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Abstract. Due to polarization effects, the mass M of a stable particle in a
quantum field theory enclosed in a large (space-like) box of size L and periodic
boundary conditions in general differs from its infinite volume value m. As L
increases, the finite size mass shift Am = M — m goes to zero exponentially with
a rate, which depends on the particle considered and on the spectrum of light
particles in the theory. This behaviour follows from an apparently universal
asymptotic formula, already presented earlier, which relates Am to certain
forward elastic scattering amplitudes. A detailed proof of this basic relation is
given here to all orders of perturbation theory in arbitrary massive quantum
field theories.

1. Introduction

From experience with large scale numerical simulations of lattice gauge theories
over the past few years, it has become plausible that with this method a reliable
calculation of the hadron masses and other low energy parameters in QCD will
ultimately be possible. Because of the limited capacity of today's computer
systems, the lattices one can simulate are however rather small so that, for example,
a lattice of size L= 5 fermi and spacing α = (2 GeV)~1 would already be considered
huge by present standards. Hadrons contained in such small volumes occupy a
significant fraction of the available space and one therefore expects that the
calculated masses show some dependence on L. Thus, for the correct interpre-
tation of the data obtained from Monte Carlo simulations, a theoretical
understanding of these finite size effects is needed and studies with variable L must
be made to check the theoretical expectations.

Finite volume effects are also interesting in their own right and their
investigation may prove useful for purposes other than merely controlling a
systematic error source. The reason for this is that they probe the system at
distances large compared to the lattice spacing. In general, they are therefore
universal (i.e. independent of the form and magnitude of the ultra-violet cutoff) and
often contain useful information on the infinite volume system. In statistical
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mechanics this observation has long been converted into a powerful tool for the
numerical calculation of critical exponents at second order phase transitions, for
example (see ref. [1] for a review and ref. [2] for a recent paper in this field). More
recently, the finite size method has also been applied to asymptotically free field
theories in an attempt to calculate the spectrum of the low-lying stable particles
analytically [3, 4, 5]. When combined with data obtained from Monte Carlo
simulations, this approach may result in a significant test of scaling and a
determination of the Λ.-parameter, which is free of extrapolation ambiguities
[6, 7, 8]. Finally, in the present work the volume dependence of energy values is
related to scattering amplitudes, which makes it possible, in certain cases, to
compute 3-particle on-shell coupling constants [9,10] and scattering lengths [11]
by numerical simulation.

In this and the following paper [11], massive quantum field theories enclosed
in an LxLxL box with periodic boundary conditions are considered (time
remains unrestricted). Due to the finite volume, the spectrum of the Hamilton
operator (i.e. of the transfer matrix in lattice theories) is then discrete and the
corresponding energy values depend on L in a way, which apart from some gross
features, is dynamically determined. For large volumes one expects that there are
distinguished zero momentum eigenstates of the Hamilton operator, which can be
interpreted as states of a single stable particle at rest. The corresponding energy
values M^L) (ί labels the different particles) are close to the rest masses m{ of these
particles as defined at L— oo. This paper is devoted to the question of how exactly
M;(L) approaches mt in the limit where L-» oo and all other parameters of the
theory are kept fixed. Note that this limit is different from the usual finite size
scaling limit, where L is made large but the parameters in the Lagrangian are tuned
in such a way that L/ξ is fixed, where ξ is a correlation length.

The physical origin of the size dependence of the mass Mt of a "pointlike" stable
particle is that such particles polarize the vacuum around them, i.e. they are
accompanied by a cloud of virtual particles. In the simplest case, the diameter of
the cloud is roughly equal to the Compton wave length A0 of the lightest particle in
the theory. When enclosed in a box, the energy of the particle starts to deviate from
its infinite volume mass m{ as soon as the cloud is squeezed by the box, i.e. for
A 0~L. This physical picture can be translated into an exact asymptotic formula
relating the size dependence of the masses Mt to certain forward elastic scattering
amplitudes (cf. Eq. (2.22) below). I have already presented this formula some time
ago together with a number of applications [12]. In this paper, a detailed proof of
the formula is given within the framework of Feynman diagrams.

A seemingly different physical situation occurs when the particle considered is
a bound state of two other "pointlike" stable particles with a binding energy small
compared to its mass. The wave function of the bound particles then falls off
exponentially with a characteristic length λ, which may be substantially larger
than λ0. One therefore expects that finite size effects on the binding energy are large
up to sizes L~λ and only then go to zero exponentially as L-»oo. An exactly
soluble 2-dimensional example displaying this behaviour has recently been
discussed in ref. [13]. Here it will be shown (Sect. 3) that the bound state situation is
actually not so different from a squeezed polarization cloud as discussed above,
since in both cases finite size effects arise from particle exchange "around the
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world" and are described by similar relativistic amplitudes, the main differences
being of a kinematical nature.

The stable mesons and baryons in QCD are bound states of quarks, but the
situation here is quite different from the one just discussed, because quarks are
confined. As suggested by simple models, this presumably implies that the wave
functions of the valence quarks inside a hadron are going to zero more rapidly than
exponentially as the distance between them increases1. One therefore expects that
the probability for a single quark to separate from its partner(s) and walk around
the periodic box is quickly going to zero for growing L so that, in unquenched
QCD, the leading finite size effect on the hadron masses at large L is not due to this
process, but arises from the squeezing of the virtual pion cloud around these
particles as discussed above. Only this latter mechanism was taken into account
for the estimation of the size dependence of the pion and nucleon masses presented
in ref. [12].

As already indicated above, the proof of the basic relation between finite size
mass shifts and elastic scattering amplitudes will be given to all orders in
perturbation theory, i.e. I shall assume that the dynamics of the particles
considered can be described by a Lagrangian quantum field theory, where all fields
are massive and the couplings are small. The interaction Lagrangian can be
arbitrarily complicated and the theory may also have a fixed ultra-violet cutoff. In
all cases, the resulting formulae are independent of these details and refer only to
the physical masses and scattering amplitudes of the particles. In view of this
universality, I believe that the result is in fact true beyond perturbation theory.

Another important question is whether the relations so derived are also valid in
pure non-Abelian gauge theories and QCD, where perturbation theory in the
gauge coupling constant involves massless fields and the arguments given in this
paper cannot immediately be applied. However, one can always describe the low
energy properties of these theories by effective Lagrangians2, which, for an
accurate description, are perhaps very complicated, but are of exactly the type
tractable by the Feynman diagram technique of Sect. 2. Note that because of the
universality of the final result, the precise form of the effective Lagrangian is never
needed, i.e. the effective Lagrangian only catalyses the proof.

These arguments suggest that the mass shift formulae proved in this paper are
of a basically kinematical nature and that they are valid in arbitrary massive
quantum field theories, a conclusion, which is also supported by exactly soluble
models [12] and a recent numerical study of finite size effects in the 0(3) non-linear
σ-model in two dimensions [7].

Although this paper is self-contained, the reader is advised to first consult
ref. [12] for an overview and illustrations (no concrete applications will be

1 Velikson and Weingarten [14] have recently calculated Coulomb gauge quark wave
functions in quenched lattice QCD and find that they are decaying rapidly, although, in the limited
range of distances available, a deviation from an exponential law is not seen
2 At least in principle, such effective Lagrangians could be constructed by "integrating out" the
high frequency modes in the functional integral. Alternatively, one may adopt Weinberg's point of
view [15] that the class of all effective Lagrangians reproducing the global symmetries and the
spectrum of low lying particles of an underlying field theory contains no more information than
would be implied by basic principles (locality, analyticity, etc.) anyway
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discussed here). To keep the presentation as simple as possible, proofs will only
be given for spinless particles and the dimensionality of space-time is set equal
to 4 throughout the paper. Also, I shall assume that the ultra-violet cutoff (if
any) does not break Lorentz invariance. All these restrictions are in no way
crucial to the argumentation and can easily be relaxed, in particular, with
appropriate modifications the results also hold in lattice theories [9].

The bulk of this paper is devoted to the proof of the finite size mass shift
formula alluded to above (Sect. 2). Although the details are worked out for simple
scalar theories only, the method can easily be generalized to more complicated
situations. In particular, the volume dependence of bound state masses can be
calculated and one finds, in the non-relativistic limit, that the leading finite size
effect on the binding energy is correlated with the fall off properties of the bound
state wave function in the expected way (Sect. 3). A few selected remarks are
included in the final Sect. 4.

2. Volume Dependence of the Mass Gap in Simple Scalar Theories

2.1. Basic Definitions. We here discuss theories of a real scalar field φ(x), which, in
infinite volume, describes the physics of a single self-interacting particle ("meson")
of mass m and spin 0. For the study of finite size effects, it is convenient to work with
the connected euclidean correlation functions (φ(x1)...φ(xn)') of φ rather than
time-ordered vacuum expectation values. The normalization of φ is chosen such
that the meson pole in the euclidean propagator has unit residue, i.e. we have3

(2.1)

(2.2)

= 0 for p2=-m2. (2.3)

Since it is assumed that there are no bound states or other additional stable
particles, the meson pole at p2= — m2 is the only singularity of G(p) below the
2-ρarticle threshold at p2= —4m2.

In a finite volume of size L and periodic boundary conditions, the field φ
satisfies

φ(xQ,x + Ln) = φ(x°,x) for all neZ 3 . (2.4)

Denoting the connected euclidean correlation functions at L<oo by
^φ(xί)...φ(xn)yL, we have

L-*Σ ί ̂  eίpxGL(p] , (2.5)
P 2π

= m2 + p2-ΣL(P), (2.6)

3 Euclidean 4-vectors are written as pμ = pμ = (p°, p), P = (pί,P2,p3), and the euclidean scalar
product is p q = p°q° + p q
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where the momenta p take values

(2.7)

For large L, we expect (and shall later show) that ΣL(P) *s close to Σ(p)> m

particular ΣL(P) and v~oΣL(p) are nearly vanishing along the mass shell

p2 = —m2. Thus, for every fixed p of the form (2.7), GL(p) has a pair of poles in the
complex energy plane at

(2.8)

>0. (2.9)

The meson mass M in finite volume is now defined by

M = ωt(0), (2.10)

or, equivalently, through the leading exponential decay of the 2-point function at
large times:

x®-* oo

The asymptotic formula to be proved in the following subsections relates the
finite size mass shift

Am = M-m (2.12)

to the (infinite volume) elastic meson scattering amplitude T. To write it down
explicitly, some further preparation is needed. First of all we note that the
scattering amplitude Γcan be expressed through the euclidean 4-point function in
the following way. Define full propagator amputated correlation functions
G(p1 ?...,pn)by

...,/?n). (2.13)

For z < 0, set

= (zρ°,p). (2.14)

Then, using the spectral condition, one may show that for every fixed, real
momentum configuration p l 5 ...,pn, Gz(pl9 ...,pw) extends to an analytic function
of z in the half-plane Rez < 0. Furthermore, the elastic scattering amplitude is given
by

O/,^ -p, -«), (2.15)

where p, q are the momenta of the incoming mesons and px, q' those of the outgoing
particles. The energy components of the 4-momenta in Eq. (2.15) are p° = ω(p),
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p/0 = ω(p'), etc. The normalization of the scattering amplitude so defined is such
that the optical theorem reads

Im T(p, q|p, q) - }/φ - 4m2) σtot(s), (2.16)

where s denotes the centre of mass energy squared and σtot(s) is the total cross
section.

The relation between Am and T involves the forward amplitude

F depends on a single Lorentz invariant, which is conveniently taken to be the
crossing variable

v = (ω(p)ω(q)-p q)/w. (2.18)

It follows from general principles that F(v) is a boundary value of a function, also
denoted by F, which is analytic in the cut plane shown in Fig. 1. Crossing
symmetry implies that this analytic function is even in v. Besides the physical cuts,
F has no singularities in the simple theories considered here except perhaps for a
pair of poles at v = + \m. These arise from 1 -particle exchange reactions as follows.
Let Γ(pl9...,pn) be the 1 -particle irreducible part of the amputated n-point
function G(pl5 ...,pπ). Using the graphical notation of Fig. 2, the 4-point function
(and hence the scattering amplitude T) can be decomposed into 1 -particle
irreducible parts as shown in Fig. 3. The poles of the forward amplitude F at
v = ± \m stem from the first two 1 -particle reducible diagrams in Fig. 3, because for
these values of v the momentum flowing through the middle propagators is just on
the mass shell. For the residue of the pole, we thus have

lim (2.19)

Im v

physical amplitude

Rei;

Fig. 1. Analyticity domain of the forward amplitude F(v). There are cuts along the real line from
— oo to — m and from m to +00. Simple poles may occur at v= + \m
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(b)

(c) (d)

Fig. 2a-d. Graphical symbols used for (a) the full propagator GO), (b) the modified full propagator

( 3 \ί 2 Σ cospjL J G(p), (c) the connected, full propagator amputated n-point function G(p1,..., pn),
\ j= i /
and (d) the w-point vertex function Γ(pls ...,ρn)

Fig. 3. Decomposition of the 4-point function into 1-particle irreducible parts

where the 3-meson coupling constant λ is given by

λ = Γ{p,q,k)9 (2.20)

p + <2 + /c = 0, p2 = q2 = k2=-m2 (2.21)

(the complex point (2.21) is away from the singularities of the 3-point function, cp.
Subsect. 2.4).

2.2. Statement of Result and Outline of Proof. We are now in a position to write
down the long heralded asymptotic formula for the finite size mass shift:

- J
π -oo^ 2r

16πw2L
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Here, m is some mass larger than m, i.e. the error term in Eq. (2.22) is exponentially
small compared to the first two terms. In perturbation theory, we shall find

m ^ j / f m . (2.23)

If /ί + 0, this bound is actually saturated, but in other cases like the φ4- theory with
an ultra-violet cutoff, m is expected to be larger.

The implications of Eq. (2.22) have already been discussed at length in ref. [12]
so that here we directly proceed to the proof of this formula. Deferring details to
the following subsections, the argumentation is as follows. As explained in the
introduction, the basic assumption is that the correlation functions of φ can be
expanded in a series of Feynman diagrams with momentum space propagators

J(p;m) = (m2+p2)-1 (2.24)

and arbitrary local vertices (the set of vertices must include mass and wave function
renormalization counterterms to insure the validity of the normalization
condition (2.3) to all orders of the expansion). If desired, the free propagator (2.24)
may also be replaced by a propagator with an ultra-violet cut-off, for example

(2.25)

In the course of the discussion, it will become clear that the validity of Eq. (2.22) is
not affected by such a modification independently of how large Λ is.

The Feynman rules for the finite L correlation functions are exactly the same as
in infinite volume except, of course, that the space-like components of the loop and
external momenta are restricted to the discrete values (2.7). This immediately
implies that, as asserted above, ΣL (p) converges to Σ (p) as L-» oo , because in this
limit, the sums over loop momenta can be replaced by integrals. The finite size
mass shift Am is therefore small for large L and the pole equation

r1==0 (2.26)

can be solved by expanding in powers of Am, which leads to

Λm=- Σ L ( β 2 w + i Σ L θ ϊ ) +0((Δm)2),

(2.27)
p = (im, 0,0,0).

With the help of some abstract graph theory summarized in Subsect. 2.3, it may
now be shown (Subsects. 2.5-2.7) that diagram by diagram one has

(2.28)

(2.29)

In the sum of all diagrams of a given order, Σ (p) and -Γ-Q Σ (P) vanish because of

the normalization condition (2.3), and it follows that

~ (2.30)
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to all orders in perturbation theory (here and below, m denotes some mass
satisfying the bound (2.23)).

The analysis of the L-dependence of the self-energy diagrams which leads to
Eqs. (2.28), (2.29) also allows us to identify the class of graphs, which contribute to
the leading exponential decays of ΣL (p) at large L. These graphs can be summed
up in closed form and one obtains

7=1

h = I

7=1

7=1

G(q)Γ(p, q, -p, -q) .

(2.32)

(2.33)

(2.34)

The graphical representation of these integrals is displayed in Fig. 4. The proof of
the mass shift formula (2.22) is now easily completed (Subsect. 2.7) by using
complex contour integration to extract the asymptotic behaviour of 71? J2, and /3

at large L. The analytic properties of the vertex functions, as far as they are needed
for this last step, are established to all orders in perturbation theory in Subsect. 2.4
(the discussion there also serves as a simple illustration of the abstract graph
theory developed in the following subsection).

2.3. Some Abstract Graph Theory. The proof of the statements made above
requires some control over the topology of an arbitrary Feynman diagram. To
facilitate this task, some notions and results from abstract graph theory are
summarized here (a fuller account can be found in Nakanishi's book [16]).

(a) Abstract Graphs. An (abstract) graph ̂  consists of a set of lines JSf, a non-empty
set of vertices i^ and two mappings i and / from 3f into i^ called incidence

(a) (b) (c)

Fig. 4a-c. Graphical representation of the integrals Ilt I2, and /3 (from left to right). The notation
is as in Fig. 2 and the momentum flowing into the diagrams is p
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relations4. For every line /e j£f, /(/) is called its initial vertex and /(/) its final
vertex. z(/) and /(/) are also referred to as the endpoints of/. It is possible that i(f)
coincides with /(/) in which case { is called a loop line.

(b) Paths. A path & in a graph ̂  connecting the vertices α φ b is a subset of JS? with
the property that there exists a sequence a = v1,v2,...,vN = b of pairwise different
vertices vk and a labelling /1? /2, . . ., /N_ t of the lines in ̂  such that vk, vk + 1 are the
endpoints of /k. Note that 0* is a set of lines and does not contain the vertices vk. In
particular, two paths intersect if and only if they share a common line.

A graph ^ is connected, if for any pair of vertices a φ b there exists a path 3P in ̂
connecting a and fo. In a connected graph, every vertex is an endpoint of some line
except in the case when there are no lines at all and a single vertex only. A general
graph always divides into a number of connected components in the obvious way.

(c) Loops. A loop ̂  in a graph ̂  is a non-empty subset of & with the property that
there exists a sequence ι?1?...,% of pairwise different vertices and a labelling
/1? . . ., tx of the lines in m such that vk, vk+l are the endpoints oftk(k = 1 , . . ., N — 1)
and vN9 v1 are the endpoints of £N. In particular, # = {/} is a loop if £ is a loop line.

It is possible to define an orientation on a loop # in .̂ This amounts to
assigning a number, denoted [# : /], to every line < e<β such that

if i(0 = /(O, (2.35)

if i = i or

On every loop, there are two orientations, which differ by an overall sign.
A first result of abstract graph theory we shall rely on later is the following

Lemma 2.1. Let a^bbe two vertices in a connected graph <& and #15 . . ., %?M a set of
(pairwise) disjoint loops. Then there exists a path 0* in $ connecting a and b such
that ^r\^j is either empty or a path in & for allj=l,...,M.

For a proof, see Appendix A.

(d) Trees. A tree T in a connected graph ^ is a maximal subset of <£ not containing
any loop in ̂ . For every tree T, we define T* to be the set of lines not belonging to
T. It may be shown that trees always exist and that the number of lines in T* is the
same for all trees (and equal to the number of independent loops in )̂. If T is a tree
and a φ b are two vertices of 0, there exists a unique path & C T connecting α and b.
Furthermore, for every line { e T*, there exists a unique loop in ,̂ which is
contained in Tu{/}. This loop necessarily passes through £.

(e) N-particle Irreducibility. By deleting a line f from a graph ,̂ a new graph
denoted by *£\{(} is obtained. Thus, the set of lines of the new graph is J?\{/}5 i

ts set

of vertices is i^ and the incidence relations i and / are inherited in the obvious way.
Similarly, a number f^...,tN of lines can be deleted. If ̂  is initially connected, the
mutilated graph ^ \ { f l 9 . . . 9 ί f N } in general decomposes into several connected
components. A graph ^ is called ]V-particle irreducible between two vertices

and ̂  are assumed to be finite
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α, ftef , if a and b always belong to the same connectivity component of
0\Kι, ...Xjv) no matter which lines ?f l 5 ...,/# are deleted.

N-particle irreducibility of a graph ^ implies a certain amount of analyticity of
Feynman integrals associated to ̂ . To establish analyticity domains, the following
result will be helpful.

Theorem 2.2. Suppose $ is a graph, which is N -particle irreducible between two of
its vertices a φ b. Then there exist N+l disjoint paths 0*i,...,0*N+1in& connecting
a and b.

For a proof see ref. [16, p. 37ff.].

(f) Z3 Gauge Fields on a Graph. As on regular lattices, it is possible to define gauge
fields on an abstract graph .̂ In particular, if the gauge group is Έ? (which will
later turn out to be the relevant choice), a gauge field on ̂  is an assignment of an
integer vector n(/) to every line ^eJδf. Another field n'(/) is then called gauge
equivalent to n(/), if

*0'GO) for all ^eJ^, (2.36)

where λ(v)9 vei^,is some field of integer vectors. Equation (2.36) is also referred to
as a gauge transformation. If ̂  is an oriented loop in ,̂ one can define a gauge
invariant quantity

W(<?,n)=ΣF?:<Πn(0, (2.37)
ι^

which is analogous to the Wilson loop in lattice gauge theories.
A useful way to label the gauge equivalence classes [n] of gauge fields on a

connected graph ̂  is the following. Choose some tree T in ̂  and for every class [n]
a representative field n(/) such that

nOO = 0 for all £eT. (2.38)

Fields satisfying (2.38) are said to be in the axial gauge (relative to T). It is trivial to
show that in every class [n] there exists a unique member n(/), which is in the axial
gauge. The class [n] can thus be characterized by the values assumed by this field
along T*.

(g) Simple Gauge Fields. As usual, gauge fields on a graph ,̂ which are gauge
equivalent to n(/) = 0, are referred to as pure gauge configurations. Another
important class of gauge fields are those which are gauge equivalent to a
configuration n(/) with n(/) = 0 for all lines *?e J§? except for one line /*, which is
contained in at least one loop in ̂  and where one has |n(/*)| = 1. These fields are
called simple.

A set of gauge independent simple fields can be constructed as follows. Define
5£c to be the set of lines / e 3P 9 which are contained in at least one loop in &. Two
lines in J5?c are called independent if there exists a loop in ,̂ which contains one of
them but not the other. Now choose a maximal set {£19...9£N} of pairwise
independent lines in JS?C and consider the 6N simple fields n(zf;j,e) (/= 1, ..., JV,
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ee£3, |e| = l) defined by

n(^y,e) = e if t = tj9

= 0 otherwise. (2.39)

Then, it is easy to show that these configurations are a complete list of gauge
independent simple fields.

(h) Feynman Diagrams and Abstract Graphs. Suppose 3) is a Feynman diagram
contributing to an n-point vertex function. After assigning some arbitrary
orientation to its lines, 3) defines, in a natural way, an abstract graph ^ consisting
of a set of vertices ̂ , a set of lines S£ and incidence relations i and /. We distinguish
between an abstract vertex v e 1^ and its coordinates in space-time, which will be
denoted by x(v)μ. A vertex of ̂  is called external, if one or more external momenta
are leaving (entering) the corresponding vertex in 2). Apart from this qualification,
all the vertices in 0 are treated on an equal footing independent of whether they
correspond to vertices of different type in 2. Similarly, lines describing the
propagation of different particles in 2 are not distinguished in 0.

2.4. Analyticity Properties of Vertex Functions. As already mentioned in
Subsect. 2.2, some analyticity properties of the 3- and 4-point vertex functions are
required for the proof of the mass shift formula (2.22). The analyticity domain
established here derives from the 1 -particle irreducibility of the vertex functions
and will be sufficiently large for our purposes.

Define a complex domain

D - {(p, q) e <C4 x C4|(Imp ± Im q)2 <4m2} . (2.40)

Then we have

Theorem 2.3. To all orders in perturbation theory, the vertex functions

Γ(p,q, -p, -q),

which are initially defined for (p, q) e R4 x R4, analytically extend to the whole
domain D.

Proof. We consider only the 3-point function, the proof being similar for the
4-point function.

Let 2 be a Feynman diagram contributing to the 3 -point vertex function and ̂
the associated abstract graph. ^ is 1 -particle irreducible between any two of its
vertices and has 3 external vertices, denoted α, b, c, where the external momenta p,
— q — 2 P? q~~2P leave the diagram 2.

Because $ is 1-particle irreducible between b and c, Theorem 2.2 applies and it
follows that there exist two disjoint paths ^t, ^2 connecting b and c (set
0>1=0>2 = ψ9]Sb = c). Suppose now we add an extra vertex z to ̂  and two extra lines
fto fc connecting z with b and c. Then, this augmented graph is 1 -particle
irreducible between a and z, and hence there are disjoint paths ̂ 3, ̂ 4 connecting
these vertices. Deleting fb and ίc again, we are left with disjoint paths ,̂, &c in ̂ ,
which connect a with b and c, respectively (̂ b = 0, if a = b, and .̂ = 0, if a — c).
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The paths ̂ 15 0>2 and 3P^ 2PC can be used to define a flow of external momentum
through the diagram Q) in such a way that the momenta k(t} carried by the lines f
in ^ satisfy

if

g if

otherwise.

In other words, the momentum carried by ̂  , ̂ 2 is 2 3 and the momentum flowing
through ^b, ̂ cis -^p.

When the diagram 2 is evaluated in momentum space, the total momentum
flowing through a line { is fc(/) + r(/), where r(7) is a combination of loop
momenta. Thus, as long as

for all lines { and all loop momenta, the Feynman integral associated to Q) is not
singular. Since r(f] is real, the condition

(Imfc(/))2<m2 for all ίe&,

is therefore sufficient to guarantee regularity. In view of Eq. (2.41), this criterion is
satisfied for (p, q) e D, thus proving the theorem. D

2.5. Large L Behaviour of Self-Energy Diagrams. To study the L-dependence of
Feynman diagrams at large L, it is useful to work in position space rather than
momentum space. Thus, the infinite volume propagator is

n)=ίτ^4yp*('»2 + PT1, (2.42)

and for finite L we have the well-known representation

AL(x;m)= Σ A(x + nL;m), n = (0,n). (2.43)
neZ3

This series converges rapidly, because A(χ 9nί) decays exponentially at large x. In a
position space Feynman integral, the vertex "factors" are homogeneous partial
differential operators with constant coefficients acting on the arguments of the
propagators in the diagram. An important point to note is that these differential
operators follow directly from the Lagrange density and are hence independent
of L.

Suppose now that 2 is a Feynman diagram contributing to ΣL (?) (the results

obtained below also hold, with appropriate modifications, for —^ ΣL (p) and

arbitrary π-point vertex functions at momenta with purely imaginary energy
components). The abstract graph ^ associated to 3) is 1 -particle irreducible
between any two of its vertices and has two external vertices, denoted a and fo,
where p flows in and out, respectively. It is possible that a and b coincide.
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In position space, the contribution /L(β] of the diagram 3) to ΣL (p) is an
integral of the general form

= Π ί ΛWVίβ^&)0-^^π^L(^(/W)-^(KO);m)L
veiT' R x L3 [ teg j (2.44)

where i^' = ̂ \{fe} and V is the product of the vertex "factors" as explained above.
The integrand in Eq. (2.44) is a periodic function of the space-like coordinates of
every vertex vei^' and the integration over x(ι ) is accordingly restricted to a
periodicity cell of volume L3. The external momentum p flowing through the
diagram is accounted for by the exponential factor in Eq. (2.44).

To obtain a more tractable expression, we now substitute the series (2.43) for
the propagators ΔL in Eq. (2.44). For every line f e ί£ , we then have a summation
variable n(/)e2£3 and, interchanging summations and integrations, /^(β)
becomes a sum of terms one for each Z3 gauge field configuration {n(^)} on <& (cf.
Subsect. 2.3). This summation can be split into two independent summations, one
over the gauge equivalence classes [n] of gauge fields and the other over the gauge
transformations λ(υ)9 vei^, with λ(fc) = 0. The latter can be combined with the
integrations over x(ί ), v e i^\ and one then obtains

n), (2.45)
[n]

ΛCM)= Π ί dMtOV{em(*(ft)0-^
veV R4 [ £e& J

(2.46)
Note that now the vertices are integrated over all of R4. /L(β, n) is therefore gauge
invariant and the summation over gauge equivalence classes in Eq. (2.45) is a well-
defined operation.

For π = 0, /L(3), n) is independent of L and equal to /(β\ the contribution of
the diagram 3) to the infinite volume self-energy X (p). Thus, for the contribution of
3) to the difference ΣL (p) — Σ (p)? we have

Λ(®)-/(®)= Σ A(^n). (2.47)
[n]Φ[0]

The leading large L behaviour of the integrals /L(β,τί) is described by the
following theorem. It basically asserts that /L(2, n) falls off exponentially for non-
trivial gauge fields n, the rate ε(^, n) being determined by the topology of the
diagram and the "strength" of the gauge field n (see Subsect. 2.6).

Theorem 2.4. At large L, we have

ln/L(0, n) - -mLε(^, n) + O(lnL) , (2.48)

where ε(&, n) is given by

ε(«,n)=minίx(fc)°-x(£i)0+ Σ W/(0)-*«0) + "OOlL (2-49)

the minimum being taken over all possible positions x(v) e 1R4 of the vertices

Proof. Using the heat kernel representation

oo / X2

A(x;m)= J df(4πί)~2exp- m2t+— -
o V 4ί
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substituting ί->ίL/2m, x(υ)-+Lx(v), and working out the vertex "factors," the
integral (2.46) assumes the general form

Λ0,«0= Π Jdte Π ί d^(v)U^^-e-mLR^^, (2.50)
tε& 0 veV R4 (/(£)

where 5 is some power, P and Q are polynomials and

The integral (2.50) is of the saddle point type and can be evaluated, for large L, by
expanding about the minima of R. This yields Eq. (2.48) with

Finally, Eq. (2.49) is obtained by performing the trivial minimization over the
variables t€ first. D

2.6. Properties of ε(&, n). The basic result is

Theorem 2.5. Suppose #1? . . ., %N is a set of (pairwise) disjoint loops in &. Then, we
have

8(S,n)^£ |W(^,,n)|, (2.51)
Z j = l

where W(^,n) denotes the Wilson loop (2.37).

Proof. According to Lemma 2.1, there exists a path 9 in ̂  connecting α and 6 such
that ̂ n^ is either empty or a path in 0 for all;' = 1, . . ., ΛΓ (set ̂  = 0 if α = ft). To
every line t e & assign a number [̂  : f\ which is 1 if the orientations of & and f
coincide, and - 1 otherwise. Thus, \βP : f] satisfies the same relations (2.35) as the
loop orientation numbers [# : /] and, in addition,

\9\r\ = \ if ί(0 = Λ ,

[^:ίTI=-l if

Next, for every subset y of lines, define

, n) = Q if 5^ = 0). It is then easy to prove that

if

2,0) if

In particular, we have

ε(0,n)^ Σ
7=1
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and (2.51) follows, if we can show that

)|, (2.52)
2

for all;-1,...,AT.
Suppose first that S>rf6j = 0, and let v1,..., VM be consecutive vertices along ̂ ,

Then,

where vM + 1= vί and ^ke
(Sj is the line with endpoints % vk + 1. By repeated

application of

(2.53)

one finds

which is an even stronger inequality than (2.52).
Now consider the case ^n^Φ0 and let vl9 ..., VM and (^ ...,/M be as above.

Since ̂ n^ is a path contained in <β ̂  it connects two vertices vr φ t;s. Thus, we have

v^-x(υr)
0 + Σ

k=l

Using (2.53), it follows that

g(<βj9 n) ̂  rnin {x° +

where w = (0, W(^7 , n)). Furthermore, applying the triangle inequality once more,
the bound

'J9 n)^ min {x°

is obtained, and the inequality (2.52) is now easily established by determining the
minimum over x° by differentiation. D

An easy consequence of Theorem 2.5 is

Theorem 2.6. // n z*5 not a pure gauge configuration, we have ε(&, n) ̂  j/3/2.

Proof. Let T be a tree in $ and choose the axial gauge for n (Subsect. 2.3). Because n
is not a pure gauge configuration, there exists a line t e T* such that n(^) φ 0. For
the loop <# with <β\{t} C T, we therefore have |W(«, n)| ̂  1, which by Theorem 2.5,

implies ε(»,π)^ j/3/2. D

The class of gauge fields n, which make the leading contribution to the sum
(2.47) at large L, is identified in the following

Theorem 2.7. Suppose n is not a pure gauge configuration and ε(^, n) < j/3/2. Then,
n is a simple gauge field.
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The proof of this theorem is complicated and is therefore divided into digestible
pieces. In what follows, we assume that n is a gauge field on ,̂ which is not a pure

gauge configuration and which satisfies ε(^, n) < j/3/2.

Lemma 2.8. Let The a tree in & and choose the axial gauge for n. Then there exists
an integer unit vector e and numbers s(/) e {0,1, — 1} such that n(ιf) = s(<f)e for all
SeT*.

Proof. Suppose *fe Γ* and let # be the loop in 0 with ^\{/}C T. Then,

and since ε(^5 n) < j/3/2, Theorem 2.5 implies

KOI e {0,1}.

Let

T*^,...,/*}, (2.54)

be a labelling of the lines in Γ* such that

|n( .̂)l = l for j =l,...,M,

= 0 otherwise .

Because n is not a pure gauge configuration, we have M ̂  1 .
If M= 1, there is nothing left to prove. On the other hand, if M^2, we must

show that

„(/.)= +!!</;) for all iJ£M9i*j. (2.56)

Let ζei be the loop passing through ({ with ^ΛK;} C T. Then, %n^y + 0, because

Theorem 2.5 would otherwise imply ε(0, n) Ξ> ]/3. #ΛKi}» ^AKjK and hence #i
are paths contained in T. We can therefore construct a composed loop ̂  by

^._(^.u^)\(%n^.). (2.57)

passes through /t , /j and no other /e T*. Thus,

where the sign depends on the relative orientation of % and ̂ ; in ̂ tj. Applying
Theorem 2.5 once more, we have

and since n(^) and n(^) are integer unit vectors, (2.56) follows. G

In the following discussion, T always denotes a tree in ̂  and n is assumed to be
in the axial gauge. Furthermore, the elements of T* are labelled as in Eqs. (2.54),
(2.55). For j= 1, ...,M, define vertices up Vj through

if n(^) = n(^),

i f n ! f . = - n / .
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It is also helpful to introduce the reduced graph

which contains the tree T and is hence connected. By definition, n(/) = 0 for all lines
ting.

Lemma 2.9. If M^2, the following statements hold.
(1) u^VjforalliJ^M.
(2) Suppose 0*1,0*2 are paths in $ connecting uί9 ΌI and u2, v2, respectively.

Then, ^1n^>

2Φ0.
(3) Suppose 0*1,0*2 are paths in $ connecting ul7 v2 and u2, vί9 respectively.

Then, ̂

Proof. (1) As above, let % be the loop passing through /,- with
Suppose u—Vi for some i. Then, ̂  is a loop line and ̂ n^—0 for all φί. Since

M^2, such j exist and Theorem 2.5 implies ε(^,n)Ξ> j/3, which contradicts our
assumptions. Thus, ut φ vt for all i.

Suppose now that u{ = Vj for some i Φj. Then, the composed loop ̂ tj (Eq. (2.57))
passes through ({ and f j in such a way that |W(^7 , n)| = 2, which also leads to

ε(0,n)^ j/3. Thus, ^φ^ for all iφj.
(2) If ̂  and ̂ 2 were disjoint, the loops ̂ u^} and ̂ 2u{/2} would also be

disjoint, and hence ε(^,n)^]/3 by Theorem 2.5, which is a contradiction.
(3) We again assume ̂  n^2 = 0 and show that this leads to a contradiction. If

^ and &Ί do not cross (i.e. if there is no vertex, which is an endpoint of a line in 0>±
and of another line in ̂ 2), the set # = ̂  u^2u{/ 1? /2} is a loop in ̂ . Furthermore,
the orientations of (^ and f2 in ^ are such that |W(^5n)| = 2, and hence

ε(^, n) ̂  j/3, which is a contradiction.
If ̂  and ̂ 2 cross, there exists a vertex z, which is an endpoint of some lines in

!̂ and ̂ 2. This vertex divides ^ into two paths ^(i^ z) and ^(z:v2)
connecting w l 5 z and z, t;2, respectively (it is possible that z coincides with w l 5 for
example, in which case we set ̂ (t/t : z) = 0). Similarly, ̂ 2 divides into &2(

U2 : z)
and ^2(z : ΌI). Because ̂  and 0*2 are disjoint, so are the sets

JSfi itself may not be a path, but it contains a path Jt connecting MJ and vv (note
that JSfj Φ0, because UI^ΌI by (1)). Similarly, there is a path Ά2 contained in JS?2J

which connects w2 and ι;2. Since ΆI c\Ά2 — 0, there is a contradiction with (2), which
has already been established above. G

Lemma 2.10. // M ̂  2, there exists a line / in $ such that Φ\{f} decomposes into two
disconnected components, one, denoted $u, containing the vertices w l 5 u2 and the
other, $v, containing v±,v2.

Proof. We assume that such a line / does not exist and derive a contradiction.
Suppose we add 2 extra vertices U,Vto$ and 4 extra lines connecting U with w1 ?

u2 and V with vί9 v2. The absence of /implies that this enlarged graph is 1-particle
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irreducible between U and V. Thus, by Theorem 2.2 there exist two disjoint paths
^1? $2 connecting U and V. Deleting the extra vertices and lines again, ̂  and ̂ 2

are reduced to some disjoint paths ^1? ̂ 2 i
n ̂  each °f them connecting some u{

with some Vj with ij e {1, 2} (note that because of (1) in Lemma 2.9, the sets ̂ 15 ̂ 2

are not empty). Necessarily, the situation is then as in (2) or (3) of Lemma 2.9 so that
= 0 is a contradiction. D

The proof of Theorem 2.7 is now easy to complete. Choosing the tree T ana all
the other notation as above, we need only consider the case M ̂  2, because for
M= 1, Eq. (2.55) already implies that n is simple. Let / be the line in &, whose
existence is guaranteed by Lemma 2.10. / is an element of T (^\{/} would
otherwise be connected). Thus, a new tree T' can be defined through

Relative to this tree, n is not in the axial gauge, because n^f^ΦO. Set

λ(w) = n^Ί) if w is a vertex of $u ,

λ(w) = 0 if w is a vertex of <&v ,

and let n' be the gauge transform of n by λ (cp. Eq. (2.36)). It is trivial to show that n'
is in the axial gauge relative to T'. Furthermore, we also have n'(^2) = 0 and
nx(/7 ) = 0 for all j = M+ 1, ..., N, because these latter lines belong either to $u

or to <&v. The number M' of elements { of T7* with vί(β ) φ 0 is therefore strictly
smaller than M.

The procedure leading from T to T' can now be iterated and a series of trees is
obtained with decreasing numbers of lines /, where n(/) Φ 0. After finitely many
iterations, this number will have decreased to 1 and n is thus found to be a simple
gauge field. D

2.7. Proof of the Mass Shift Formula (Final Steps). As already explained in
Subsect. 2.2, the proof of the mass shift formula (2.22) proceeds via Eq. (2.31), a
relation, which we can now prove to all orders of the Feynman diagram expansion
using the results on the large L behaviour of self-energy Feynman integrals
obtained above. Taken together, these results imply

_
, n) = θe 2 if n is not pure gauge , (2.60)

= Σ ΛCM) + 0(ίr*
L) (2.61)

[n] simple

for all diagrams 3), in particular, Eq. (2.28) (and, similarly, Eq. (2.29)) follows
immediately. After summing over all diagrams, Eq. (2.61) becomes

ΣL (P) = Σ Σ Λ(^, n) + 0(e~*L) , (2.62)
3) [n] simple

where Σ(p) = 0 has been used. Now recall that the simple classes [n] can be
labelled by the set of fields (2.39) so that Eq. (2.62) may be rewritten in the form

ΣL (P) = Σ Σ Λ(0, 0 + 0(e-*L] , (2.63)
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where f runs over all lines in 2, which are contained in at least one loop and which
are independent of each other (i.e. lines carrying the same momentum for all
configurations of loop momenta are counted as one independent line). In
momentum space, /L(β,t) is exactly equal to the infinite volume Feynman
integral associated to ®, except that the integrand is multiplied by the extra factor

3

2 X cos(/?yL), p: momentum flowing through t. (2.64)
J = l

These integrals are thus exactly of the type shown in Fig. 4 and, without great
difficulties, one can prove that in fact the series (2.63) matches term by term with
the Feynman diagram expansion of the right-hand side of Eq. (2.31).

Having established the basic relation (2.31), we now proceed to evaluate the
integrals /1? /2, and 73 for large L using complex contour integration. Consider first
the simplest case, the integral 73. Due to rotational invariance, it can be written as

,-p,-q). (2.65)

By Theorem 2.3, Γ(p, q, —p,—q) has no singularities in the complex ς^ -plane for

0^lmqί <m|/3 (and real qQ, q2, g3). The propagator G(q) is also analytic in this
domain except for the meson pole at

4LL = («2>«3) (2 66)

If we now shift the q1 integration path from the real line to the line Imq1 = mJ/7/2,
one obtains two terms, one from the meson pole (2.66) and the other from the
integral along the new integration path. The latter contribution is more rapidly
decaying at large L than the error term in Eq. (2.31) and is therefore negligible.
Thus, we have

'3 = 6 ί .e-W Γ&q, -p, -q) + 0(e-^), (2.61)
B

where ̂  is given by Eq. (2.66) and B is the ball

(2.68)

(only when (g0, qj e B is the meson pole inside the strip 0 ̂  Im^ ̂  m|/7/2). Note
that q is now on the meson mass shell and that, contrary to the oscillatory integral
(2.65), the representation (2.67) immediately reveals what the large L behaviour of
/3 is.

The integral J2 can be treated in exactly the same way as J3 and one obtains

/2 = 6 f d * * L . <Γ'"'LG(0)Γ(g, -<?,Q)Γ(p, -p,Q) + 0(g-*L). (2.69)

The integral J l 5 on the other hand, is more complicated. There are two meson poles
in this case located at

(2.70)
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They are not purely imaginary and happen to coincide for ^o^O, which is a
potential source of difficulty below. To avoid it, we first deform the q0 integration
path around q0 = 0 into an infinitesimal half-circle in the complex lower half-plane.
Then, noting

if (q

'• > m 1/3/2 otherwise,

the shift of the q^ integration path can be performed as above and one obtains

~™L), (2.72)

. (2.73)
^gί

The integrals Jjf are not yet of the desired saddle point type (as Eq. (2.67), for
example) and further contour shifting is needed. Consider first the integral /^. At
fixed q±9 q2

λ <|m2, the q0 integration path is along the real line from point A to
point D in Fig. 5, A and D being characterized by

«o=±l/^2-9ί". (2.74)

We now deform this integration path to the curve ABCD shown in Fig. 5a, which is
possible because qf and the other entries in the integrand are analytic inside the
rectangle ABCD, as one may easily show using Theorem 2.3. Note that the meson
pole of the propagator in the integrand is at q0 = 0, which is outside the integration
contour. After the deformation of the integration path, If is a sum of 3 integrals
corresponding to the straight lines AB, BC, and CD. The contribution of AB and

CD is however negligible at large L, because Imqf ^>m]/3/2 along these lines. In
other words, the result is

where q1 is given by Eq.(2.66) (we have replaced q0 byq0-^ m, q0 real, along BC
\ 2

The integral 1^ can be treated similarly, the integration contour being
displayed in Fig. 5b. The only difference is that now we also get a contribution from
the meson pole at qQ = 0 so that altogether we have

|g;| 2m

+6 ί r?^9?ίΊe"'m(2π) 2|<5i1|

(2.76)
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lmqn

v y

V
-'/2m

(a)

lmqn

(b)

Fig. 5a and b. Integration contours in the complex g0-plane, (a) for the calculation of /J", (b) for /["

where ̂  is given by Eq. (2.66), λ by Eq. (2.20) and

(2.77)

If we now add up all the integrals, the integrands combine to the forward scattering
amplitude F(v) defined in Subsect. 2.1, and we end up with

2m

,(2π)32|βl

(2.78)
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In this equation, we may just as well integrate over all real q0 and q±, the difference
being of the same order as the error term at large L. Noting

we finally get

which, in view of Eq. (2.30), agrees with the mass shift formula (2.22) and thus
concludes the proof of this relation.

3. Volume Dependence of Bound State Masses

3.1. The N on-Relativistic Case. For the physical interpretation of the relativistic
formulae derived later, it is useful to first consider the case of two non-relativistic
bosons ("mesons") of mass m, which form a bound state of mass

mB = 2m-EB, EB>0, (3.1)

and spin 0 (the mesons are also assumed to be spinless). The hamiltonian H
describing this system is an operator acting on scalar wave functions φ(x, y), which
are invariant under an interchange of the particle coordinates x and y. Explicitly,
we choose 1H to be of the form

K=-^n(Ax + Λy) + V(x-y), (3.2)

where Ax, Δy denote the Laplace operators with respect to x and y. The potential V
is assumed to be square integrable, rotationally symmetric and of finite range,

7(z) = 0 for |z |>Λ. (3.3)

These assumptions are made for simplicity and could easily be relaxed without
affecting the main results obtained below.

In infinite volume and at zero total momentum, the bound state wave function
ψB depends only on the distance r = |x — y | of the bound particles. It satisfies the
Schrodinger equation

(3.4)

and falls off exponentially at large r:

ψB(r) = Ae-^ (r>R)9 (3.5)

κ = ]/mEB . (3.6)

As is well-known, bound states give rise to poles in the analytically continued
forward elastic meson scattering amplitude Fnr(E), which is defined in terms of the
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full (non-relativistic) amplitude ^(p', q'|p, q) through5

Fnr(£) = Tw(p, -p|p, -p), £=^-. (3.7)

If we choose the normalization

fd3z|Vj,(|z|)|2 = l , (3.8)

the residue of Fnr(E) at E= — EB is given by

„ ™ 32π2,

m
(3.9)

i.e. up to an irrelevant phase, the behaviour oίψB at large r is entirely determined
by spectral data.

Suppose now that the mesons are enclosed in a box of size L and periodic
boundary conditions. Then, the corresponding wave functions ψ(x, y) are periodic
in both coordinates x, y and the interaction potential V has to be replaced by

VL(*)= Σ V(z + nL) (3.10)
neZ3

to account for the interactions of a meson with the mirror images of its partner.
Note that because V is of finite range, there are only a finite number of non-zero
terms in the series (3.10) (at most one if L>2K).

For large L, the finite volume Schrδdinger equation

-£φ, (3.11)

HL=-—- Cdx + Λv)+7L(x- y), (3.12)
2m

has a solution with E~EB and φ ~ ψB. An asymptotic formula for the correspond-
ing mass shift . .

Λγyi — Ϊ7 ϊv / 'Λ 1 ^ IΔmB — £LIB EJ ^ J . l J j

can be derived as follows. Define

ΨoΦ^ Σ VB(!Z + n^l)5 z = x — y. (3.14)

φ0 is periodic and hence an admissable finite volume wave function. Furthermore,

HLφ0 = — EBιp0 + η, (3.15)

*?(z)— Σ F(z + nL)φB(|z + n/L|) = 0(e~κL). (3.16)

Thus, for large L, ψ0 is almost a solution of the Schrδdinger equation, and, with an
appropriate normalization of the true solution φ, one can show that

κL). (3.17)

5 The sign and normalization of Tnr is chosen such that the non-relativistic optical theorem

reads lmFnr(E) = — yE/m σiot(E). With this convention, the Born approximation is given by
W, - P'lP, - P) = P(P' - P) + ?(P' + P), where F(k) = J d3z e ~ ""* F(z)
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Taking the scalar product of ψ with Eq. (3.15) then leads to

AmB= Σ ^d3zψB(\z\rV(z)ψB(\z + nL\) + 0(e-^2κL). (3.18)
W = l

Finally, using Eqs. (3.3)-(3.6)? the integral can be evaluated and the result

-κL

AmB= -24π\A\2—Γ+0(e-^κL) (3.19)
mJLt

is obtained.
In view of the decay properties of the bound state wave function ψ& it is no

surprise that a formula like (3.19) holds. Still, it is remarkable that the detailed form
of the potential V is irrelevant to the final result, which only refers to the particle
masses m, mB and the residue of the forward elastic scattering amplitude Fnr at the
bound state pole (cf. Eqs. (3.6), (3.9)). Another interesting feature of Eq. (3.19) is that
ΔmB is always negative, i.e. S-wave bound states get lighter when squeezed.

3.2. Calculation of AmB in Quantum Field Theory. The class of quantum field
theories considered here is similar to the one discussed in Sect. 2, except that
now we assume that the spectrum of stable particles contains an additional
particle with mass mβ<2ra, which can decay virtually into two mesons. As far
as the mesons are concerned, the notation of Subsect. 2.1 is taken over. For the
bound state, we assume that there is a (euclidean) interpolating field χ norma-
lized such that

74

(3 2°)

(3.21)

Σ Z ( P ) = Σ * ( P ) = 0 for P

2=-ml (3.22)

Vertex functions of r meson fields φ and s bound state fields χ are denoted by
Γ(p1? . . ., pr fe1? . . ., ks) (cp. Fig. 6). For simplicity, we shall furthermore assume that
the transformation

Φ-+-Φ, χ-»χ (3.23)
is a symmetry of the theory so that

Γ(P l,. . .,pP;fc 1 > . . . Jfc s) = 0 for r odd, <^(x)χ(0)> = 0. (3.24)

(a) (b)

Fig. 6a and b. Graphical symbols used for (a) the full bound state propagator Gx(p), and (b) the
mixed 3-point vertex function Γ(p, q; k)
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Fig. 7. Bound state exchange diagrams giving rise to poles in the meson scattering amplitude

In particular, the coupling constant λ vanishes and the bound state has no virtual
decays into an odd number of mesons.

As in the non-relativistic case, the bound state gives rise to poles in the forward
elastic meson scattering amplitude F(v). They stem from the skeleton diagrams of
Fig. 7 and are located at

v=±vB9 vB=—(m2-2m2). (3.25)

The associated residue is

lim (v2-vf)F(v)=-%2, (3.26)
v-»±vB m

where the <^χ-coupling constant g is defined by

g = Γ ( p ί q ; k ) ί p + q + k = Q, p2 = qι=-m

2, k2=-m2. (3.27)

In finite volume, the meson mass shift Am can be calculated as in the simple
scalar theories considered in Sect. 2. The only difference is that now the
Feynman diagrams also involve bound state propagators and the basic ex-
pression (2.31) for the self-energy ΣL(p) has to be modified accordingly. If we
restrict ourselves to the case of small binding energies,

|/2m<mβ<2m, (3.28)

the result of the Feynman diagram analysis is

ΣL (?) = /! + i(//2 + /3) + 0(e-*L), (3.29)

where m and 73 are as before (Eqs. (2.23), (2.34)) and /'19 Γ2 are the integrals
graphically represented by Fig. 8a, b. Evaluating the integrals as in Subsect. 2.7,
one finds

Λ m = - 2 J dye-*iίr^LF(iy) + 0(e-*L)9 (3.30)
1 oπ mL - oo

which is identical with Eq. (2.22). In other words, the presence of the bound state
has no influence on the leading finite size mass shift of the meson, in particular,

Δm = 0(e~mL) (3.31)

for all mB in the range (3.28).
We now proceed to calculate the bound state mass shift AmB. As for the mesons,

one shows that

B) + 0((ΔmB)
2) , (3.32)
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(a) (b)

(c)

Fig. 8a-c. Graphical representation of the integrals /i, Γ2 contributing to ΣL (P) (diagrams (a) and
(b)). Diagram (c) represents the integral 1\, which is the leading term in the large L expansion of

where Σ£ is the finite volume self-energy of the χ-field and

pB = (imB9 0,0,0). (3.33)

Summing up the leading Feynman diagrams contributing to Σί (PB)> we have

-™BL), (3.34)

the integral l\ being graphically represented by the skeleton diagram shown in
Fig. 8c. Provided mB is in the interval (3.28), the error term in Eq. (3.34) is given by

(3.35)

μ = j/m2_ιm2 (3.36)

Finally, evaluating l\ for large L by complex contour integration, we end up with

ΛmB=- J9 2T e^L + 0(e-^L) (3.37)
\6πmBL

(the contribution of the φχ forward scattering amplitude is smaller than the error
term). In quantum field theory, the calculation of ΔmB is thus very similar to the
calculation of the meson mass shift Am, and it is quite clear that the physical origin
of the size dependence is the same in both cases.
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As far as the dependence on L is concerned, Eq. (3.37) coincides with the non-
relativistic formula (3.19). We are hence led to interpret the length μ"1 as the
relativistic expression for the width of bound state wave function. An important
point to note is that if mB is very close to the elastic threshold, μ~1 is large and finite
size effects on the binding energy are only slowly going to zero as L increases, in
particular, for m~i<L<μ~ί, such a wide bound state is likely to be misinter-
preted as a stationary scattering state (cf. ref. [11]).

In the limit of heavy, weakly bound mesons, one expects that the relativistic
formula (3.37) reduces to the non-relativistic expression (3.19). This is in fact the
case, because in this limit we have

(3.38)

, (3.39)

where the second relation has been obtained using Eqs. (3.9), (3.26) and
F= —4m2Fnr to account for the different normalizations of the relativistic and
non-relativistic scattering amplitudes. Note that since the proof of the quantum
mechanical formula did not rely on perturbation theory (and could in fact be made
entirely rigorous using Green function methods), the correctness of the non-
relativistic limit provides a non-trivial check on our quantum field theory
calculations.

4. Concluding Remarks

The most important qualitative result of the analysis presented in this paper is that
finite size effects on the stable particle masses fall off exponentially with a rate,
which depends on the spectrum of light particles in the infinite volume theory. An
asymptotically precise description of the size dependence of the masses is provided
by the apparently universal formulae proved in Sects. 2, 3. These relations are
obviously useful to control finite size effects in numerical studies of quantum field
theories on a lattice (e.g. ref. [7]) and may also serve to estimate the strength of
particle interactions at low energies [9,10].

Compared to the simplicity of the finite size mass shift formulae (2.22) and
(3.37), the proof given in this paper appears to be unduly complicated. However, it
must be appreciated that a proof of Eq. (2.22) requires to control correlation
functions at large times (to project on the mass shell) and simultaneously at large
space-like distances. Simple transfer matrix methods therefore do not apply. An
axiomatic approach does not seem promising either, because the condition that
"the parameters in the Lagrangian are independent of the volume" is difficult to
account for.

With little effort, the results obtained in this paper can be extended in several
directions.

(a) To include particles with spin, one assumes the existence of appropriate
(many component) interpolating fields and then follows the steps outlined in
Subsect. 2.2. A subtle point to be observed is that the finite volume breaks the full
rotational symmetry down to the cubic group &. Since the irreducible represen-
tations of SU(2) with spin s ̂  2 are reducible with respect to &, the energy of a
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particle at rest in general depends on the direction of its spin relative to the box.
The corresponding set of finite size mass shifts is obtained by diagonalizing the
finite L self-energy of the associated field, which is a non-trivial matrix in spin space
in these cases.

(b) If there are several light particles in the theory, their contributions to the
mass shifts must be added. In some cases, this leads to unexpectedly large finite size
effects. For example, in the two-dimensional 0(n) non-linear σ-model, the theory
converges to a massive free field theory as rc->oo, but finite size effects survive in
this limit, because there are n light particles.

(c) The methods of this paper can also be used to calculate the volume
dependence of the masses of heavy particles, which are stabilized by conserved
quantum numbers (such as baryon number). Unstable particles, on the other hand,
cannot be treated this way, because the wave function of a resonance has an only
slowly decaying scattering wave component and is hence expected to be more
sensitive to the boundary conditions than a bound state wave function.

A calculation of the next to leading terms in the large L expansion of the stable
particle masses would be a very non-trivial extension of the present work. Not only
would one have to master the topology of Feynman diagrams to a higher degree
than was needed to derive the leading terms, but a more complete knowledge of the
analyticity properties of the vertex functions would also be required to be able to
deform momentum integration paths sufficiently far away from the real axis (in the
last step of the proof of the mass shift formula). Still, that the finite volume vertex
functions could be written as an infinite series of skeleton diagrams of the type
shown in Fig. 4, remains an attractive and logical possibility, which will perhaps be
realized one day using more elegant methods.

Appendix A: Proof of Lemma 2.1

Let Ά be an arbitrary path in <g. We say that Ά is a good path, if Jn^ is either
empty or a path in ̂  for all j= 1, ...,M. Furthermore, two vertices u,vei^ are
called nearest neighbors, if u φ v and if there exists a line £, whose endpoints are u
and v.

Define i^r to be the set of all vertices, which can be connected to a by a good
path in ̂ . It is obvious that all the nearest neighbors of a are in i^'. Our goal is to
show that also b E i^f. Since ̂  is connected, it is sufficient to prove that w e Y' if w
is a nearest neighbor of some vei^' (and wφα).

Thus, let SL be a good path connecting α and v, w a nearest neighbor of v (w φ a)
and { a line with endpoints v, w. Furthermore, let a = vί9 v2, ...,VN = V be
consecutive vertices along Ά and 4e^ the line with endpoints
vk,vk+1(k=\,...,JV—1). Then the following cases can be distinguished:

a) w = vκ for some K^2.
In this case, J' = {yl9 . . . ,«f x _ 1 } is a good path connecting a and w.
b) vvφz; f e for all k and f φ ( S j for all;.
In this case, J' = Ju{/} is a good path connecting a and w.
c) wή=vk for all fe and f e Ήj for some J.
In this case, there exists a minimal K such that vκ is an endpoint of some line in

<&j. IϊK=l, set J' = 0 and otherwise J' = {/1? ...,/x_1}. Furthermore, let £"c <gj
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be one of the paths connecting vκ and w. Then, J'u j2" is a path in ̂  connecting
a and w. It is good path, because 2! is either empty or a good path, and because
«y\2' = 0, «y\2" = 0 for all ΦJ.

Thus, in all cases we have found a good path connecting α and w, and hence
w e i^' as was to be shown.
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