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Abstract. Solutions of the relativistic Vlasov-Maxwell system of partial dif-
ferential equations are considered in three space dimensions. The speed of light,
c, appears as a parameter in this system. For smooth Cauchy data, classical
solutions are shown to exist on a time interval that is independent of c. Then,
using an integral representation for the electric and magnetic fields due to
Glassey and Strauss [6], conditions are given under which solutions of the
relativistic Vlasov-Maxwell system converge in a pointwise sense to solutions of
the non-relativistic Vlasov-Poisson system at the asymptotic rate of 1/c, as c
tends to infinity.

Introduction

Consider the Cauchy problem

(RVM) I dtE = cV x B - 4π/ V E = 4πp,
^ J B = ~ C V X £ V\B = O,

p(*> 0 = f/(*, v9 ήdv j(x, t) = J/(x,», ί)Mι;,

where

and the initial conditions are

7(x,t;,0)=/0(x,ι;),
(RIC)

Here x and v are points in (R3 representing position and momentum respectively. /
gives the number density of a coUisionless plasma consisting of a single species of
charged particle acting under its selfinduced Lorentz force, E + c~xtxB. The
parameter c is the speed of light. (RVM) is a relativistic version of the classical
Vlasov-Maxwell system (VM), which may be obtained from (RVM) by replacing ΰ
with v. The formulation of the relativistic version is discussed in [11 and 13].
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Our goal is to establish conditions under which solutions of (RVM) converge, as
c tends to infinity, to solutions of

δ,/ 0 0 + i? VJC/00 + £ 0 0 Vt;/
00 = 0

(VP)

with the initial condition

(IC) /°°(x,»,0)=/o(x,ι;).

One purpose of this goal is to make precise the statement that relativistic effects are
negligible if the speed of light is much greater than the velocities which occur. An
additional advantage is that (VP) is more fully understood than (RVM), so we would
be able to approximate a harder problem by an easier one.

Global weak solutions are known to exist for (VP) ([1 and 9]). Global classical
solutions for (VP) have been shown to exist for symmetric data ([4,8, and 14]) and
for small data [3], but the problem of global existence of smooth solutions for
unrestricted data is still open.

Local existence of smooth solutions of (VM) has been established by Wollman
[15]. Glassey and Strauss [6] have shown for (RVM) that an a priori bound on
momenta (i.e. there exists a continuous function β: [0, T) -> [0, oo) such that \υ\> β(t)
implies f(x, v, t) = 0) implies existence of a smooth solution for 0 ^ t < T. This
theorem is analogous to Theorem 1 of [4].

The main results of this paper are the following two theorems:

Theorem 1. Assume ίftαί/0eC1(R6) is nonnegative and has compact support. Assume
that Eo and Bo are in C2(R3)nWUa>(R3)nW2Λ(U3) and satisfy

Then there exists T > 0 (independent ofc) such that for each c ^ 1, (RVM) with the
initial condition (RIC) has a unique C 1 solution (fc,Ec

9B
c) on the time interval [0, T).

Furthermore there exist nondecreasing functions (independent ofc) P: [0, T)-> R and
K: [0,7) -*R such that

= 0 if \v\^P(t), (1)

)| + \Bc(x,t)\ gK(ί), (2)

for all ίe[0, T), xeU3, and c ^ 1.

Theorem 2. Let f0 be a nonnegative C1 function of compact support in U6 and let

*> v)dv\x -y\~3(x - y)dy.

Let (Z00, £°°) be the unique C 1 solution o/(VP) with f(x9 v9 0) =/0(x, v) that is known to
exist by [10] for some time Tx > 0. Assume both of the following:

A. There exists T2>0 such that for each c^ 1, (RVM) has a C 1 solution
(f\ P, Bc) on [0, T2) with fc(x, v, 0) =/0(x, v\ Ec(x, 0) = E0(x\ and Bc(x, 0) = 0;
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B. There exists a nondecreasing function P: [0, T2) -> R such that

fc(x,v,t) = 0 if \v\^P(t) (3)

for all xe(R3, re[0, T2), and c ̂  1.
Let T = min(7\, T2), then for every T'e[0, T) ίftere exists a constant D (depending on
T and the data, but not on c) such that

oi^Dc-1, (4)

for all xeR 3, veU\ ίe[0, Γ ] , and c ̂  1.

Comment. If we also assume that / 0 is C 2 then the hypotheses of Theorem 1 are
satisfied with Bo = 0. Hence if/0 is C2 then by Theorem 1 we know hypotheses A and
B of Theorem 2 are satisfied for some T2 > 0 and P: [0, T2)-» R.

As this work was being completed we learned that Degond [5] and independ-
ently Asano and Ukai [2] have recently established results similar to the above
theorems for the classical system (VM). Here we deal with the relativistic system
(RVM) which, in light of a recent blow up result, [7], for a relativistic version of (VP),
may be significantly different from (VM). Also the analysis in this work differs from
that in [5 and 2] in that it is based on an integral representation of the fields due to
Glassey and Strauss [6]. Hence the integral representation of Ec is compared
directly with the Coulomb force,

E™(x, t) = f f f°>iy, v, t)\x - y\~ \ x - y)dvdy,

which holds for (VP) and the representation of Bc is compared with zero. Pointwise
estimates are obtained. It is hoped that this results in a more explicit understanding
of how the two problems ((RVM) and (VP)) compare.

The following notation is used. Given x and y let

ω = \x-yΓί(y-x). (5)

dω denotes the surface measure of the unit sphere, dS denotes surface measure more
generally. We assume in both Theorems 1 and 2 that/ 0 has compact support, so let

So = sup{|x|: there exists t eίR3 such that fo{x,v) # 0 } .

Also, if (/, £, B) is a solution of (RVM) with data (RIC), we define for t > 0,

P(t) = sup{|ι?|: there exists xeU3 and

τ G [0, ί] such that f(x, v, τ) # 0} + 1. (6)

We also define the characteristic curves (χ(x, v, ί, s), υ(x,v,t,s)) by

—χ = ΰ = {l+c-2υ2)υ χ{x9v9t9t) = x

d { 7 )

— Ό = £ ( χ , s ) + c xΰx B(χ,s) υ{x, v, ί, t) = v.
as

Note that (d/ds) [/(χ, o9 s)] = 0 and conclude that/ remains non-negative if f0 is and

that

sxxp{f(x9v,t):xeU\veU3} H I / o l L - (8)
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Note also that /(x, v, t) = 0 if |x| ^ So + tP(t).
The following lemma will be used in the proofs of both theorems.

Lemma 1. Let gbea continuous function of compact support on U3, then there exists a
constant D>0 such that

Ά J \g(x + ηω)\dω^D

for all η^O.

Proof Note first that

η J |rtx + iίω)|*»^4π||0|Lι/. (9)
M = i

Choose S sufficiently large that g(x) = 0 if |x| ^ S. Now

n ί l ^ + ̂ ωjldωgijllflflloo J dω.
|ω| = l |ω| =

If θ denotes a polar angle on the unit sphere with the vector — x, then a little analytic
geometry shows that if η > S then the set | ω | = 1 and | x + ηω | < S is contained in the
set θG^s in" 1 (Siy"1)]. Hence for ί/ > S

ιy J Iflfc + ̂ ωJlέlωgifllfllL f 2πsinθdθ

^ - 1 . (10)

The lemma follows from (9) and (10).
As in the lemma, D denotes a generic constant which is independent of c.
In the appendix an integral representation for E and B is derived as in [6]. In [6]

one term of the representation is suppressed since it depends only on the data and
hence plays no role in the existence theory. However, this same term plays an
essential role in the proof of Theorem 2, so rather than scaling the representation as
stated in [6], the entire representation is computed in the appendix.

The Proof of Theorem 1

To establish Theorem 1 we will apply a theorem from [6] which states that an a
priori bound on the v support of / for 0 ^ t < T implies existence of a unique C1

solution of (RVM) for 0 <; t < T. Actually [6] treats the case c = 1 but the
generalization to c Φ 1 follows immediately by scaling, i.e. the observation that if
(fE,B) is a solution of (RVM) with c Φ 1, then

where γ = c1/2, is a solution of (RVM) with the speed of light normalized to unity.
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Thus we will obtain an a priori bound on P(t) (defined in (6)) independent of c and
hence establish existence on a time interval independent of c. The uniqueness
assertion follows directly from the theorem from [6].

Let (/,£,£) be a C1 solution of (RVM) with c ̂  1 and data as in Theorem 1.
Write

E = &- II - I I I -IV, (11)

where II, III, and IV are the last three terms of (A13) and $ is defined in (A3). Note
that

\ΰ\=(l+c-2v2)-V2\v\Sc, (12)

and also for \v\ g P, with P ̂  1,

= c2(c2 + P 2 + P[c 2 +

^ C ^ I V + P2])-1,

and hence

(1 + c"H-ωY ι S c~22(c2 + P2) g 4P2. (13)

Define

K(t) = sup{\E(x,t)\ + \B(x,t)\:xeM3}, (14)

and note that by (12)

\E(x91) + c~Hx B(x,ί)| S \E(x901 + \B(x91)\ ^ K(t). (15)

Now we use (12) through (15) to estimate the terms of (11). To estimate IV note
that

and hence by (13)

-2 f cMvt

0)2 f j
|x-y|<cf

Taking τ = t — c~1\x — y\ we have

-L
f f(y,v,x)\x-y\-'K(τ)dvdSycdτ

I ̂  Pit)
t
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4π '
= y P3(t) II /o IL ί 4πc(ί - τ)K(τ)cdτ

<Dc2P3(ι

and hence by (16)

|IV|^DίP7(ί)}x(τ)dτ. (17)

In the same fashion observe that

K

z j i ll/oU4PW(i2+c-^Ί) iπJj,
\y\<S0 + tP(t)\v\<P(t) \X y\

4π
^3211/oIUP^t)—p3(t) f \x-y\-2dy

J |y|<S0 + ίP(ί)

g DP7(ί) f | y | - 2 ^ = DP7(ί)(S0 + ίP(ί)). (18)
|>»|<S0 + ίP(ί)

To estimate II note that for \v\ g P(0),

(H-c" 1ί) ω)- 1 |ω-c- 2 ί ; ωί) |^4

and that
{ct)~l I ifo(y,v)dvdSy = ct J

by Lemma 1. Therefore

| Π | ^ D . (19)

To estimate $ we use the following fact which is from Theorem 1 of [12]: Let

u(xiή = dt(— f φ(x + tω)dω ) + - f ψ(x + tω)dω,

where φeC^lR3) and ^GCg(R3), then

sup Iiι(x, ί)| ^ D r HII φ ll^ i + 11̂  IIH,«.O

for ί ^ 1. So for all xeU3 and ί ^ 0 ,

Nx, 01 ^ I)( II φ 11^1.-+II ^ll^-o+ || φ l l ^ i + l l ^ ll^i).

Now by approximation, the above inequality holds for
^ 6 C 2 ( i 3 ) n ^ 1 | f l 0 ( R 3 ) n ^ 2 | 1 ( R 3 ) and φeC^U^nW^U^nW1^3). Note
that by (A3),

£(x,c-1ή = dt(^- J E0(x + tω)dω ) + ~- f ^ " ^
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and c~ίdtE(xi0) = V x Bo — 4πc~* \foϋdv. Now by the assumptions placed on/ 0 )

Eo, and Bo, we have for all x and t ^ 0,

Therefore

Just as

\&(x,c~

for c ^

before

" x ί )

1,

we

VII

+

may

II V x

write

B o |

1 β>

\6

•i + c-χ\\lfoύdv\\wo.

(20)

' + ΠΓ + IV, (21)

where ^ , IΓ, and ΠΓ, and IV are the terms of (A 14). Since the estimates of these
terms are so similar to the previous ones we merely state that

IIVI SDtPΊ(t)\κ(τ)dτ9 (17)

|III|^DP7(0(So + tP(0), (180

I Π I ^ β , (190

I ^ I ^ D , (20')

as before. Collecting these estimates we have

\E{x, t)\ + I B(x, t)\£D + DPΊ(t)(S0 + tP(ή) + DtPΊ(ή] K(τ)dτ.

Therefore by definition (14) we have

K(t) ̂ D + DPΊ(t)(S0 + tP{ή) + DtPΊ(t) f K(τ)dτ.

By definition (6) P is nondecreasing so for any t > 0 and 56[0, ί],

K(s) SD + DPΊ(t)(S0 + tP(ή) + DtPΊ(ή { K(τ)dτ.
o

Therefore by GronwalΓs inequality

K(s) SΦ + DPΊ(ή [So + tP[tϊ\) exp (DtPΊ(ήs)

for 0 ^ s ^ ί, and in particular

K(t) ύ (D + 2>P7(ί) [So + ίP(ί)]) exp (i>ί2P7(ί)) (22)

Now to estimate P{t) choose (x, v, t) such that /(x, v, ί)#0. Then with χ and i? as
defined in (7) we have

o, s)\s=0 =f(χ, υ,s)\s=t =/(x, υ, t) # 0,

and so
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Also by (7) and (14)

= \E(Ls) + c~Hx B(Ls)\ ί \E(χ9s)\ + \B{χ9s)\ S K(s),
Is

so

(23)

Now (23) holds for all veU3 such that there exists xeU3 and ί^O with
/(x, v, t) Φ 0, so by definition of P, (6),

By (22)

P(t) ^ P(0) + J(D + DPΊ{s)lS0 + sP(s)-])Qxp{Ds2PΊ(s))ds. (24)

Both (22) and (23) hold for all c ̂  1 so (24) does too. Therefore GronwalΓs
inequality implies P(t) remains finite on some time interval [0, T), where T > 0
does not depend on c.

Now for each c ^ l w e apply Theorem 1 of [6] to the system (RVM). We note
that the a priori bound established above for P(t) must hold for each of the iterates
defined in [6]. Thus the iterates defined in [6] converge to a C1 solution,
(fc,Ec,Bc), of (RVP) with data (RIC) on the time interval [0, T), with T as above.
Furthermore the solution satisfies (22) and (24). Finally note that since the
constants in (22) and (24) are independent of c, the functions

= sup{|f|: there exists xeM3,
τe[0, ί], and c ̂  1 such that

3,c^l9 and O g τ ^ ί }

remain finite on [0, T). This completes the proof of Theorem 1.

The Proof of Theorem 2

For notational convenience we'll write/=/ c , E = E\ and B = Bc. The heart of the
proof consists of comparing the integral representation of E given by (A 13) with
that of £°° given in (VP). As before we write

E = g - II - III - IV,

where g9 II, III, and IV are the terms of (A 13). It is easily seen that for a fixed

positive value of t

- Ill-> J j f{y9 v,t)\χ-y\-3(χ- y)dυdy (25)
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as c->oo. Now since

E™ = \\ f™{y^t)\x- y\-\x- y)dυdy,

we may estimate £°° — (— III) in terms of/ °° —/ only. However the convergence in
(25) is not uniform in t. To attain uniform convergence we will combine the
dominant terms of S, II, and III.

Fix T'e(0, T). We will write

Λ(x9 v, t) = B(x, υ9 t) + 0{c~ι)

if there exists a constant D such that

for all xeR3, veM3, ίe[0, T'], and c ^ 1. Note that for \υ\ g P(ί),

|t;| g (1 + c"2P2(ί))"1/2P(ί) ̂  P{t\ (26)

and recall

( l + c " 1 ί ; ω)- 1 g4P 2 (ί). (13')

To isolate the dominant term of $ note that Bo = 0, so dtE(x, 0) =
— 4π§ fovdv, and hence by Lemma 1,

t
J dtE(x + ctω,O)dω = c~ι\ct

Therefore by (A3)

To establish the leading term of II, note that by (26), (13), and Lemma 1,

l(cί)"1 J f (1 +c-1ύ-ωΓ1c-2V'ωvf0(y,v)dυdSy\

\χ-y\ = ct

|ω|=l

Therefore from (A 13)

II^cίΓ1 J
\x-y\ = ct

1 J jf0(y,v)dvωdSy + O(c-1) (28)

by the following: F o r \v\ ^ P(0),
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To identify the leading term of III note that since P is nondecreasing

I ί iKy^t-c-^x-y^x-yΓ^+c-H
\x~y\<ct

^ ί ί H/oll«l*-J'r2(4i'2(ί))2c-2

^ptit) J \y\~Hy
5 |y| < S 0 + («t)

= Dc-2P9(t)(l + c-ιP(ή)4π(S0 + tP(ή) g Dc~2

for t ̂  7". In the same manner

I f f/ίy.Γ.t-c-Mx-yDlx-yΓV+c-^ ωJ-^
|x-y|<cf

and so by (A 13)

111= J \x-y\-2\f{y,v,t-c-1\x-y\){\+c-H'ωy2ωdvdy'{-O{c-1)
\x-y\<ct

= ί ix-yr^fiy^t-c-'lx-yDωdvdy + Oic-1) (29)
|x-j>|<cf

by the following: For \v\ ̂  P(ί)'and ί ̂  Γ,

^ (4P2(ί))2c" 1(2P(ί) + c" 1P2(ί)) ̂

To recognize how to combine the leading terms of δ, II, and III we will use the
following lemma.

Lemma 2. Let heC2(Mz). Assume Δh has compact support. Then for c> 0 and t ̂  0,

dt{t J h{x + ctω)dω)=- J |x-,yΓMfc(y)dy.
|ω| = l |x->Ί>cί

Proof. Using the fact that ί J ft(x + ctω)dω is a solution of the homogeneous wave
M = i

equation, we see that

df(t J fc(x + cίω)dω) = c2;4(ί J /z(x + cίω)dω) = c2ί J A h(x + ctaήdω.
|ω |=l |ω| = l |ω| = l

Substituting ^ = x + cίω yields

32(ί J Λ(x + cίω)dω) = ί"1 j 4 % ) d S r

|ω | = l |x —y| = cf

But note that for t > 0,

-dt{ J | x - y | " M % ) d y ) = - a f ( ί f r-'Δh(y)dSydr)
\x-y\>ct ct |χ-j,| = r

|ω |=l

= c J (ct)
|x-y| = cί

= Γ ' ί Δh(y)dSy = df



Classical Limit of the Relativistic VΊasov-Maxwell System 413

Therefore

δt(t J h(x + ctω)dω) + J \x-y\~1Δh{y)dy
|ω |=l \x—y\>ct

is a function of x only. But both terms tend to zero as t tends to infinity (using
Theorem 1 of [12] for the first term), so

dt(t f h(x + ctω)dω) + f \x-y\-ίΔh(y)dy = 0,

|ω| = l \x-y\>ct

which completes the proof of the lemma.

Now in order to rewrite the leading term of i, dt((t/4π) J E0{x + ctω)dω\ let
|ω| = l

h(x) = $$fo(y9v)\x-y\-ιdvdy and note that V/i= - £ 0 and that 4h = -4πjfodv.
Hence by the lemma,

)= -dt[^~ J

= ^ V ( d t ( t J h(x ) d ) )

|x-yt>ci

Now we substitute z = x — 3; to get

δ / ^ - J £ 0 ( x - f ^ ) ^ ) = -V( j \z\-^fo(x-z9v)dvdz)
\^π \ω\=\ J \z\>ct

= - ί izr'
|z|>cί

= - ί ^-yΓ^VJoiy^dυdy. (30)

Recall that f0 has compact support, so by the divergence theorem

- J ix-yΓΊMy^dvωtds^ J ^-(U-^l^ί/o^^)^

= ί
)x~y\>cl

for j = 1, 2, 3. Now by (30) we have

= J
M = l

- ί \χ-yΓ
\x-y\>ct

( c ί ) " 1 ί ί / o ( y

\χ-y\ = ct

- ί Ix-jΊ^J/o^^ωdy. (31)
\x~y\>ct
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But now if we collect (27), (28), and (29), and use (31) we obtain

$ — II —111 = 5, ί — J" E0(x + ctω)dω J

- ( ^ O " 1 J ifo{y,v)dυωdSy

— I I * ~ y I ~2 f fiy> vit—c~1\x
\x~y\<ct

= - ί \x-y\~2$fo(y,v)dvωdy

\x~y\>ct

\x~y\<ct

= — J | x — y\~2§f(y, u,max{0, t — c~1\x — y\})dvωdy + O(c~ ^ (32)
The remaining term, IV, is of lower order. To bound IV note that with K(ή as

defined in (14), we have
K(t) = (D + DPΊ(t)lS0 + ίP(ί)])exp(Dί2P7(ί)), (22')

so for all xeR 3, c = 1, and ίe[0, Γ ] ,

Recalling inequality (16) we have

J \f(y, vJ-c-'lx-yDlx-yr'Kit-c-'lx
\x~y\<ct

j J WfoUx-yΓ'dΌdyZDc-2,
\y\<S0 + tP(t)\υ\<P(t)

for 0 ̂  t ^ Γ . Therefore by (A 13) and (32),

E=-$\x-yΓ2ϊf(y9v,mSix{0,t-c-ί\x-y\})dvωdy + O(c-1). (33)

Using the representation of £°° from (VP), we now estimate

(34)
Recall that (/°°, £°°) is a C 1 solution of (VP). Now since £°° is C 1 a n d / 0 has compact
support, it follows that

PD0(ί) = sup{|ι?|: there exists xeU3

and τe[0, ί] such that /°°(x, i;, τ) / 0}

is finite on [0, T). Also dj™ is bounded on 1R6 x [0, T']. Let



Classical Limit of the Relativistic Vlasov-Maxwell System 415

and

iί(ί) = sup{|/(x,ί;,τ)-/0O(x,ί;,τ)|:xeR3,t;6lR3,andτ6[0,ί]}. (35)

Then by (34),

\y\<so + ΓQ \v\<Q

+ J \x-y\~2 J {
\y\<S0 + T'Q M<βmax{O,f-c~1|x-)Ί}

4τc
£H{t) J \χ-y\~2

ΎQ3dy
\y\<S0 + ΓQ 0

4π
+ J \χ-yΓ2

τQ
3c-ι\χ

\y\<S0 + ΓQ

£DH(t) ί )y\-2dy+Dc-1 J l
|y|<S0+rβ |y| §S0+Γβ

Oc" 1 , (36)

for 0 ̂  t ̂  Γ'.

To estimate B note that B{x,0) = 0 and d,B(x,0) =-cV xE0 = 0,so by (A3)

Λ = 0. (37)

Also, estimating the other terms of (A 14),

l(cί)"1 J \{\ + c-H-ω)-\ωxc-H)fo(y,v)dvdSy\
\x-y\ = ct

£ct f j4P2(0)c-1P(0)fo(x + ctω,v)dvdω^4P3(0)c-1D, (38)

by Lemma 1, and

^ c " 1 J f \\fo\Uχ-yΓ2{4P2(t))2P(t)dΌdy
\y\<S0 + tP(t) \υ\<P(t)

ύDc~\ (39)

for t ̂  T. The last term of (A 14) may be shown to be O(c~2) in the same manner as
the last term of (A 13). Thus collecting (37), (38), and (39) we have

B = O(c"1). (40)

We may combine (36) and (40) to get

H \ (41)

for ί ^ Γ , since \ύ\£c.
It remains to est imate/-/ 0 0 . For notational convenience, define h =f—fco. The
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estimation of h is via the following equation which follows from (RVM) and (VP):

dth + ύ-Vxh + (E + c~Hx B)-Vvh = dj- dtf°> + v (Vxf- Vx/°°)

(42)

Note that

v - ΰ = (1 + c' 2vψH - ΰ = c~2(l + [1 + c~ V ] 1 / 2 ) " xv2u9

so (42) becomes

dth + ϋ-Vxh H

Note that both | V,,/001 and | V,/001 are bounded on IR6 x [0, T']. Also Vx/°° = 0
iϊ\υ\^P°°(t). Hence by (41)

xB |

(43)

Next for any xe(R3, veM3, and ί€[0, Tr] we may define χ and ί? as in (7) and
compute (using (43))

for 0 ̂  s S T'. Note that

κ,v,t)\ = \h{χ,υ,s)\s=t\ =

so

i + DJH(s)ds,

for ί g Γ. But by (35)

ί/(t) = sup{|/ι(x,t;,τ)|:xelR3,ι;elR3,andτe[0,t]},

so it follows from (44) that

(44)

for 0 ̂  ί ;£ T'. Now by GronwalΓs inequality

(45)
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for 0 S t ^ T. So by (36) and (40) we have

\fc(x, v9 t)-f"(x9 υ, ί)l + \Ec(x, t) - £°°(x, 01

+ \Bc(x, 01 ^ H(t) + DH(t) + Dc~1^Dc-i

for all xeM3, veU, c ̂  1, and ίe[0, T']. This completes the proof of Theorem 2.

Appendix

Suppose p andj are C2 functions with compact support in x for each fixed t. Suppose
also that E and B form a C2 solution of Maxwell's equations

dtE = cV xB-4πj V £ = 4πp,
(Al)

Then E and B satisfy

(dfE-c2ΔE=-4π{c2Vp+jt) ( A 2 )

Define $ and 3 by

t \ t

(A3)/
*.χ,t)-e.l

where dtE(x, 0) = cV

E =

— ί ι

έ ί E
to(x + ctaήdω

x Bo — 4π$foύdv and

S-c-2

% + c-i

J I * J Ί

j i ̂  yι

1 ί f ,

4τr

<5,B(x,0) =

x(c2Vp +Λ)

i(Vxj) ,_

t5(x-f cίω?0)dω,

- c V x £ 0 . We have

/ — 11 ι\UV
[ y , t — c ix—yD'

(A4)

Now if (/, £, B) is a C 1 solution of (RVM) with data as in Theorem 1, (A4) may be
shown to hold for p = \fάυ and j = \βάv by a standard approximation argument.

Following [6] we define

and note that

{v, -T++e~ \ΐl c^t ώfiatS - ϋ- T). (A6)

By (A6) we may write

J==J [(1+c~10 ωΓ1(c

+ c2Tf- (1 4- c~ Hώ)- \cω + ύ)ΰ Tf~\dv,
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and hence by (A4)

E = S-c-2 J \
\x~y\<ct

-c~2 J \x
|x-y|<cί

Note that

J.Schaeffer

(A7)

-c-\dtf)(y,υ,t-c-χ\x-y\)ω

so we may use the divergence theorem to obtain (for the ith component)

\x-y

dvdy

, (A8)

To compute the derivatives which occur in (A8) note first that (d\x—y \/dyj) = ω3 and

— - = I x — y I ~ ι(δij — cύiOj). (A9)

Now we compute

y \\x-y\(\+c-H-ω))~ Mdyj\\x-:

J
- (cω + ΰ),ΰjcoj{ί + cΉ

= \x-y\-\\+c-H-ώ)-2

- 2cωiωjϋj —

= |x - y\~ 2(1+ c" ̂  ω)-2[(l + c~ H'ώ)^ - Ict-ωω,

- ύ ωΰi) - c~\cω + vUύ2 - [ω 0]2)]

= \x-y\-2(l+c-H'ω)-2[(c-c-1ΰ2)ΰi-2cύ'ωωi-ωi(ύ'ω)2-ωiύ
2l
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and hence

c2

fyi

-(c-c~ ιϋ2)ϋt

= \x - y\~2(l + c- H ω)-2l-c2ωi - (c - c'H2)^ + ω,

= ~ I* - y\~2(i+ c~ H ω)-\c2 - ύ2)(ω + c-H\.

Substituting this result into (A8) yields

ί U-y\-ι\l
\x-y\<ct

= ί Snx-
\x-y\<ct

1 J Jc2(l + c-H'ωY\ω-c-2ϋ'ωϋ)J0{y,υ)dυdSy. (AlO)
\x-y\=ct

The last term of (AlO) is the one which was suppressed in [6] and plays a key role in
the proof of Theorem 2.

To address the "Sf" term in (A7) note that

Sf=dtf+ύ'Vxf= -iβ + c'H x B) V,/= -VΛfLE + c-H x £]),

since a short computation shows that

Therefore, by the divergence theorem

j{l^c-H'ω)~\cω + ύ)iSfdv = jflE^c-HxBlWvl(\+c~H'ω)-\cω^v

(All)
Now we compute

—-[(I + c"H-ω)- ι(cω + ί) f] = — -r^—_ 2 2 U /^
 ι-j-±-

dVj hΔ 3 4 ( l + c V)1/2 + c"VωJ

c" V] 1 / 2 ©| + vl){c~Hj + c

(l+c~V)- 1 / 2 ( l-fc- 1 ί ; ω)-2[(l-f

- (cω + β)f(c "
 2ϋj + c~iωJ)']

+ c~2(ϋ

and hence
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Substitution into (All) yields

•[(1 + c~H'ώ){E + c~Hx B\ + c'2(ϋ-ωω - ϋ)^E

- ( ω 4- c-H\ω-(E + c~Hx B)]dv. (A12)

Finally we obtain the desired representation for E by substituting (A 10) and
(A12) into (A7):

E = £-(ctγι j \(\ + c-H-ωyι{ω - c-H-ωϋ)fo{y,v)dvdSy

\x-y\=ct

\x-y\<ct

-c~2 J
\x-y\<ct

•[(l+c-H-co)(E + c-HxB)

+ c-2(ϋ ωω-ϋ)ύ E-(ω + c-1ΰ)ωiE + c-1ύ x B^^-^Jvdy. (A13)

The representation for B may be computed in the same manner as for E. Since the
computation is so similar, we only state the result:

J ^(l+c-16 ω)-1(ωxc-1ύ)f0{y,v)dvdSy

\χ-y\ = Cΐ

1 f $
\χ-y\<ct

\x-y\<ct

•[(1 + c~H'ώ)ω x(E + c~Hx B)

- c " 2 ( ω x 0)(ί+ cω) (E + c- 1ί x
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