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Abstract. We study the positive solutions of a semilinear equation with a
Coulomb potential on IRA We give a new uniqueness theorem for the positive
radial solutions of such an equation and we apply these results to the Thomas-
Fermi-Dirac-von Weizsacker equation without electrostatic repulsion.

1. Introduction

In this article we shall discuss the existence and uniqueness of positive classical
solutions u(x) of the problem

-Au-Z\x\~lu + a(u) = Q in R3, w(x)->0 as x->oo. (1)

In Eq. (1), Z is a positive real constant and the function a( - ) satisfies the following
hypothesis:

Al . α(ί) is locally Lipschitz continuous for ί^O, α(0) = 0 and

(2)
no

A 2. There are positive constants δ, C+ and C_ such that
p (3)

for all t ̂  δ. Here, 1 < p < oo .
A3. For all ί>0,

F(ί) = 2ία(s)έfe>0. (4)
o

Let us also define

αΞ=inf(F(ί)/f 2 ); (5)
ί>0

the hypothesis Al, A2, and A3 ensure that
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Problem (1) arises in the Thomas-Fermi-von Weizsacker (TFW) theory of
atoms and molecules [1,2] without electronic repulsion. There, Z|x|-1 is the
electric potential due to a fixed nucleus of atomic number Z located at the origin,
u(x)2 stands for the electronic density and \u(x)2dx is the total number of
electrons. In the usual TFW model,

a(u) = a uΊ/3+λu, (6)

where a and λ are positive constants. Here λ is the chemical potential. On the other
hand, in the TFW model with exchange correction [1, 3, 4],

a(u) = a.uΊ/*-bu5/3 + λu, (7)

where a and λ are the same as above and b is a positive constant. The TFW
equation for an infinite atom, i.e. Eq. (1), with a(u) given by (6) and λ = 0, has been
studied in [5, 6].

The proof of the existence of solutions to Problem (1) is achieved in Sect. 2
(Lemma 3) by solving the related problem

Min{S(tφeE}, (8)
where

1u2dx9 (9)
and

£ = {φ^O,MeL 2nL 6nL^+ 1,PweL 2,l<p<oo}. (10)

In Eq. (9), dx denotes the usual Lebesgue measure in R3 and F(u) is defined in
terms of a(ύ) by Eq. (4).

In Sect. 3 we give a new uniqueness result for the positive radial solutions of
Eq. (1). It is well known that iΐa(ύ)/u is increasing in u [or, equivalently F(u) convex
in M2], (1) has a unique positive radial solution. Here, we prove a stronger result
namely, if λ < Z2/4 and G(ύ) = a(u)/u — |Z2 has only one zero on the interval (0, oo)
then there is at most one positive radial solution to Eq. (1) (see Theorem 17 below).
Here, — Z2/4 is the lowest eigenvalue of the linear part of (1). Note that this new
hypothesis on a( - ) is obviously satisfied if a(u)/u is increasing in u.

Our proof of uniqueness is performed in two steps. We first introduce the
wronskian between the ground state of the linear part of (1) and a solution to
Eq. (1) [see Eqs. (42) and (43) below] and we prove that under the hypothesis on
α( ) just introduced, this wronskian is positive in (0, oo). We then use this result
and the method of separation of solutions introduced by Peletier and Serrin [7] to
conclude the proof of uniqueness. It is worth mentioning here that if we relax the
last hypothesis on a( - ) so that G(u) has two or more zeros in (0, oo) we can prove an
oscillation theorem for the wronskian (see Lemma 13 below). We believe that in
the case Eq. (1) has more than one positive radial solution, the different solutions
are characterized by a different oscillatory behavior of their wronskian (with the
ground state of the linear part).

Finally in Sect. 4 we apply the existence and uniqueness results to the TFDW
equation without electrostatic repulsion, that is, to Eq. (1) with a(ύ) given by (7).
These results on TFDW are summarized in Lemma 22 below.
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2. Existence of Solutions

In this section we will discuss the existence of positive classical solutions to Eq. (1).
The proof of existence, which is rather standard, is achieved by solving the related
minimization problem (8). In fact, Eq. (1) is the Euler equation corresponding to
the variational problem. We then use standard elliptic regularity theorems to show
that these solutions satisfy Eq. (1) in the classical sense.

We start by summarizing some elementary properties of S [u] :

Lemma 1. For every positive β, there is a positive constant Cε^ such that

ϊu(x)2Z\x\-*dx£ε\\u\\l + CE9Ju\\l9 (11)

where 2^

Proof. Decompose V(x) = Z\x\~l as in [2, Lemma 2] and use Holder's
inequality. Π

Remark. If u e £, S[w] < oo. In fact, if u e E the first term in Eq. (9) is finite and,
because of the previous lemma, the third term is also finite. As for the second term
we note that hypothesis A 1 implies that F(u)/u2 is finite in a neighborhood of u = 0.
Moreover, since F(u) is continuous, θ = max {F(u)/u2\ΰ ^ u rg δ} is finite. From here
and hypothesis A 2 we get

Since we£, weL 2nL p + 1 and thus, the second term in Eq. (9) is also finite.

Lemma 2. There are positive constants β and y such that

||+ ||«||i+ ||tι||i + ||tt||5:i}-y . (12)
for all ueE.

Proof. Because of Lemma 1,

^-β||w||2-C^||u||,2. (13)

Since for all η > 0 and q > 2 there exists Kη > 0 such that z g ηzq/2 -f Kη, all z ̂  0, we
conclude from (13)

φ\\l-C^qKη, (14)

with A = Cε?ί? η. We now show that there are positive constants B and D such that

F(u) - Auq ̂ Bu2 + Dup + 1 (1 5)

for all w^O and 2<q<p+l. Equation (5) implies

for u^δ. Choose η = Bδ2-q/Cε,q in (14), with

B = min(α/4,C_δ | |-1/2(p+l)). (16)

Hence, F(u)-Auq^3Bu2^Bu2 + Dup+1 for u^δ, where
p. (17)
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For u^δ, Eqs. (3) and (4) imply

p+l

for all O^σ^l. Choosing σ = min l,-^—(p+ l}δ^~p and q>p+ 1, we get
L 2G_ J

c Γ r Ί
~ ~ \u2 = Bu2 +Dup + 1 .

p+l L P+ 1

Finally, the lemma follows from (14) and (15) by using Sobolev's inequality (see
[1]). D

After these preliminary lemmas we are in position to prove the existence of a
minimizing solution (5) for S[u] in E.

Lemma 3. Min{S[w] \ueE} is achieved at some u0εE.

Proof. Let {un}cE be a minimizing sequence. By Lemma 2 there is a positive
constant (independent of n) such that

l |uJ 6<C, \\un\\p+1<C, lkJ | 2 <C.

Therefore we may extract a subsequence, still denoted by uw such that

un-^uQ weakly in L2, L6, and Lp+1 , (18)

Vun -» V u0 weakly in L2 , (19)

un-+u0 a.e. (20)

[(20) relies on the fact that if Ω is a bounded smooth domain then Hl(Ω) is
relatively compact in L2(Ω). (18) and (19) imply that {un} is bounded in Hl(Ω).
Hence {un} has a subsequence converging in L2(Ω) and a.e.]. Hence,

liminfί(Fwn) 2dx^ j(Fw 0 ) 2 dx. (21)

Since F(ί) is continuous, F(un)-^F(u0) a.e. Thus,

lim inf J F(u)dx ̂  j F(w0)dx (22)

by Fatou's lemma. Finally since V=Z\x\~1 eL3/2 + L4, (18) implies that f Fw2rfx
-> J Vu^dx. Therefore

S [MO] ̂  lim inf S [uj - Inf S [M J . D

We now derive the Euler equation satisfied by UQ.

Lemma 4. The minimizing u0 ('s) satisfies (satisfy)

-Au0 + a(u0)-Z\x\-'LUo = 0 (23)

in the sense of distributions.
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Proof. Let us first verify that (23) has a meaning in the sense of distributions. Since
FwoeL2, it is enough to check that a(uQ) — Z\x\~1uQeL^oc. Here uQeL2 and

eLL, thus Z\x\~luQeLloc. (3) and A l imply

\a(u)\ ^max [max |α(ί)|, C+upΊ . (24)upΊ .
J

Since M 0 eL p + 1 , w 0 eLf o c and therefore a(ύ)eL\QC. Consider the set E = {v\veL2

nL6nLp+ \ p > 1, Pi; e L2}. Note that ϋ ̂  0 is not assumed. If υ e £, then \v\ e £ and
S[ϋ] = S[|ϋ|]. Here, F(u) has been extended to 1R by setting F(-t) = F(t) for all
ί ̂ 0. Indeed it suffices to recall that V\v\ = Vv (sign (v)) (see [8]). Let η e Q>. The

lemma follows by taking ~τ S[u + tή]\t=Ό = Q. D
αί

We end this section by proving some properties of the minimum (or minima) of
S [u\ in E. We first show that the minima of S [u] are symmetric decreasing (see [9]
and [10] for definitions and details). Let

if \x\*\y\} (25)

be the symmetric decreasing functions. Then we have

Lemma 5. The minima of S[u] in E belong to SD.

Proof. This follows by Lemma 5 in [10] and standard results on SD. D

In the next lemma we summarize the regularity properties of the solutions to
Eq. (1) which belong to E.

Lemma 6. // ueE is a solution of Eq. (1), then
i) u is continuous in R3, more precisely u e C°'α all α< 1.

ii) u is bounded in R3 and w(x)-»0 as |x|-»oo.
iii) UGH2.
iv) Either u = 0 or u>0 everywhere and ueC2 except at x = 0.
v) // u has radial symmetry, it satisfies the following cusp condition at the

origin:

2^(0) + Zw(0) = 0. (26)
dr

Proof, i) The hypothesis A l and A2 ensure that a(u) is uniformly bounded from
below, i.e. there is a (nonpositive) constant M such that a(u) ̂  M for all u > 0. Thus,
from Eq. (1) we have

Since ZjxΓ 1 eL3

o;:
ε for all ε>0 and weL 6 , ZjxΓ 1 weL2

o;
ε for all ε>0. Hence,

/e Lfoc for some q > 3/2. We may, therefore apply a result of Stampacchia (see [8,
Remarque 5.2]) to conclude that u e L£c. Going back to (1) and using the fact that
weLjSc, we now see that 4tteL?0~

ε for all ε>0. The standard elliptic regularity
theory [11] implies that ue C°'α for all α< 1.

ii) The hypothesis A l and A2 also imply that a(u)/u is uniformly bounded
from below, i.e. there is a (nonpositive) constant N such that a(u)/u>N, for all
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w^O. Thus, from Eq. (1) we have

Clearly, (ZlxΓ1 + \N\ + l)ueL2, and so

l + \N\ + l)u]. (27)

As is well known, the right side in (27) is bound and tends to zero as |x|->oo.
iii) Since u is bounded, a(u)^Cu for some positive constant C. Also,

Z\x\~lueL2. Therefore, from Eq. (1) we have that ΔuεL2 and so ueH2.
iv) From Eq. (1) we have —Au + bu = Q, with beL%oc, q>3/2. It follows from

Harnack's inequality (see e.g. [12, Corollary 5.3]) that either u>Q everywhere or
u = 0. We shall show (see Lemma 20 below) that u φ 0 for some given interval in λ.
Finally, the fact that weC2(]R3\{0}) follows easily from Al, the part i) of this
lemma and Lemma 4.2 in [11].

v) Multiply Eq. (1) by |x|, then take the limit |x|-»0 and use the regularity
properties of u. D

Remark. If a(u) is C00, then u e C°° away from the origin; this follows easily from (1)
by a standard bootstrap argument.

3. Uniqueness of Positive Radial Solutions

In this section we show that under an extra hypothesis on a(u) (namely, hypothesis
A4 below) there is at most one positive radial solution of Eq. (1). This in turn
implies that for those a(u) that satisfy A 1 through A 4, the minimum of S [u] in E is
unique. We suspect (after the results on [13, 14]) that all positive solutions to
Eq. (1) with u(x) = 0(\x\~m), m>0 near infinity are necessarily spherically
symmetric about the origin. If this were the case the uniqueness of positive radial
solutions would imply the uniqueness of positive solutions. However, the results of
[14] (in particular Theorem Γ) do not apply directly to our case.

The hypothesis A4 is weaker than requiring F(u) to be convex in u2. If F(u) is
strictly convex in u2 then the proof of the uniqueness of a minimum of S[u] is easy:

Lemma 7. // F(t) is strictly convex in t2 then the minimum of S[u] in E is unique.

Proof. It is enough to show that S[ιi] is strictly convex in u2. It is clear that the last
two terms in Eq. (9) are strictly convex in u2. As for the first term, its convexity
in u2 follows by integration by parts and Schwarz inequality (see [2] and
[15]). D

Remark. As it is pointed out in [15], the fact that F(u) is strictly convex in u2

implies that a(u)/u is increasing in u. We relax here this last property of α( ) and we
introduce the following hypothesis on α( ):

A4. For λ<Z2/4,
G(u) = a(u)/u-Z2/4 (28)

has only one zero in the interval [0, oo).
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Remark. It is clear from A1 and A2 that if we restrict λ to be less than Z2/4, G(0) < 0
and G(u)->oo as M-»oo. Hence, A4 is certainly satisfied if a(u)/u is increasing in u.

Our main result in this section is Theorem 17 below. We need some
preliminary results. We start proving that all positive radial solutions of Eq. (1) are
strictly decreasing functions of r, a result closely connected with Lemma 5 and also
with the results of [13,14].

In what follows we will only consider the radial equation

-u"--u'-- u + a(u) = 0. (29)
r r

Here u'= —, etc. We have,
dr

Lemma 8. Let u(r) e C2(0, oo) be a positive solution of Eq. (29) which goes to zero at
infinity and satisfies the cusp condition (26). Then

ι/(r)<0, all r^O. (30)

Proof. Here, we will only show that u'(r) ^ 0, all r ̂  0, leaving the proof of the strict
inequality for the Appendix (see Lemma A.2 below). It is clear from (26) that
wx(0) < 0 [otherwise u = 0 in (0, oo); see Lemma A.I in the Appendix]. Now, suppose
for contradiction that there exists ξ e (0, oo) such that u'(ξ) > 0. Since ι/(0) < 0 and
weC^O, oo), there is at least a point in the interval (0, ξ) such that u' = Q. Let
r0 e (0, ξ) be the point closest to ξ with w'(r0) = 0. Since u(r) goes to zero as r goes to
infinity there is a point rlE(ξ,co) such that u(rί) = u(rQ) and w(r)^u(r0), all
re [ro>rι] Now, multiplying (29) by u' and integrating over (ΓQ,^), we obtain

f ι rι rι

^u'(r1)
2+ f 2(w')2r~1dr + f Zr~luu'dr- f a(u)u'dr = Q. (31)

PO ro ro

Note that

ro u(ι o)

since u(r0) = u(r1). Also,

I Zr~ luu'dr = | w(r 0) 2(rΓ 1 -ΓQ ') + y ί (w(r)/r)2dr ̂ 0, (33)

since w(r)^u(r0) all re [r0>
rι] Moreover, since u'(ξ)>Q and w7 is continuous,

(34)

Introducing (32), (33), and (34) in Eq. (31) we conclude w/(r1)
2<0, which is

impossible. D

Remarks, i) The idea of the proof of this lemma is taken from [7], (Lemma 3).
ii) The Coulomb potential Z/r is not crucial here. If we change it by any other

decreasing potential F(r), the lemma still holds.
In the next two lemmas we establish some facts about the asymptotic behavior

of u(r) which we require in the sequel.
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Lemma 9. Let u(r) e C2(0, co)bea positive solution of Eq. (29) which goes to zero at
infinity and satisfies the cusp condition (26). Then

lim M'(r) = 0. (35)
r-xχ)

Proof. The hypothesis A 1 implies that for r large enough

(Z/r)-(α(M)/tι)<0. (36)

Introducing (30) and (36) in Eq. (29) we conclude that u"(r) > 0 for r large enough.
Hence lim u'(r) exists and it is non-positive. Since w(r)>0 for all r^O, it follows

that lim u'(r) = 0. D
r-*oo

Lemma 10. Let u(r) be as in Lemma 9. Then

Hm^ = -/L (37)
r-^co u(r) ¥

Proof. Let /= -u'/u. Since w>0 and ι/<0, />0, all r. From Eq. (29) we get

. (38)

Since w->0 as r-»oo and because of A 1, we can choose f large enough such that for
all r ̂  r we have

and φ)/M^l+λ. (39)

Let β = {(r,/)|r£f, /^2(1 + /l)1/2}. On D,

/2. (40)

From this last inequality we conclude that if the integral curve f = f(r) for Eq. (38)
enters the region D, it will eventually blow up at a finite value of r. Since this is
impossible, we conclude that

lim sup/(r)^2(l +/l)1/2, (41)

i.e. / is bounded uniformly in (0, oo). We now evaluate lim(ι//w)2 by LΉόpitaPs
rule. We get

r (A2 r u" r ί2 t< Λ Z , a(A ilim I — I = lim — = lim I -j(r) 1 I =λ,

where we have used (41) and Al . From here and (30) the lemma follows. D

Remark. The proof of the previous lemma is taken from the proof of Lemma 5 in
[7].

In what follows we prove some oscillation properties of the function

h(r) = 2u\r) + Zu(r), (42)

in (0, oo), where u is defined as in Lemma 9. These results do not depend crucially
on the fact that we have a Coulomb potential in Eq. (1). The same results can be
obtained by replacing Z/r in Eq. (1) by any decreasing potential V(r) as long as one
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changes h(r) by the wronskian

h(r) = u0(r)u'(r) - u'Q(r)u(r), (43)

and G(u) by
G(tt) = [α(tt)/tt]-e0 (44)

Here, u0 and e0 are, respectively, the ground state and the lowest eigenvalue of the
hamiltonian —A + V, on IR3.

In the Lemmas 11 and 12 below we consider λ<Z2/4 and we assume a(s)
satisfies A1 through A4. We denote by w the only zero of G(u) in (0, oo) and u(r) is
defined as in Lemma 9.

Lemma 11. κ(0)>w.

Proof. From (29) we get the following equation for ft,

h' + (2r~l — |Z)/ι = 2ttG(w), all r>0 (45)

with G(u) given by (28). From (45), it follows that

r2h(r) = { 2 exp \~ (r-s)l s 2 w(s)G(u(s))ds, (46)
o L2 J

all 0<r<oo. Suppose, for contradiction, that w(0)gw. Since ί/(r)<0, all r, this
implies that w(r)< w, all r>0. Since u(r) goes to zero as r goes to infinity, G(w(r))
-»/l — (Z2/4) < 0 as r-> oo. Now, w is the only zero of G(ύ) and u(r) < w, all r hence
G(w(r)) < 0, all r > 0. In particular, (46) implies that h(r) < 0, all r < oo. On the other
hand, Lemma 10 implies that h(r) > 0 for r large enough, which is a
contradiction. D

Lemma 12. Λ(r)>0, all r>0.

Proof. By the cusp condition (26), fz(0) = 0. Moreover, taking the limit r->0 in (45)
we get Λ'(0) = (2/3)w(0)G(t*(0))>0; this last inequality follows from Lemma 11.
Also, from Lemma 10, h(r) > 0 for r large enough. Now, assume there is 0 < ξ < oo
such that h(ξ) < 0. Since h is continuous, there must exist r1? r2 with r t < ξ < r2, so
that Λ(r1) = ft(r2) = 0, with Λ'ίrJ^O, and Λ'(r2)^0. From Eq. (45) it then follows
G(M(^I)) ̂  0 and G(w(r2)) ̂  0. G^^J) ̂  0 implies w(r t) ̂  w. However, w(r2) < w^i)
because u(r) is strictly dereasing (Lemma 8). Hence, w(r2)<w and therefore
G(w(r2))<0, which is a contradiction. Thus /ι(r)^0, all r> oo. Finally, we prove
that h(r) does not vanish in (0, oo). In fact, assume there is 0<ξ<oo so that
h(ξ) — 0. From the previous remarks (since h is C^O, oo)), h'(ξ) = 0. Therefore, from
Eq. (45) we get M(£) = W. Hence, G(w(r))<0, all r>£. Now, from (45) and since
h(ξ) = Q, it follows that

r2ft(r)- j 2exp y (r-s) L 2 u ( s ) G ( u ( s ) ) d s < 0 ,

for all r > ξ, which is impossible. D

In the next lemma we relax the hypothesis A4 and we allow G(u) to have any
(odd) number of simple zeros in (0, oo). In this case we give a bound on the number
of zeros of the "wronskian" h in the interval (0, oo).
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Lemma 13. Let λ<Z2/4 and suppose G(u) has n (odd) simple zeros in (0, oo). We
label these zeros by 0< vt^ < w2< ... < wn. Let u(r) be as in Lemma 9. Then,

ii) // w ί<w(0)<w ί+1, l^i^n— 1, then h has at most i—l zeros in (0, oo). //
tί(0)> ww, h has at most n—l zeros in (0, oo).

iii) Let R be such that u(R) = wί. Then, for all positive solutions of (29),
satisfying (26), which go to zero at infinity, we have /ι(r)^0, all r^R.

Proof. The proof of this lemma is completely similar to the proof of Lemmas 11 and
12 and we omit it here. D

Having shown the positivity of the "wronskian" h under the hypothesis A 4 on
α( ), we proceed to use the method of separation of solutions introduced by
Peletier and Serrin in [7]. We start by assuming there are two solutions of Eq. (29),
which go to zero at infinity and satisfy the cusp condition (26). We will consider the
horizontal distance between these two solutions. We denote by r(ύ) the inverse of
u(r) (which is well defined because of Lemma 8) and by s(ύ) the inverse of v(r). We
assume that u(r) φ v(r) and our goal is to show that this is impossible, i.e. that there
is at most one solution. We start with

Lemma 14. Let λ < Z2/4 and suppose a( ) satisfies A4. Assume that r(u) — s(u) > 0
on some interval L Then, r(u) — s(u) can have at most one critical point on I.
Moreover this critical point is necessarily a strict minimum.

Proof. It is convenient to make the following change of variable: \εtu = e~q. Here q
is an increasing function of r which goes to + oo as r->oo. Let us consider the
distance r(q) — s(q), where r(q) = r(u(q)), etc. We have

ur=-e-*/rq, (47)

urr = e-«(rq + rqq)/rl, (48)

where rq= — = —, etc. Introducing (47) and (48) into Eq. (29) we find that r(q)
dq qr

satisfies ~ ~

qq q

 r

 q q γ q

The function s(q) satisfies (49) too. Hence,

2 2 2 2 Z 3 Z 3 β / -«w 3 3 Λ Q

r s r s

At a critical point of (r — s) (q) we have rq = sq and therefore

(50)

The last inequality in (50) follows since r > s on / and because Zrq — 2 = h/( — u') is
positive, by Lemmas 8 and 12. Therefore any critical point of (r — s) (q) in / is a
minimum. It follows immediately from here that there is at most one such a point
on/. D

Remark. The proof of Lemma 14 is based on the proof of Lemma 7 in [7].
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An immediate consequence of the previous lemma is the following

Corollary 15. Let λ<Z2/4 and assume α( ) satisfies A4. Then, two different
solutions of (29) u and v cannot intersect.

Proof. Suppose, for contradiction, that u and v do intersect; that is, there exist rv

and r2, r2>rl9 such that u(rί) = v(rl) = a and u(r2) = v(r2) = β, β<a. This means
that r(α) — s(a) = r(β) — s(β) = 0. Without loss of generality we may assume u > v on
(r l5r2). Thus r(u)-s(u)>0 on (β,α). Since r(u) — s(ύ) is continuous, it must then
have a maximum on (/?, α), which contradicts the previous lemma. D

Lemma 16. Let λ < Z2/4 and suppose a( - ) satisfies A 4. Let u and υ be two solutions
of (29), (26), vanishing at oo with u(Q)>v(0). Then,

(u))|y(0)<0. (51)

Proof. Since w(0)>ί;(0), there exists ξ>0 such that u(ξ) = v(0). Then,

- + >0, (52)

where the last inequality follows from (26) and Lemma 12. From (52) the lemma
follows. D

After all these preliminary lemmas we conclude this section with our main
result, namely the uniqueness of the positive radial solutions of Eq. (1) under the
hypothesis A4.

Theorem 17. Let λ < Z2/4 and suppose a( - ) satisfies A4. Then, there is at most one
positive solution of (29), (26) which goes to zero at infinity.

Proof. Assume, for contradiction, that there are two different solutions. Because of
Lemma A.I in the Appendix, w(0)φϋ(0), and we may assume without loss of
generality that w(0) > v(Q). Because of Corollary 15, there are only two possibilities
to consider namely: i) u and v intersect only once; ii) u and v do not intersect in
[0, oo ). Let us first consider case i) and denote by ξ the intersection point. We then

0, (53)

and
(r,-s,)(-ln»(0))>0, (54)

where this last inequality follows from the previous lemma [Eq. (52)]. Since (r — s)
is a continuous function of q, Eqs. (53) and (54) imply that there is a maximum of
(r-s)(q) in the interval (-lnu(O), -lntί(ξ)), where (r-s)(q) is positive. This
contradicts Lemma 14. Thus, we need only discard the second possibility. Since
w(0) > ι (O) and u and v do not intersect, u > v, all r. Here (r — s) ( — Inv (0)) > 0, and
therefore, using Lemmas 16 and 14 we conclude

(r-s\(q)>0, (55)

and
(r-s)(«)>0, (56)
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for all q^ — lnι (O). From the equation below (49) we have,

(r-s^M.^-sJ + sKs-i-r-1).^-!), (57)

with

M=-l+e^a(e-qUr^s2 + rqsq)+~(rq + sq)--(r2 + rqsq + s2)^

When w->0, g->oo, and therefore A l implies e?a(e~<ί)-+λ. Also, from Lemma 10,
rq-*λ~1/2 and sq-+λ~1/2. Moreover, r and s go to infinity. Hence, M->2 as q-+co.
On the other hand,

by Lemmas 8 and 12. Thus, for q large enough, (r — s)qq>0 [see Eq. (57)]. Let g(q)
= (r — s)q(q). We have shown that g(q)>0, all q^. — lnι (O) [Eq. (55)]. Moreover,

Lemma 10 implies g(q)-+Q as 0->oo, and we have just proved that — >0 for q
dq

large enough. These three conditions on g cannot hold at the same time, so from
here the lemma follows. D

4. Further Results and Applications to the TFDW Equation

To conclude this article we show some additional properties of the positive radial
solutions of Eq. (1) and we apply the results we have obtained here to the TFDW
equation, i.e. to Eq. (1) with a( - ) given by (7). In Lemmas 18 and 19 below we prove
some "negative" results, in fact we prove that under certain hypothesis on F(ύ)
there are no nontrivial positive solutions to Eq. (29), satisfying (26) and going to
zero at infinity. On the other hand, in Lemma 20 we give some conditions on F(u)
which assure the existence of a nontrivial positive solution to (29), (26). In
Lemma 21 we give a lower bound on the value of w(0), which is better than the one
obtained in Lemma 11. Finally in Lemma 22, we summarize the consequences of
all these previous lemmas on the TFDW equation.

In the Lemmas 18 and 19 below, we relax the hypothesis A3 on F(ύ) and we
obtain:

Lemma 18. Let λ < Z2/4 and assume that G(u) has 2k + 1 simple zeros, say
0<w 1 <w 2 <... <w2fe + ι<oo. Define

<*ι = mf{F(s)/s2\Q^s£wι}. (58)

Then, if a1 <0, there is no nontrivial positive solution to Eq. (29), (26) which goes to
zero at infinity.

Proof. By Lemma 13, iii), Λ(r)^0, all r^R, with u(R) = w1. Multiplying (29) by
w'(r), which is negative (Lemma 8), and integrating on r from ξ > R up to infinity we
get,

u'(ξ)2<F(u(ξ», (59)

all ξ>R. Hence, F(s)>0 all Orgs^w 1 ? which contradicts OLI <0. D



Semilinear Equations with Coulomb Potentials 303

Lemma 19. Let λ>Z2/4 and suppose that G(u) has 2fe(/c^l) simple zeros, say
0<w 1 <w2<... <w2 f e<oo. Let

α2Ξinf{F(s)/s2 |w1<s}. (60)

Then, if α2 > Z2/4, there is no nontrivial positive solution of Eq. (29), (26) which goes
to zero at infinity.

Proof. Proceeding as in the proof of Lemma 12 one can show that the
corresponding h has at most 2k simple zeros (including r = 0) in [0, oo). Let ξ
denote the largest zero of h. Because of Lemma 10, h(r) ^ 0 for all r ̂  ξ. It is easy to
see that u(ξ)'^\vί (this is the analog of Lemma 13, iii). Multiplying (29) by u'(r),
which is negative (Lemma 8) and integrating on r from ξ up to infinity, we obtain

(61)

Since h(ξ) = Q, (61) implies
Z2/4>F(u(ξ))/ξ2,

which proves the lemma. D

After these two negative results we now give a criterion for having nontrivial
positive solutions of (29).

Lemma 20. Let α( ) satisfy A l through A3 and define

(62)
0

Then, if β< Z2/4, there is at least one nontrivial positive solution of (29), (26) which
goes to zero at infinity. In particular, if λ is such that a(λ) > 0 and λ < Z2/4, then there
is at least one nontrivial positive solution of (29). (Here α(/l) is given by (5)).

Proof. We need only show that if β < Z2/4, there is a nontrivial (u Φ 0) minimum of
S [u] in E. It is easy to find a ψ e E such that S [>] < 0. (Note here that S [0] = 0).
Consider ψ(r) = AQXp( — tr) with A and t positive. Obviously ipeE and

0, (63)
with

f(A)=^J F(Ae~y)yzdy. (64)

Choosing t = 2f(A)/Z, which minimizes the parenthesis ( ) in (63) we get,

I = (πA2Z/2f(A» (1 - (Z2/4f(AJ). (65)

The first part of this lemma follows by choosing in (65) the A which minimizes
f(A). Now, (2) and (4) imply that for every ε>0 there exists <5(ε) so that

(66)
allί«5(ε). Clearly,

4 oo Ί
-τ ί F(Ae-*)y2dy\Q<A<δ(s)> £(λ + s)9A o J

all ε < 0. Hence β^λ, which proves the second part of this lemma. D
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Lemma 21. Let λ<Z2/4 and assume a( - ) satisfies A l through A 4. Let u be as in
Lemma 9. Then, ι/(0) is such that

0)2. (67)

Remark. This result is stronger than the one obtained in Lemma 11.

Proof. Multiply (29) by u' and integrate over (0, oo). Then use Lemma 12 and
Eq. (26) to get (67). D

Putting all these results thogether in the case where a( - ) is given by (7) we
obtain the following result:

Lemma 22. Consider the TFDW Eq. (1), with a(u) given by (7). Then,
f\5b2 Z2Ί

i) For all Λ , e ( — — ,— - there is a unique positive radial solution of (1)
\64 α 4 J

satisfying the cusp condition (26) and which goes to zero at infinity.

"^ E. 1 1 5 f o 2 J O Z" 15ί?2 / - - I I /•n) For /I < -— — αnα A > — — + — - — there is no nontnvial positive solution of
' 64 a 4 64 a v J

(1) which goes to zero at infinity.
iii) For Z2/4^/l^(Z2/4) + (15/16)4(62/4α), there is at least one nontrivial

solution of (1) satisfying (26) and going to zero at infinity.

Proof. It is a direct application of our previous results. D

Appendix

Lemma A.I. Let u and v be two solutions of Eq. (29), with u,vε C2(0, oo), satisfying
the cusp condition (26). Then, if u(Q) = v(Q), u = v.

Proof. We need only show that u = v on a neighborhood of r = 0, since Eq. (29) is
nonsingular away from r = 0. Let ψ(r) = u(f) — v(f). Then φ(0) = 0 and, because of
(26), v/(0) = 0. Here, ψ(r) satisfies the equation

- ιp"(r) - 1 ψ'(r) - I ψ(r) + H(r) = 0 , r > 0 , (68)

where ff(r) = α(u(r)) — α(υ(r)). Using Green's function for the operator Lιp = ιp"
+ (2/r)\p' with the initial conditions φ(0) = t//(0) = 0, we find

φ(r) = - ί (1 - (s/r))s (- ψ(s) - H(s)} ds . (69)
o V s /

Because of Al , \H(s)\^M\ψ(s)\, for 0^s<s0, where 50>0 and M = M(s0)
Therefore,

Mrί\ψ(s)\ds. (70)
0 0

From here it follows that |ι/?(r)| = 0 for 0^r<s0 (by GronwalΓs inequality). D
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Lemma A.2. Let u be as in Lemma 9. Then t/(r)<0, all r^O.

Proof. We have already proved that w'(r)5^0 (see the proof of Lemma 8). Thus, we
need only show that u'(r) φ 0, all r ̂  0. Assume, for contradiction, that u'(ξ) = 0 for
some 0<£<oo. Since weC2(0, oo) and wx(r)^0, all r, we must have u"(ξ) = Q.
From Eq. (29) we then get,

(71)

M2(δ) = Z [u(ξ)/ξ - u(ξ + δ)/(ξ + δ)~] , (72)

Because of Al ,
\M3(δ)\<N\u(ξ + δ)-u(ξ)\, (73)

all 0<δ<δ0, with N = N(ξ,δQ). From the mean value theorem, we get

-δ<\u"(ξ + θμδ)\θδ2, (74)

for some 0 < θ, μ < 1. Hence, lim M3(δ)/δ = 0. In a similar way one can prove that
lim Mι(δ)lδ - 0, whereas ^°
5->0

lim M2(δ)/δ - Zu(ξ)/ξ2 > 0, (75)
β->0

where the last inequality follows from Lemma 6, iv). Going back to (71), we
conclude that u"(ξ + δ} > 0 for δ > 0 small enough. Since u'(ξ) = 0, this contradicts
the fact that u'(r) ^ 0, all r. D

Remark. Lemma A.2 still holds if we replace Z/r by any other strictly decreasing
potential.
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