w)-φ4(w)θl(ζ,w)-],

= 4, eφl:

H6(ζ, w)=b~12(w)Σ2 θ](ζ, w)0?(O, w),

where

For ε = 1, D = 4,8 one finds w0 ^ 1, i.e. by elementary divisor theory two linearly
independent possibilities for /z2(w), which yield

± 16^12(w)θί(C, w) + £4(w) _Σ

The notation is as follows: The twiddle in H denotes a sign inversion for dF, i.e. a
partition function constructed from dB(m, λ) + dF(m, λ) instead of dB — dF. The g in
H9 denotes the presence of ghost states with dB<0. In H\% and &%*• there are
tachyon states. For H9^ the spectrum is supersymmetric, but there is a vector
ghost at zero mass.

Thus only for D = 8 one can form a linear combination which satisfies all
conditions of the theorem, namely

This completes the proof of the theorem. D
Equation (*) is very curious, as the left-hand side is closely related to the two

possible bosonic sectors of the heterotic string. Let Spin (8) be the usual transverse
rotation group and Spin(8)ί), Spin(8)f; isomorphic groups which are regularly
embedded into the symmetry groups Spin+(32), E8xE8 respectively of these
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strings. Using the diagonal subgroups of Spin (8) x Spin(8)D and Spin (8) x Spin(8)£

as new transverse rotation groups [12] one breaks Lorentz in variance, but obtains
the partition functions Hf0, H\o. Subtraction of these two functions allows the
restoration of Lorentz invariance and yields the superstring helicity partition
function. In some sense the superstring seems to result from an interference
between the E8 x E8 and Spin+(32) compactifications of the string in 26 dimen-
sions. At m2 = 0, Hf0

£ yields an antisymmetric tensor, 8 + 1 vectors, 16 Majorana-
Weyl spinors and dim (£8) +dim (SO (8)) = 276 scalars, whereas H% yields an
antisymmetric tensor, 24 + 1 vectors and dim (SO (24)) = 276 scalars. Both H^o and
H^Q have been constructed in [2], but in an intransparent notation.

To explain the internal excitations arising for k=\9 note that (±θ\(ζ,w)
+ θr

2(ζ,w))/2, (θr

3(ζ9w)±θr

4.(ζ,w))/2 are the characters of the four irreducible
unitary representations of the Kac-Moody algebra D{

r

1} with central extension
k=\ [8]. This can be understood in the following way. For the internal
contribution to the angular momentum current along the string one may separate
left moving and right moving currents. Thus the group [0, π]->Spin(D) acting on
the string states is lifted to a central extension of the group (R mod 2π)-> Spin (D)
defined on the double cover of [0, π]. The algebra Z)J1) is just the corresponding
current algebra.

In general, Jacobi forms of index k are related to representations of D^υ with
central extension k. Note, however, that k= 1 is special:

Proposition 1. Let H(ζ, w) fulfill conditions of the theorem except possibly k ̂  1. If
the string theory is chiral, then k—\ and the Lorentz multiplets not invariant under
parity are massless Weyl spinors.

Proof Let parity act on ζ by ζp = (-ζuζ2,ζ3,...). By Lorentz invariance the
difference A(ζ9 w) — A(ζp, w) only gets contributions from massless states. Thus it is
independent of w and by modular invariance also of ζ. In particular its index must
vanish, which yields k= 1 for H(ζ, w). For A(ζ9 w) — A(ζp, w)= 1 one finds

Σ d(09 λ) (exp (2πiζλ) - exp (2πiζpλ)) = Z(Q •
λeΛ

Another easy but important result which applies to the superstring is

Proposition 2. Let the modular form A(w) of weight — D/2 be the partition function
of a string theory without tachyons. Then either D = 0, A(w) = const or A{w) = 0, i.e.
the spectrum is super symmetric.

Proof A(w) is a holomorphic modular form. For negative weight such forms must
vanish, for weight 0 they must be constant. D

The present classification yields much more restrictive results than the one of
[2], as we have insisted on the invariance under the full modular group, not just
under a subgroup of finite index. This agrees with the known models, though the
full Neveu-Schwarz and Ramond models do not have this invariance before their
restriction to the superstring.

Unfortunately, our investigation did not yield convincing new candidates for
open string models. But in spite of some pathologies the unconventional
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candidates listed in the proofs of Lemmata 6 and 8 may be of interest. Moreover,
the relation between the bosonic and superstring sectors of the heterotic string
implied by Eq. (*) looks very intriguing.
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