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Abstract. Solutions of the relativistic Vlasov—Maxwell system of partial dif-
ferential equations are considered in three space dimensions. The speed of light,
¢, appears as a parameter in this system. For smooth Cauchy data, classical
solutions are shown to exist on a time interval that is independent of ¢. Then,
using an integral representation for the electric and magnetic fields due to
Glassey and Strauss [6], conditions are given under which solutions of the
relativistic Vlasov—Maxwell system converge in a pointwise sense to solutions of
the non-relativistic Vlasov—Poisson system at the asymptotic rate of 1/c, as ¢
tends to infinity.

Introduction
Consider the Cauchy problem
Of + 0V f+(E+c 6 x B)V,f=0,
(RVM) 0E=cVxB—4nj V-E=4np,
0,B=—~cVxE V:B=0,
p(x,t)=[f(x,v,0)dv  j(x,t) = [ f(x,0,t)bdv,
where
b=(1+c %) 12,

and the initial conditions are

(RIC) E(x,0) = Eo(x),

B(x,0) = By(x).

Here x and v are points in R® representing position and momentum respectively. f
gives the number density of a collisionless plasma consisting of a single species of
charged particle acting under its selfinduced Lorentz force, E+c~'6 x B. The
parameter c is the speed of light. (RVM) is a relativistic version of the classical
Vlasov—Maxwell system (VM), which may be obtained from (RVM) by replacing 6
with v. The formulation of the relativistic version is discussed in [11 and 13].

{f(x’ v, O) =f0(x, U),
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Our goal is to establish conditions under which solutions of (RVM) converge, as
¢ tends to infinity, to solutions of

0f®+ vV f*+E®V,f°=0
E*(x,t)= [ p°(3,8)|x — y|*(x — y)dy
pe(x,1) = [ f2(x,v, t)dv

with the initial condition

(I0) J2(%,0,0) =fo(x, v).

One purpose of this goal is to make precise the statement that relativistic effects are
negligible if the speed of light is much greater than the velocities which occur. An
additional advantage is that (VP) is more fully understood than (RVM), so we would
be able to approximate a harder problem by an easier one.

Global weak solutions are known to exist for (VP) ([1 and 9]). Global classical
solutions for (VP) have been shown to exist for symmetric data ([4, 8, and 14]) and
for small data [3], but the problem of global existence of smooth solutions for
unrestricted data is still open.

Local existence of smooth solutions of (VM) has been established by Wollman
[15]. Glassey and Strauss [6] have shown for (RVM) that an a priori bound on
momenta (i.e. there exists a continuous function §: [0, T) — [0, co) such that |v| > S(t)
implies f(x,v,t)=0) implies existence of a smooth solution for 0 <t < T. This
theorem is analogous to Theorem 1 of [4].

The main results of this paper are the following two theorems:

(VP)

Theorem 1. Assume that f,eC*(R®) is nonnegative and has compact support. Assume
that E, and B, are in CYR3})n W1 *(R3) A W>YR3) and satisfy

V'Eo =4njf0dv,
V'Bo =0.

Then there exists T > 0 (independent of c) such that for each ¢ = 1, (RVM) with the
initial condition (RIC) has a unique C* solution (f*, E°, B°) on the time interval [0, T).
Furthermore there exist nondecreasing functions (independent of ¢) P: [0, T) —» R and
K: [0, T)- R such that

feo,)=0 if |v| = P(1), 1)
|E(x, t)| + | B(x, )| < K(¢2), 2
for all te[0, T), xeR3, and ¢ 2 1.

Theorem 2. Let f, be a nonnegative C* function of compact support in R® and let

Eq(x) = [ [ folx, v)dv|x — y|~3(x — y)dy.

Let (f, E®) be the unique C* solution of (VP) with f(x, v, 0) = f,(x, v) that is known to

exist by [10] for some time T, > 0. Assume both of the following:
A. There exists T, >0 such that for each c=1, (RVM) has a C! solution
(f*, ES, B) on [0, T,) with f(x,v,0) = fo(x, v), E(x,0) = Ey(x), and B(x,0) = 0;
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B. There exists a nondecreasing function P: [0, T,)— R such that
f0,0)=0 if |o| 2 P@) €)

for all xeR3, te[0,T,), and c = 1.
Let T =min(T,, T,), then for every T'€[0, T) there exists a constant D (depending on
T’ and the data, but not on c) such that

lfc(x3 v, t) _fao(x’ v, t)i + IEc(x, t)—Ew(xs t)‘ +ch(x’ t)] é Dc™ 19 (4)
for all xeR3, veR3, te[0,T'], and c 2 1.

Comment. If we also assume that f, is C? then the hypotheses of Theorem 1 are
satisfied with B, =0. Hence if f, is C* then by Theorem 1 we know hypotheses A and
B of Theorem 2 are satisfied for some T, >0 and P: [0, T,)- R.

As this work was being completed we learned that Degond [5] and independ-
ently Asano and Ukai [2] have recently established results similar to the above
theorems for the classical system (VM). Here we deal with the relativistic system
(RVM) which, in light of a recent blow up result, [ 7], for a relativistic version of (VP),
may be significantly different from (VM). Also the analysis in this work differs from
that in [5 and 2] in that it is based on an integral representation of the fields due to
Glassey and Strauss [6]. Hence the integral representation of E° is compared
directly with the Coulomb force,

Eoo(x’ t) = j‘j‘foo(}@ U, t)’x - y|—3(x - y)dvdy,

which holds for (VP) and the representation of B is compared with zero. Pointwise
estimates are obtained. It is hoped that this results in a more explicit understanding
of how the two problems ((RVM) and (VP)) compare.

The following notation is used. Given x and y let

o=|x—-y| " (y—x). ®)
dw denotes the surface measure of the unit sphere, dS denotes surface measure more
generally. We assume in both Theorems 1 and 2 that f,, has compact support, so let
So =sup{|x|: there exists veR? such that fy(x,v) # 0}.
Also, if (f, E, B) is a solution of (RVM) with data (RIC), we define for ¢ > 0,
P(t) =sup {|v]: there exists xeR® and
7€[0,¢] such that f(x,v,7) #0} + 1. (6)
We also define the characteristic curves (y(x,v,t,s), v(x,v,t,5)) by

%X::D:(l-‘-c‘zl}z)l) X(xav,t9t)=x
(7

%v =E(y,s)+c 10 x B(y,s) o(x,v,t,t)=0.

Note that (d/ds)[ f(x, v, s)] = 0 and conclude that f remains non-negative if f,, is and
that

sup{f(x,v,1): xeR%,veR} = | fo |- )
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Note also that f(x,v,t) =0 if | x| = S, + tP(¢).
The following lemma will be used in the proofs of both theorems.

Lemma 1. Let g be a continuous function of compact support on R3, then there exists a
constant D > 0 such that

n | lg(x+now)do<D

lol=1

for all n = 0.
Proof. Note first that

n § lg(x+no)ldo <4nl gl on. )

lol=1

Choose § sufficiently large that g(x) =0 if |x| = S. Now

n | lgx+no)do<nlgl, | do.

lo|=1 |lo|=1and|x +nw|<S§
If @ denotes a polar angle on the unit sphere with the vector — x, then a little analytic
geometry shows that if # > S then the set jw| = 1 and | x + nw| < § is contained in the
set 0e[0,sin™! (Sn~!)]. Hence for n> S
sin” Lsn™Y)
n § lgx +nw)ldo <nlglle g 2nsin 0d

lw|=1
=2nn g (1 —[n* -S>~ 1)
=27)g )l oS%n + [n* — S*1Y3) ™' < 27l|gllS%n . (10)

The lemma follows from (9) and (10).

As in the lemma, D denotes a generic constant which is independent of c.

In the appendix an integral representation for E and Bis derived asin [6]. In [6]
one term of the representation is suppressed since it depends only on the data and
hence plays no role in the existence theory. However, this same term plays an
essential role in the proof of Theorem 2, so rather than scaling the representation as
stated in [6], the entire representation is computed in the appendix.

The Proof of Theorem 1

To establish Theorem 1 we will apply a theorem from [6] which states that an a
priori bound on the v support of f for 0 £t < T implies existence of a unique C!
solution of (RVM) for 0 <t < T. Actually [6] treats the case c=1 but the
generalization to ¢ # 1 follows immediately by scaling, i.e. the observation that if
(f, E, B) is a solution of (RVM) with ¢ # 1, then

Fle,0) =10~ 'x,y%0,97 %),
E(x,0)=y"3E(y~'x,y %),
B(x,t)=y"°B(y~'x,y %),

172 is a solution of (RVM) with the speed of light normalized to unity.

where y=c¢
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Thus we will obtain an a priori bound on P(¢) (defined in (6)) independent of ¢ and
hence establish existence on a time interval independent of ¢. The uniqueness
assertion follows directly from the theorem from [6].

Let (f, E, B) be a C* solution of (RVM) with ¢ = 1 and data as in Theorem 1.
Write

E=6-T—-TI-1V, 11)

where IL, ITI, and IV are the last three terms of (A13) and & is defined in (A3). Note
that

[0l =(1+c %) 12v| <c, (12)
and also for |v| S P, with P > 1,
l+c M o=1+(?+0?)" 0 21—(c?+0v?) " 1?lv|21—(c?+PH)"/2p
=c¥c? + P? + P[c? + P?]V/?)~!
zc*2[c*+ P17,
and hence
A +c % w) ' Lc™22c? + P L4P2 (13)
Define
K(t) = sup {| E(x, )| + | B(x, t)|: xe R}, (14)
and note that by (12)
|E(x,t) + ¢~ 6 x B(x,t)| < |E(x,t)| + | B(x,t)| < K(¢). (15)

Now we use (12) through (15) to estimate the terms of (11). To estimate IV note
that

|14+ 0 w)E+c 0 x B)+ ¢ (b ww—0)0 E—(w+c ™ 0)w-(E+c™ 6 x B)|
S(1+c YK+~ 2262K(t)+ (1 +c~ Ho]))K(t) £ 6K(2),
and hence by (13)
(y,0,t=c™x—y6K(t—c " x—y|)
wi<a 1X =YL+ 71 w)2(1 + ¢ 20?)2
- Ix—yj<ct |x~)’l

Taking 1=t —c~!|x — y| we have

V|ge™? jf dvdy

dvdy. (16)

[ Jfoot=cx—yDlx—yI" K(t—c™ ! |x~yl)dvdy
Ix—yl<et
=:§) i 1 fO,000x =yl K(t)dvdS,cde

|x—yl=clt—1) o] S P()
t

STl [ eyl KOSl

Ojx—yl=ct—1)
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= SEP0) fo . f4melt ~ 9K (eods
< DcP3(t) j" K(r)dr,
and hence by (16) 0
V| < DtP7(t)§ K()dz. (17)

In the same fashion observe that
jf(y,vt ¢ Mx— J’I)(l—c"zﬁz)lw+c“lﬁl
Ix =y + ¢ b w)?
| follo(4P(1))*(1 + C"lvl)
2 dvdy
|¥1< S +tP(t) vl < P(t) [x—yl

4
<R SolPO5P0 | Ix—yl 2y

Iyl<So+tP(t)

mis |

Ix—vl<ct

dvdy

A

SDP() | |yI72dy=DP7(t)(So+tP(t)). (18)

Iyl <8o+tP(t)
To estimate II note that for |v| £ P(0),

(14 c % w) Ho—c 20 wd| <4PAH0)(1 + ¢~ 26%) < 8P?(0),
and that
)™ f _ [foly.0)dvdS,=ct [ [ folox+ctw, v)dvdeo < D,

lx— jol=1
by Lemma 1. Therefore
[T[| £ D. (19)

To estimate & we use the following fact which is from Theorem 1 of [12]: Let

u(x,t) =0, (—t— [ o+ tw)dw) +% | Y(x+ tw)do,

4n Jol=1 loj=1

where peC3(R?) and y e C3(R3), then
sup [u(x, 1) < Dt~ (| @ 21 + [ | 1)

for t = 1. So for all xeR3 and ¢t =0,

lux, )| S D([| @ llwr.o + 1Y oo + @ 2 + 1Y ).
Now by  approximation, the above inequality holds for
PeCHRIYNWI2(RHNW2YR3) and YyeCHR3})nW™(R3)NWH(R?). Note
that by (A3),

E(x,c™ ) =0, (4 J Eo(x+tw)dco>+ﬁ | ¢ '0,E(x + tw,0)dw,

|lo|=1 lo|=1
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and ¢"19,E(x,0)=V x B, —4nc ™ | fobdv. Now by the assumptions placed on f,
E,, and By, we have for all x and ¢t =0,

|€6x, )| < D(| Eg = + I Eq 21 + IV x By ll o=
+ 11V x Byl + ¢ Hf fobdv llgo.w + ¢~ 1| fobdo lly1.0).

Therefore for ¢ = 1,
&< D. (20)
Just as before we may write
B=#+1II'+1II' + IV, (21)

where 4, II', and III', and IV’ are the terms of (A14). Since the estimates of these
terms are so similar to the previous ones we merely state that

|IV| < DtP7(r) j’ K(t)dr, 17)
0

|IIT| < DP7(t)(S, + tP(t)), (18)

[ITI| =D, (19)

|#| <D, (20)

as before. Collecting these estimates we have
|E(x, )| + | B(x,t)| < D + DP7(£)(S, + tP(t)) + DtP7(t);[ K(t)dr.
Therefore by definition (14) we have
K(t) £ D + DP7(t)(S, + tP(t)) + DtP7(t)j) K(t)dr.

By definition (6) P is nondecreasing so for any ¢ >0 and se[O0, ¢],

K(s) D + DP(t)(So + tP(t)) + DtP’() | K(x)dr.
0

Therefore by Gronwall’s inequality
K(s) < (D + DP7(t)[S, + tP(t)]) exp (DtP(t)s)
for 0 <s=<t, and in particular

K() (D + DP()[S, + tP(t)]) exp (D2 P(t)). (22)

Now to estimate P(t) choose (x, v, t) such that f(x, v, t)#0. Then with y and v as
defined in (7) we have

S0 0,9)s=0=F (0 9)|s=e =f(x,0,8) #0,
and so
ID(X’ v, taO)I < P(O) -1
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Also by (7) and (14)

d
lg” =|E(t,8) + ¢~ 10 x B(x, )| S |E(x, )|+ B(x, s)| < K(s),

S0
[v|=|o(x,v,t, )| = |o(x,0,t,0)| + jf K(s)ds<P(0)—1+ jK(s)ds. (23)
0 0

Now (23) holds for all veR® such that there exists xeR® and t=0 with
f(x,v,t) #0, so by definition of P, (6),

P() < PO) + | K(s)ds.
0
By (22)
P(t) < P(0) + i(D + DP7(s)[S, + sP(s)])exp(Ds*P(s))ds. (24)
0

Both (22) and (23) hold for all ¢ =1 so (24) does too. Therefore Gronwall’s
inequality implies P(t) remains finite on some time interval [0, T'), where T >0
does not depend on c.

Now for each ¢ = 1 we apply Theorem 1 of [6] to the system (RVM). We note
that the a priori bound established above for P(t) must hold for each of the iterates
defined in [6]. Thus the iterates defined in [6] converge to a C! solution,
(f¢, E5, BY), of (RVP) with data (RIC) on the time interval [0, T), with T as above.
Furthermore the solution satisfies (22) and (24). Finally note that since the
constants in (22) and (24) are independent of ¢, the functions

P(t) = sup{|v]: there exists xeR3,
7€[0, ], and ¢ = 1 such that
fx,0,7) # 0}

K(t) = sup{| E°(x, t)| + | B(x,t)|: xeR%c=1, and 0<t<t}

remain finite on [0, T). This completes the proof of Theorem 1.

The Proof of Theorem 2

For notational convenience we’ll write f =f°, E = E°, and B = B°. The heart of the
proof consists of comparing the integral representation of E given by (A13) with
that of E® given in (VP). As before we write

E=6—-1TT-1I1-1V,

where &, 11, I1I, and IV are the terms of (A13). It is easily seen that for a fixed
positive value of ¢

—II- [ f(y,v,0)|x—y|"*x — y)dvdy (25)
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as ¢ — c0. Now since

E®= ([ f>(y,0,0]x—y| 3(x — y)dvdy,

we may estimate E* — (—III) in terms of f © — f only. However the convergence in
(25) is not uniform in t. To attain uniform convergence we will combine the
dominant terms of &, II, and III.

Fix T'e(0, T). We will write

A(x,v,t) = B(x,v,t) + O(c™ ")
if there exists a constant D such that
| A(x,v,t) — B(x,v,t)| £ Dc~!
for all xeR3, veR3, te[0, T'], and ¢ = 1. Note that for |v| < P(t),
18] < (1 +c72P%(1)) "' 2P(t) < P(t), (26)
and recall
(14 c 0-w)~ ! S 4P%). (13)
To isolate the dominant term of & note that B, =0, so 0,E(x,0)=

—4n | fobdv, and hence by Lemma 1,

t
Z;{—@L@,E(x + ctw, 0)dw

Therefore by (A3)

=c et | [ folx+ ctw,v)ddvdw| < De™t.

lo|=1

& =0, (L [ Eolx+ ctw)dco) +0(c™ Y. 27
4m iy

To establish the leading term of II, note that by (26), (13), and Lemma 1,

let)™ [ [J(+c8w) te™ 20 wifo(y, v)dvdS,|

Ix—yl=ct

Sct | 4P*0)c™2PH0) | fo(x + ctw, v)dvdw
lol=1

<4P40)c 2D =0(c"?).
Therefore from (A13)

H=(ct)"' [ [(l+c 0 w)  of oy, v)dvdS, + O(c™?)

Ix—yl=ct

=)™ [ | foly,v)dvwdS, + O(c™?) (28)

|x~yl=ct

by the following: For |v| £ P(0),

(l+c % o) ' =1=(1+c 0 w) 1 =(1+c b )
< 4P2(0)c ~ 1 P(0).
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To identify the leading term of III note that since P is nondecreasing

LT JfGoe—cx—yDlx—yl 721 +c 716 0) (0% (@ +c ™ b)dvdy|

lx—yl<et

< I 1 follolx—yI™2(4P*(t))c " 2P*(t)(1 + ¢~ *P(t))dvdy

1yl < S+ P(t) |v] < P(t)

4
< D 2PS()(1 + ¢ PO)—P) [ |yl~%dy
3 Iyl <Sg +£P(®)

= Dc 2P°(t)(1 + ¢~ *P(t))4n(S, + tP(t)) £ Dc ™2
for t £ T'. In the same manner

| [ §fOot—ctx—pDlx—yl72(1 + ¢ 0-w)” ¢~ *édvdy| SDc™,

[x—yi<ct

and so by (A13)
M= | [x=yI"2[f@vt—c x—y)1+c 't-0) *odvdy+0(c™?)

|x—yl<ct

= [ Ix=yI7{fv,t—c" |x~y))odvdy + O(c™?) (29)

|x—yl<et
by the following: For [v|£P(t)and t < T,
A+c Yw) 2—1=1+c w) 2|1 —(1+2 w+c [’
< (4P%(t))’c*2P(t) + ¢ 'P3(t)) = Dc~ 1.

To recognize how to combine the leading terms of &, I, and III we will use the
following lemma.

Lemma 2. Let he C3(R3). Assume Ah has compact support. Then for ¢ >0 and t 20,

ot § hix+ctoydw)=— [ |x—y| ! Ah(y)dy.
loj=1 |x—y|>ct
Proof. Usingthefactthatt | h(x + ctw)dw is a solution of the homogeneous wave
lw|=1

equation, we see that
0Xt | h(x+ctw)dw)=c*At | hix+cto)dw)=c’t | 1 Ah(x + cto)dw.
w|=1 w|=1 | =
Substitutilnlg y=x + ctow yields : :
Xt | hx+ctoydw)y=t"" [ Ah(y)ds,.
wl=1 x—y|=ct

But note that for t > OI, | -

~a( | Ix—y ARG =—3(] | r*Ah)S,dr)

|x—yl>et x—~y|=r

=c [ (c)"'Ah(y)dS,

[x—yl=ct

=t7' [ Ah(y)dS,=0it | h(x+ ctw)dw).

|x—yl=ct lw|=1
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Therefore
ot | h(x+ctwydw)+ [ |x—y|~'Ah(y)dy
loj=1 x—y|>ct
is a function of x only. But both terms tend to zero as ¢t tends to infinity (using
Theorem 1 of [12] for the first term), so

ot | hix+ctwdw)+ | |x—y|~'Ah(y)dy =0,
lol=1 Ix—yl>ct
which completes the proof of the lemma.
Now in order to rewrite the leading term of &, 3,((t/4n) | Eo(x + ctw)dw), let

loj=1

h(x) = [ { fo(y,v)|x — y| ™ 'dvdy and note that Vh = — E, and that Ah = — 4 | f,dv.
Hence by the lemma,

6,<L | Eox+ ctw)da)) =—0, <% [ Vhx+ ctw)dw)

A joj=1 loj=1

-1 -1
=Vt | hix+co)do)=7—V(= [ |x—y|" Ah()dy)

loj=1 |x—y|>ct

=—V( [ |x=yI7 foly, v)dvdy).

Ix—yl>ct

Now we substitute z=x — y to get

5:(# { Eo(x+ctw)dw)=—V( | 12171 f folx —2z,v)dvdz)

lo|=1 |z]>ct

=— | |z]7' [V, folx—2z,v)dvdz

|z|>ct
=— | Ix=pI7 {Vefonv)dvdy.  (30)
[x—y|>ct

Recall that f,, has compact support, so by the divergence theorem

G
= § =y S oddvedS, = 51 —yI7 [ Soly, v)dv)dy

Ix—yl=ct Ix—yl>et 7*

P
= | (lx—yl“IaL;(y, o) — [x~y|73(y; — x){ foly, v)dv)dy

Jx~y|>ct

fori=1, 2, 3. Now by (30) we have

ar(zt; f Eo(x+ctw)dw>= [ 1x=yI7 [ foly, v)dvewds,

lo|=1 Ix—yl=ct

— [ 1x=yI730 — %) [ foly, v)dvdy

|x—y|>ct

=(ct)™? f Ifo(y,v)dva)dSy

{x—yl=ct

— [ Ix=yI72] fo(y, v)dveody. (1)

|x—y|>ct
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But now if we collect (27), (28), and (29), and use (31) we obtain

(9—11—111=a,<zt; | Eo(x+ctw)dcu>

lol=1

—eny™t [ [ foly.v)dverdS,

|x—yl=ct
— [ Ix=yI"2[fy,v,t—c " |x — y|)dvody +O(c™?)
Ix—yl<ct
=— | |x=yI72{ foly, v)dvardy
|x—y|>ct
— | Ix=yI72[f@,v,t—c™ | x—y|)dvody + O(c™?)

Ix—yl<ct

=—[|x—y|72{ f(y,v,max{0,t —c™*|x — y|})dvewdy+ O(c™*). (32)
The remaining term, IV, is of lower order. To bound IV note that with K(t) as
defined in (14), we have
K(t) (D + DP(t)[S, + tP(t) 1) exp(Dt*P7(1)), (22)
so for all xeR3, ¢>1, and te[0, T'],
| E(x, )] +|B(x, )] = D.
Recalling inequality (16) we have
[IVISDc2PYt) | [fOot—c x—pDIx—y| 'K(t—c'|x — y|)dvdy
Ix—-yl<et

<Dc™? | 1 follwlx—yl~'dvdy < Dc™2,

|yl <Sq+tP(t) vl < P(t)
for 0 <t < T'. Therefore by (A13) and (32),
E=—[|x—y|"2[ f(y,v,max{0,t—c~*|x—y|})dvwdy + O(c™*). (33)
Using the representation of E® from (VP), we now estimate
|E—E®|=[0(c™")
=[x =yI72[[f(y, 0, max{0,t — ¢~ |x — y|}) —f (3, v,1) Jdvody|
§j|x—y|—2j|f(y,v,max{0,t—c”1|x—-y|})
—f*(y,v,max{0,t —c™*|x — y|})|dvdy

+{lx=yI 721 f*(y,v,max{0,t—c ™! |x—y|})—f *(y,v, 1) dvdy+ Dc .

(34)

Recall that (f*, E®)is a C" solution of (VP). Now since E® is C! and f, has compact
support, it follows that

P=(t) =sup {|v|: there exists xeR?

and 7€[0,t] such that f*(x,v,7) #0}

is finite on [0, T). Also 4,/ is bounded on RS x [0, T"]. Let
Q= P(T)+ P(T)
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and
H(t) = sup{| f(x,v,7) —f °(x,v,7)|: xeR?, veR? and t€[0, ] }. (35)
Then by (34),

[E—E*|S | |Ix—y|7? | H(max{0,t—c™*|x—y|})dvdy

IY<So+T'Q lvj<Q
t
+ f lx—=y7* | | 10.f *(y,v,7)|dvdvdy 4+ Dc ™!
I<So+TQ vj<Q@ max{O,t—c_llx—y”
_,4n 4
SH [ lx—ylT5 0y
Iyl <So+T'Q
247 5 - -1
+ f Ix=vl TQC |x — y|Ddy + D¢
1y1<So+T'Q
<DH(@) | |yl"%dy+Dc™' | |y|~*dy +Dc™*
yl<So+TQ y=So+T'Q
<DH(t)+ Dc™ !, (36)
for0<t<T.
To estimate B note that B(x,0)=0 and 0,B(x,0)= —cV x E; =0, so by (A3)

3 =0. (37)
Also, estimating the other terms of (A14),

)™ | [ +c'00) Yo x c™'0)fo(y, v)dvdS,|

|x—yl=ct

<ct | [4PY(0)c™P(0)fo(x+ ctw, v)dvdw <4P3(0)c™'D, (38)

Jo]=1

by Lemma 1, and

le™® [ ffoot—cHx=ylx—yl 731 +c ™10 w) 21 —c~*0%)(w x O)dvdy|

Ix—yl<et

ct 1 follolx =y~ *(4P%(1))* P(t)dvdy

|yl <S8 +tP(t) |v]<P(t)

D¢, (39)

IIA

I\

for t £ T'. The last term of (A14) may be shown to be O(c ™ 2) in the same manner as
the last term of (A13). Thus collecting (37), (38), and (39) we have

B=0(c™"). (40)
We may combine (36) and (40) to get
|[E+c 0x B—E®|<DH(t)+ Dc™ !, 41)

for t £ T, since |0| S c.
It remains to estimate f— f ©. For notational convenience, define h = f — f ®. The
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estimation of h is via the following equation which follows from (RVM) and (VP):
Oh+0Vh+(E+c 16xB)Vh=0,f—0,f+0 (Vo f—V.f®)
+(E+c WxB)y(V,f =V, fO)=—0,f°—0-V f®
—(E+c "%xB)V, f*=0V,f®+E®V,f*—$-V, f®
—(E+c "X B)yV,f*=@w—0)V.f®
+(E®—E—c" 6 x BV, f~. (42)
Note that
v—0=1+c 2020 —bd=c"21 +[1 + ¢~ 2022~ 1p2g,
0 (42) becomes
Oh+6V.h+(E+c 6 x By Vih=c 21+ [14+c 2022 W2 6-V [
+(E®*—E—c 0 x B)'V,f~.
Note that both |V, f*|and |V, f®| are bounded on RS x [0, T"]. Also V. f* =0
if |v| = P™(t). Hence by (41)
|0h+6-Vh+(E+c 16 x B):V,h| £Dc 2+ D|E®*—E—c™ 6 x B|
<Dc™ '+ DH(), 43)

for0Zt<T.
Next for any xeR?3, veR3, and te[0, T'] we may define y and v as in (7) and
compute (using (43))

=|0h+ 0V, h+(E+c™'6x B)V,hl|,, < Dc™* +DH(s),

d
E;h(Xa Y, S)

for 0 < s < T'. Note that

h(X9 0, s)'s=0 =f(Xa Y, 0)'s=o_f0°(Xa 0, 0)|s=0 =f0(Xa U),s=0 _fO(Xs U)|s=0 =0,
SO

t d
[h(x, v,t)| = |h(x, 0, 8)|s=,| = ljd—h(x, v, s)ds
oas

gi(Dc_1 +DH(s))ds<Dc™! +DiH(s)ds, (44)
for t < T'. But by (35)
H(t) = sup{|h(x,v,7)|: xeR3 veR3,and 7€[0, 1] },
so it follows from (44) that
Ht)<Dc '+D ;[) H(s)ds,

for 0<t < T'. Now by Gronwall’s inequality
H(t)<Dc 'exp(Dt)<Dc! 45)
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for 0<t < T So by (36) and (40) we have

| f4(x, 0, ) —=f “(x, v, 8)] + | E(x, 1) — E®(x, 1)|
+|B%(x,t)] < H(t) + DH(t) + Dc"* < Dc™!

for all xeR3, veR, c=1, and te[0, T']. This completes the proof of Theorem 2.

Appendix

Suppose p and j are C2 functions with compact support in x for each fixed t. Suppose
also that E and B form a C? solution of Maxwell’s equations

{6,E=cV X B—4nj V-E=dnp, AD)
0B=—cVXE V-B=0.
Then E and B satisfy
02E — c?AE = — 4n(c*Vp +j)
{6,2B —c2AB =4ncV xj. (42
Define & and & by
E(x,t) = 6,(%1‘» I_f_ 1 Eq(x + ctw)dw) + %1 |j l(’7’,E(x + ctw, 0)dw
) o (A3)
B(x,t)= 6,(;— | Bo(x+ ctw)dw) +L | 8,B(x + ctw,O)dw,
T lol=1 4% i1
where 0,E(x,0) = cV x By — 4 | fobdv and 0,B(x,0)= — cV x E,. We have
E=¢—c? j lx—y|~(c*Vp +jt)(y,t—c"‘|x-y|)dy
Ix—yl<ct (A4)

B=Q+c_l .’l |x'“,V|_1(V ><j)(y,t—c—llx—yldy'
Jx—yl<et
Now if (f, E, B)is a C! solution of (RVM) with data as in Theorem 1, (A4) may be
shown to hold for p = [ fdv and j = | f6 dv by a standard approximation argument.
Following [6] we define

S§S=0,+0V
x A5
{T=—C“1a)6,+V” (AS)
and note that
o=(1+c '9w)"Y(S—0-T) A6
Vi,=T+c 1 +c -w) 'S —0-T). (A6)

By (A6) we may write

PV,p+ 0, = [[(1+c™10-) ™ cw + 8)SS
+ET = (1 + ¢~ 16-w)~ o+ 0)6 Tf 1dv,
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and hence by (A4)

E=6—c? | Ix—yI" (AT — (1 +c™ 0 0)" e+ D)0 Tf )y pr—c 11 yydvdy

|x—yl<ct

—c72 | x—=yI7H (A + 7 0) Hew + 0)Sf |y ey 40DV (A7)

|x—yl<ct

Note that
VL ot —cx—yD)1=(V, )0t —c™ Hx—yl)
— @) ot —c T x -yl
=(77)0%U,t-'0_1|x‘"yn,
so we may use the divergence theorem to obtain (for the i component)

I olx=yI [T = (1470 0) " Hew + 0)id Tf Uyps—c e pdody

|x—yl<ct

_ (co» + 0);0
== I If[c _(lx Y 1) (lx y|(1+C_10 (1)))]

|x—yl<ct

dvdy

ot —c ™ Hx—yl)

+ | Ix=yI" [P, —(1+c™ 6 w) (cw+0),6- 0] f(y,v,0)dvdS,. (A8)

lx—yl=ct

To compute the derivatives which occur in (A8) note first that (9| x — y|/dy;) = w;and

Oo;
3y,

j

=|x— yl"(é.; iwj)- (A9)
Now we compute
v. (cor + O)b ) 23: (cw + 0):8; )
P\Ix=yl(t+cw) ) S oy;\Ix—yl(1 + ¢ 'bw)

3
=Y |x—y|¥(1+c " Hw)? [Ix—yl(l+c’lﬁ-w)clx—yl'l(éij—wiwj)ﬁj

i=1

—(co + 0)iﬁj—-a—(|x -yl + c_lﬁ'a))):l
0y; s
=|x—y| 21 +c7 0 w)"2 Y [c(l+c™ 0 0)(6; — ww)b;
=1
—(co + O)Dfl +c™ 6 w)

3
—(co + ﬁ):ﬁﬂx_}’IC—l Z ﬁka_}’I_l(éjk—wwk)]

=|x—y| (1 +c w) 2 Z [(1 + ¢~ 8- w)(cd;;b

ijvj
—2cowib;— 0;0,0;)— (cco + )b, 10— w-bw;)]
=|x—y|72(1 + ¢ 0 w) 2[(1 + ¢~ 16 w)(ch; — 2ch v,
— b wb) — ¢ Yew + 0){6? — [w5]?)]
=|x—y| A1 +c " 6 w) " 2[(c—c 16?)6;— 2ch ww; — w{b w)? — w;H?],
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and hence

0 _ cw + 0);0
c"a—yi(lx—}'l 1)_Vy-(lx—l(/l(1 +c)‘1ﬁ-w)>
=|x—y|"4 1 + ¢ 0-w) " [ —a(l + ¢ 16 w)?

—(c—c ™ 0%)0; + 2c0- ww; + wff-w)* + w,H?*]
=|x—y|721 + ¢ 0 0) [~ c*o;—(c — ¢ '%)6; + wp?]
=—|x—y|"}1 + ¢ 0-w) " *c? — 0¥)(w + ¢ D).

Substituting this result into (A8) yields

[ Ix=yI" [ATif— (A +c™ 0 w) Hew+ )b TS ] Lyt —c= 11y d0dy

Ix—yl<ct

= .’. _[f[x_yrz(l+c‘1ﬁ-w)‘2(c2—62)(w+c_lﬁ)il(y‘”),_c-1lx_mdvdy

Ix—yl<et
eyt | fel+cT i) (o —c 720 ob) foly, idodS,.  (AL0)
|x—yl=ct

The last term of (A10) is the one which was suppressed in [6] and plays a key role in
the proof of Theorem 2.
To address the “Sf” term in (A7) note that

Sf=0,f+0-V f=—(E+c 6 xB)V,f=—V,(f[E+c 'dxB]),
since a short computation shows that
V,(E+c '6xB)=0.
Therefore, by the divergence theorem
fA+c 0 w) Yew+0)Sfdv=[ fIE+c™ 0 x B]-V,[(1 +¢c™ D @)™ }(cw + D) ]dv.
(Al1)
Now we compute
0 _ _ o[ c1+c ) 2w, 4 v,
—~ra 14. 1 P i i
avj[( +c™ (D) (C(D + ﬁ)]] avj[(l + C—2v2)1/2 +c"‘v'wJ
=[(1+c )2 +c7 o @] 2[([1 + 7 2% 2+~ to-w)(c ™ 00, +6,)
—(c[1 + ¢ 21 2w; + v)(c ™ 20;+ ¢ 'w)]
=(1+c 2% (1 + 70 0) 2 [(1 + ¢ ' w)(c™ b0, + 5,
—(cow + O){c™%0; + ¢ 'w))]
=(1+c720) (1 + 70 w) 2 [(1 + ¢~ 18- w)d;;
+c—2(ﬁ'ww‘-—ﬁ,-)ﬁj—(w+C‘1ﬁ),-wj],

and hence
(E+c 6 x B)-V,[(1 +c™6-w) Y (cw + B);]
=(14¢c 20) Y1 +c - w) 2 [(1 +c 0 w)(E+c 6 x B);
+c b ww—0);0-E—(w+c” o) ;w(E+c 0 x B)].
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Substitution into (A11) yields
[ +c™-w) Y(cow + 0),Sfdv
=[f+c %) V(1 + ¢ - w) "2
‘[ +c -w)(E+c 16 x B+ ¢~ (0w — 0)H°E
— (@ + ¢ '0);0*(E + ¢~ 16 x B)]dv. (A12)

Finally we obtain the desired representation for E by substituting (A10) and
(A12) into (A7):

E=6—()" | [(d+c 0 w) Y o—c 2 wb)foy,v)dvdS,

lx—yl=ct
- j jflx_y|~2(l+c_ 1ﬁ.a))_z(l_c_zﬁz)(a)-'-c—1"3)l(y,u,t—c-l|x—y|)dvdy
|x—yl<ect
—c2 [ [flx—ylT 1+ w) KL+ 22
|x—yl<ct
‘[l +c -w)E+c 6 x B)
+c7 (00w — 00 E — (@+c )0 (E+c ™0 x B) ]|, 1x_dvdy. (A13)

The representation for B may be computed in the same manner as for E. Since the
computation is so similar, we only state the result:

B=#+(ct)™" [ [(+c 0 w) owxc ) foly,v)dvdS,

|x=yl=ct
+ct [ [flx=yIm A+ 0 0) 21 —c 7202 (@ X 0)|y e pdVdY
|x—yl<ct
+c72 [ [flx—ylT A+ 0 w) X (1 +c 7272
|x—yl<et
[ +c w)wx(E+c 0 xB)
— %o X O)(6 + c)-(E + ¢ 16 X B)lyns_o-1e_yyd0dy. (A.14)
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