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Abstract. Following 'tHooft we extend the Borel sum and the Watson-
Nevanlinna criterion by allowing distributional transforms. This enables us to
prove that the characteristic function of the measure of any g~2Φ4' finite lattice
field is the sum of a power series expansion obtained by fixing exponentially
small terms in the coefficients. The same result is obtained for the trace of the
double well semigroup approximated by the nth order Trotter formula.

1. Introduction

Borel summability has by now become an important tool largely applied in many
fields of mathematical physics (e.g. see [7,17]). On the other hand it has also
become clear that certain problems do not fulfill all the requirements for Borel
summability. The simplest and best known counterexample is probably the double
well quantum mechanical model with Hamiltonian: p2 + x2(l —gx)2 [3, 8]. Other
"non-BoreΓ series are expected in quantum field theory because of the presence of
"renormalons" [12]. The lack of Borel summability of a real divergent series is
evident when the coefficients have asymptotically constant sign [3,17].

A few years ago 'tHooft showed [10] that a simplified double well model is
Borel summable only in some generalized sense, allowing distributions in the
transform. Following 't Hooft we define here a class of distributional Borel sums
extending the ordinary Borel-Le Roy ones, and correspondingly we extend the
Watson-Nevanlinna criterion. This way we prove that the characteristic function
of the measure of a g~2Φ4 finite volume field is the sum of its power series
expansion obtained by fixing exponentially small terms in the coefficients. More
precisely the characteristic functions have the following asymptotic expansions:

C(z,g)~Σak(z,g-2)g\ where ak(z,y) = £ ak

m{z)e'™\
k m = 0

and C(z, y,g)~Σ %<Λ l)gk is the Borel sum of the asymptotic series for small g and
k

any positive y, in particular for y = g~2*
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The same results are given for the trace of the double well semigroup
approximated by the Trotter nth order formula. We also notice that the original
't Hooft model coincides with the first order approximant.

Other interesting problems, such as the Lo Surdo-Stark effect resonances, the
double well eigenvalues and the eigenvalues of the ionized molecule H^", will be
treated elsewhere. The Lo Surdo-Stark effect resonances are known to be limits of
Borel sums from complex values to the real axis. We conjecture that the energy and
the width of the resonances are directly given by the sum in the real direction.

The criterion is proved following the line of the classical one by Nevanlinna
and Watson [9, 13, 18] which is thus extended to the distributional case. On the
other hand, in this case the assumptions on the function cannot be reduced to the
traditional ones, and the definition of the sum itself involves a subtle discussion on
properties of distributions. The method of sum directly defines, besides the sum
itself, an independent function, called discontinuity, whose asymptotic expansion
is zero to all orders.

In Sect. 2 we define the distributional Borel-Le Roy sums of order (α, β) and we
prove the corresponding criteria, extending the classical one by Nevanlinna and
Watson, for ot = p/q (p,qe¥S) and β = 1.

In Sect. 3 these criteria are applied to finite volume Φ4 lattice fields and to the
nth order Trotter approximants for the trace of the semigroup of the double well
Hamiltonian.

2. Distributional Borel Summability

We can define a distributional Borel summability in the following way.
00

Definition 1. Let ρ(t)dt be a measure with finite positive moments μk = J tkρ(t)dt.
o

We say that the formal series Y^akz
k(ake

1R) is μ-ρ-Borel summable (in the
distributional sense) if: k

00

(1) B(i)= Σ {ajμk)tk converges in some disk of radius d>0;
(2) B(t) admits an analytic continuation to the intersection of some neighbour-

hood of R + with<C+ = {ίe<C/Im£>0};

(3) f(z) = z~ι] PP(B(t))ρ(t/z)dt,wherePP(B(t)) = (1/2)(B(t + zO)+fl(t + iθ)).
o

Then the distribution PP(B(t)) is called the "μ — ρ-Borel transform" of the
series Σ auzk a n d f(z) is its "μ — ρ-Borel sum."

k

Examples, (a) μfe = fe!, ρ ^ ^ e " 1 ; (b) μk = Γ(uk + β), ρ ^ ^ α " 1 e x p ( - ί 1 / α ) r 1+^/α

[distributional Borel-Le Roy summability of order (α,/?)].
Of course the ordinary Borel summability (with αfce!R) is included in

Definition 1: (2) is a fortiori verified if B(i) has an analytic continuation to some
neighbourhood of 1R+.
Remark 1. We notice that the class of distributions coinciding with Σ,(ak/μk)tk

when localized in (~d,d) and defined as a boundary value of B(u) is:*

. (2.1)
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Hence, if we consider $-,(£) = Re&df) + ilm& At), we have Re^ ; ( ί ) = ̂ i/?(ί) for
all λ, while Im J*A(ί) is the analytic continuation of lm&λ(t), when localized in
( — d,d), if and only if λ = 1/2, i.e. ImJ*^(ί) = 0. (It is known that the concept of
analytic continuation can be extended to distributions, although this notion can be
applied only to distributions which are represented by analytic functions [4].)

In this sense we can say that the distribution PP(B(t)) = ̂ 1/2(t) is uniquely
determined by the Taylor expansion and by the analytic continuation procedure.

00

We also have: f(z) = (φ(z) + φ(z))/2, where φ(z) = z~1 J B(t + iO)ρ(t/z)dt is
oo 0

called "the upper sum," and φ(z) = z ι \ B(t + iO) ρ(t/z)dt "the lower sum" of the
series. °

It is interesting to notice that with this method we can single out a unique
function with zero asymptotic power series expansion, that is the "discontinuity"

00

o

In the case μk = k\ we can characterize a large class of functions which have
Borel summable power series expansions in the distributional sense.

Theorem 1. Let f(z) be bounded and analytic in CR = {z/Rez~ 1>R~1} and let f(z)
= (φ(z) + φ(z))/2, with φ(z) analytic in CR and such that

φ(z)-
N-ί

Scoφ)NN\\z\N (2.2)

uniformly in CRfE = {zeCR/&rgz^i — π/2 + ε}, for any ε>0. Then the series
oo

X (ak/kl)uk is convergent for small \u\ and it admits an analytic continuation B(u)
k = 0

= B!(M) +JB 2(M), where Bx(u) is analytic in S* = {w/dist(H, R + ) < σ ~ 1 } , and B2(u) is
analytic in iŜ  = {w/(Imtί>0, Rew>— σ" 1 ) or \u\<σ~1} for some σ > 0 . B(u)
satisfies

\B{t + iηo)\^A'{ηoy
xexV{tlR) (2.3)

uniformly for t>0, for any η0 such that 0<ηo<σ~x.
Setting PP(B(ή) = (B(t + ΐθ) 4- B(t + iO))/2, /(z) admits the integral

representation:
r \ l z d t , zeCR. (2.4)

o
oo

Conversely, if B{u)= X (ak/kl)uk is convergent for | w | < σ - 1 and admits the

decomposition B(u) = Bί(u)-\~B2(u) with the above quoted properties, then the
00

function defined by (2.4) is real-analytic in CR and φ(z) = z~x j B(t + ίO)e~t/zdt is
analytic and satisfies (2.2) in CR. °
Proof, Without loss of generality, in (2.2) we may assume c(ε) = ε~1 if 0 < ε
<min(π/2, σ~1) and c(ε) = σ otherwise (see Remark 2 and Proposition 2). By (2.2)
the function φ(z) defined by

U(z), z e C
ψy } \φ(z)9 zeC
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satisfies
J V - 1

f ( z ) - Σ akz
k\
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(2.5)

uniformly in CR.
For 0 < ί ^ τ , η>0, we consider the following expression independent of r,

0<r<R:
B{t + iηt)- Σ

k = 0

N

k = 0

[by choosing r = τ/N, and noting that φ(z) — φ(z) is zero for Imz > 0 and is equal to

= ( 2 π O - 1 f e i t + i η t ) / z φ { z ) - Σ a k z k I z '
Rez~ι=N/τ [_ k = 0 J

+ (2πO
Γτ/N

(2.6)

where Γτ/iv = {z/Rez~1 = (τ/iV)~1,Imz^O} and R^, K^ are defined by the first
and the second integral respectively.

Now, for 0 < ί ^ τ , ^ = 0, (2.5) implies the following estimates:

1, if m<N, (2.7)

if ffί^ (2.8)

By (2.7) and (2.8):

Σ (i;
m = l

\ - i

(2.9)
for some fixed τ<σ~ie~η~2.

In order to bound Rffiit + ifyί) in (2.6), we can replace Γτ/N by the path given by
an arc of the circle tangent in 0 to the line Imz = tan(π/2 + ε)Rez and containing
the real point τ/AΓ: it is the path from 0 to τ/N which lies in the lower half-plane,
that is

(2.10)
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0 < β < π / 2 . Thus , choosing ε = arc t a n (77),

(2πiy1 ί Qxp(ζ-ί\t + ίηt\)lφ(z)-φ(z)']^1dz9 (2.11)
Γτ/N,ε

where C = e~i£z. Since RQζ-1={τ/(Ncosε)yίSN/τ, by (2.2) we have

\Rtf\t + iηt)\ ̂  c5 exp(JV(l + η2)1/2 tτ ~*) c(ε)NN \(τ/(N cose))", (2.12)

which tends to zero as JV-» + 00, if τ is sufficiently small, for fixed η>0.
Therefore, for any η>0 there are small values of t such that RN(t + iηt)-*0 as

iV->oo. Hence the integral in (2.6) which defines B(t + iηt) is uniquely determined
00

by the convergent expansion Σ aku
k(k\)~ \ \u\ < σ~*. Let us now show that it can

k = 0

be analytically continued to SlnS2.. Indeed, in the expression

dm

Γ m Ί
> ψ(z)- Σ akz

k \ dz (2.13)

(0 < r < R), we can separate the integral along the upper half-circle {z/Re z~ι = r~1,
Imz > 0} and the integral along the lower half-circle. The former, when considered
for u = ί>0, is bounded by c6e

t/Rσm+ί(m+ 1)! by means of (2.2). So it defines a
convergent power series expansion near any t > 0, and a unique analytic function
B^ύ) in the strip Si = {u/dist(u, R + ) < σ~x}. The second integral, when considered
for u = t + iηt(t>0, η>0) can be performed on the equivalent path Γr ε defined in
(2.10), where again ε = arctan^. Hence, by (2.2), it is bounded by
cΊc(ε)m+1(m+l)\Qxp(tR~1(l+η2)112), and this second integral is the nΐh

derivative of a function B2(u) analytic at least for Rew> — σ"1, Imw>0. The sum
Bin) of such two functions is analytic in SlnS2?.

Setting m = 0 and η = ηot~
ί in the second bound (with η0 sufficiently small),

B(u) satisfies (2.3) along any half-line Imu = η0 in SlnS2. as Rew-»oo. Hence, for
Rez~1>R~1, z~ι J e~ulzB(u)du is absolutely convergent and independent of

y(rio)

y(ηo\ if y(η0) is any path in Sin Si with endpoints uί=0 and u2 = ίη0 + 00. In fact it
00

can be written as z" 1 J e~tlzB(t + ί0)dt, where the distribution B(t + iO) is the
0

boundary value of B(u) as Imw-» +0. Furthermore

φ(z) = z-i]e-t/zB(t + i0)dt (2.14)
0

by (2.6) [which is the Riemann-Fourier inversion formula of the Laplace
transformation, in z~ \ when applied to zφ(z) and calculated in t + iηi], and by the
one-to-one relationship between half-plane holomorphic functions and a large
class of distributions via the Laplace transformation (e.g. in [1, Theorem 2.1]).
Since /(z) = (φ(z) + φ(z))/2, (2.14) implies (2.4) for Rez " x > R " x and the criterion is
proved.

To prove the necessary condition, let B(ύ) = B1{u)JrB2{u), where Bx{u) and
B2(u) are analytic in Sl>(σ'<σ) and Sl> respectively, and let (2.3) be verified. By
Cauchy's integral formula

) (2.15a)

^ - 1 , (2.15b)
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along some regular path γ(η0) in S^nS^ starting from the origin and defined by

lmu = η0 for large RQU. Then φ(z) = z~ί J e~ulzB(u)du is finite and analytic for
ytno)

RQZ~1>R~1 and, integrating by parts N times, one checks:

N-ί

φ(z)- Σ akz
k

yOio)

, 1 0 τ ί exp(-ίRez x(l —ί ^ o tan(argz 1)))et/Rdt

^cxl(N +l)\(mdix(ηQ1,σ))N + 1 \z\N (2.16)

if R e z ' ^ j R " 1 and |tan(argz)|<77o ί If argz^ —π/2 + ε, then tan(argz~1)
~ — ε~ 1 asε->+0: hence an estimate of the type (2.2) is verified for Rez~1 >R~λ,
— π/2 + ε S argz < π/2, by choosing η0 = ε. Thus the necessary condition is proved

00

with φ(z) = z~1 J e~t/zB(t + i0)dt, f(z) = (φ(z) + φ(z))/2.

Remark 2. If hypothesis (2.2) holds then c(ε) = O(ε~1) as ε->0 by a Phragmen-
Lindelόf type argument, as explained in the following Proposition.

Proposition 2. Let d(z) be analytic for Rez~1 >r~ L , continuous and bounded for
R e z ~ 1 = r " 1 , and let \d(z)\^σna(ε)nnl \z\n for |argz|^π/2-ε, for any ne¥l0 and
ε>0. Then one can choose a(ε) ^Mε~1 for some M independent of ε.

Proof For some M>0, σ ^ O , \d(z)e1/z\^M if R e z - ^ r " 1 and \d(z)\
S(σia(ε)e~ίn)n\z\n if R e z ' ^ r " 1 , |argz|^π/2-ε. Since (σ1a(s)e~1ή)n is the
maximum value of |z|~Πexp( —(σtα(ε) M)"1) for each n e N , we have:

\d(z)e1/z\^Qxp(-(σ1a(ε)\z\yί)elllzl^e1/lzl (2.17)

for a sequence of values z = zn, n e N , such that |zM|Ξ(σ1α(ε)n)~1->0 as n->oo,
uniformly with respect to the phase of z. Hence the function Φ(u)
= d((u + r~1)~x) exp(w + r~x) is analytic for Rew>0, continuous and bounded for
Rew = 0. If we consider that function only for Reu^O, Imw^O, setting
u = w1/2eίπ/4-, the function Ψ(w) = Φ(wί/2eiπl*) is analytic for Rew^O and con-
tinuous for Rew = 0, since Φ(u) is of course continuous and bounded for ImM = 0.
Moreover ^(w^^expdr" 1 +w 1 / V π / 4 | )^exp(r~ 1 + |w|1/2) by (2.17), for a se-
quence of values w = wn, n e N, such that |wn|-> + oo, uniformly with respect to the
phase of w.

Thus, by a standard Phragmen-Lindelδf theorem [2, Theorem 1.4.1, p. 3]
\Ψ(w)\-^M uniformly for Revv^O. Since the same argument holds if we consider
Φ(u) only for Retί^O, Imu^O, we have \Φ(u)\^M for Reu^O, that is \d(z)\
SM\e~llz\ uniformly for R e z ' ^ r " 1 . Now, for |argz| = π/2-ε, \e~ilz\
= Qxp( — \z\~1 smε)^\z\n(sinεynn\~\z\nε~nn\ as ε-^+0. Hence the choice a(έ)
= ε~λ is always possible and the lemma is proved.

Remark 3. By Remark 2 a larger class of functions f(z) can be considered, which
are distributional Borel sums according to Definition 1, and such that the
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corresponding d(z) (with zero expansion coefficients) is not bounded as

argz->±π/2 in CR. For example, if f(z) = z~1 ] e~t/zPP(l -t)~ιdt, then d(z)
o

= — iπz'ιe~ιlz. In such cases it will be sufficient to verify the hypotheses of
Theorem 1 for g(z) = zmf(z), for some raeN.

Remark 4. For α = p/q, w i thp,^eN, the distributional Borel-Le Roy summability
of order (α,l) (defined by μk = Γ(ock+l), ρ(ί) = α " 1 e x p ( - ί 1 / α ) ί 1 / α ~ 1 ) admits a
criterion similar to the one contained in Theorem 1. The required condition is
analyticity for Rez~ 1 / α >i^~ 1 and the estimate (2.2) in that region, with JV!
replaced by Γ(aN +1). Indeed, for a e N, it turns out that Φ(z) = f(za) satisfies the
hypotheses of Theorem 1, so that f(z) = Φ(z1/a) has the required integral
representation. For non-integer values of α, the same arguments of Theorem 1 can
be adapted only if we know a Watson-Nevanlinna criterion for the standard Borel-
Le Roy summability of order (α, 1) (for the case α = l/2 see [7]). For rational
(positive) α, let us prove the following:

Theorem 3. Let <x = p/q, withp,geN. Let f be analytic in CR = {z/Rez~1/α>R~1}
and such that

N-l

) - Σ akz> ^AσNΓ(aN+l)\z\N (2.18)

uniformly in CR. Then the formal expansion Σ cιkτ
ka/Γ(ock+ 1) is convergent for

k = 0

small \τ\ and determines a function B(τa) analytic in 5ρ = {τ/|argτ|<π,
dist(τ,IR+)<ρ} for some ρ > 0 , and such that

R (2.19)

uniformly in any Sρι, with Q1<Q. Moreover, setting t = τa,

f(z) = α" γz~γ f B(t)e-{tlz)l/\t/z)lla-' dt (2.20)
o

for all z e CR. Conversely, if f(z) is given by (2.20), with the above properties for
B(τa), then it satisfies remainder estimates of the type (2.18) uniformly in any Cr,

Proof Notice that the above stated condition on /(z) for Borel-Le Roy
summability of order (pa, 1), with p e N , implies the analogous condition on Φ(z)
= f(zp) for Borel-Le Roy summability of order (α, 1). Hence it is sufficient to prove
the theorem for α = 1/q, qe¥ί.

Fixing α = l/q, and regarding (2.20) as a Laplace transform in the variable z~q,
let us consider the integral formally obtained from (2.20) by the Riemann-Fourier
inversion formula, and its formal derivatives with respect to τ = tq:

mq

+ (2πί)~1 § e " " ' ^ " 1 " " " Σ akz
kdz. (2.21)

Rez-9 = r ^ 1 k = 0



170 E. Caliceti, V. Grecchi, and M. Maioli

Here τ > 0, m e N o , and 0 < r < R. Now, the first integral exists and is independent
of r by the remainder estimate (2.18). The second integral is well-defined, too, and

dm mq

turns out to be equal to — - Σ akτ
klq/Γ(k/q+l) by a simple computation of the

aτ k = o

direct transform. Moreover, for all τ>0 and m e N 0 :

σm + ίeτlRΓ(m+l + \/q) + σm + ίΓ(rn+l) Σ τ~m+k/q .
L * = ° Jdτm v

For m = 0 and ΛΓeN:
J V - l

B(τ1/q)= Σ αfcτ
fc/7Γ(/c/^f+l) + ( 2 π 0 " 1 § Q\^{τz~q)qz~1 RN{z)dz.

fc 0 r

(2.23)

For Rez~q = r~1, \z\^r1/q. Thus, by choosing r = q/N and using (2.18), the
remainder term in (2.23) is bounded by A2(N/q)ίl2(στilq)N, which tends to zero
asiV->ooifO<τ1/α = ί<σ~ 1 . Thus B(τx lq) is identified with the convergent Puiseux

dm

expansion in (2.23) for |τ| <σ'q. On the other hand, if bm(τ0) = -~B(τ1/q)\τ=τo, for
oo dx

any fixed τ 0 > 0, B(τ1 lq) = Σ bm(τo) (m!) ~x (τ - τo)
m in some neighbourhood of τ0,

by (2.22). w = 0

Therefore B(τί/q) is uniquely determined as an analytic function of τ in some
neighbourhood of 1R.+ on the first sheet of the Riemann surface of τilq. On such a
region, B(τί/q) satisfies (2.19), again by (2.22). Hence B(τ1/q) admits a Laplace
transform, which coincides with zf(z) by (2.21), so that (2.20) is proved.

Conversely, let B(τllq) be analytic in some neighbourhood of R + on the first
sheet of the Riemann surface of τ1/β, with the bound (2.19). Then /(z) defined by
(2.20) is analytic for RQz-q>R~K By Cauchy's integral formula \dm/dτm(B(τ1/q))\
^ A3σ% + ίm\eτ/R for τ > 0, for some A3, σ0 > 0. Integrating by parts (2.20) N times,
an estimate of the type (2.18) follows and the theorem is proved.

On the basis of Theorem 3, closely following the arguments used in the proof of
Theorem 1, one checks the explicit criterion for distributional Borel-Le Roy
summability of order (α, 1), α e Q + .

Theorem 4. Let a and CR be defined as in Theorem 3. Let f(z) = (φ(z) + φ(z))/2, with
φ(z) analytic in CR and satisfying a remainder estimate of type (2.18) for zeCR,
— π/2 + ε^argz<π/2, for any fixed ε>0. Then f(z) is the Borel-Le Roy sum of
order (a, 1) of its asymptotic series in the distributional sense of Definition 1. The
stated hypothesis is essentially a necessary condition, too.

3. Applications

(A) An example of distributional Borel summability can be given in the context of
λΦ* lattice fields, which are defined in terms of measures in R z d (JeN). For any
finite subset L C Rz d, let μl( ) be the measure which is concentrated on the cylinder
sets with basis R L and such that

μλ

L(A)=jeχp\HL(xu...,xw)-λ Σ (xl-indx, ...dxw, (3.1)
A { peL j
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where λ>0 and

JΪ L (XI,.. . ,X,L|)=-/Ϊ Σ XpXtHdβ + nftΣxl-hΣXp. (3-2)
\p-q\ = l peL peL

p,qeL

Here the inverse temperature β and the magnetic field h are fixed. Notice that such
models can be regarded, for large λ, as perturbations of the corresponding Ising
models (λ — + oo) in both finite and infinite volume [15]. Fix LcZd,n = \L\, and set
μi = μλ Denoting the scalar product in ΊR" by <•,•>, let us consider the
characteristic function of μλ:

Cλ(z)= J <?<•'•*> dμ\x) (3.3)

for any fixed z e IRΛ

Proposition 5. Set g = λ~1/2, g > 0. Then (3.3) admits a series expansion in powers of
g with coefficients given by polynomials in e~9~2. Fixing e~9~2 = e~y, y>0, in the
coefficients, one obtains a power series in g, whose real and imaginary parts satisfy
Theorem 4 and are the distributional Borel-Le Roy sums of order 1/2 of their series
for all g>0. In particular, for g = y~1/2 such sums coincide with the real and the
imaginary parts of Cy(z).

Proof. Setting F(x) = (cos<z,x»exp(#(x)) [or F(x) = (sm(z,x})Gxp(H(x)\
respectively], where H(x) is given by (3.2), let us first consider the case n = 1:

Cg-2=
 +fF(x)e~9~2{χ2-ί)2dx [setting ρ = x2-h x±(ρ)= ± j/Γ+ρ]

β) (3-4)

Now It(g) can be written as an integral from 0 to oo: setting

G(β) = 2- 1 (l-ρ)- 1 / 2 {F(χ-(-ρ)) + F(x + (-ρ))}, (3.5)
we have

{ ( ( ) + τ 2 ) 1 / 2 - i
o

(3.6)

where the substitution ρ = (1 + τ 2 ) 1 / 2 gives rise to the exponential factor e~9~2. This
suggests that we define:

(3.7a)

(3.7b)
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for any y>0. This implies Iι{g) = f\iy,g), if y — g~2- Now it turns out that fχ(y,g)
satisfies Theorem 4 with α = l/2. Indeed, from (3.7a) analyticity follows for
Reg~ 2 >0. By rescaling ρ^\g\ρeι\ τ->\g\τeι\ for any small ε>0, and setting
g = \g\eiθ, φx(γ9g) has the form:

Hence

τ2e2ψ2) \g\2τe2Hl + \g\2τ2e2iT112

SB1B2(ε)mrn\Γ(l+m/2)

(3.8)

(3.9)

uniformly for — π/4 + ε<arg(#)<π/4, because
d\g\

;G(\g\u) <m\\u\mm if u is

contained in some analyticity region for G, and this is the case for any fixed ε > 0, by
(3.5). From (3.9) the required remainder estimates follow and f^γ, g) satisfies the
conditions of Theorem 4 for α = 1/2. Since in (3.4) I2(g) is a usual Borel-Le Roy sum
of order 1/2 by Theorem 3, the assertion is proved for n = 1.

For n > 1 we have to consider

N
(xl-l)2\dx1...dxn

[setting ρh = (χh)
2-l xj = ( l + ρ A ) 1 / 2 , x , ' 1 = - ( 1 + ρ , ) 1 / 2 , α - ( α 1 ? . . . ,α Π ) with

either αΛ = 1 or αΛ = — 1]

= Σ Σ ί...ί
βe{-ί,l}n α e { - l , l } n Bι Bn

Λ = l
exp(-flf-2ρ2)αJ k2-1(l+/ίJ kρ f c)~1 / 2'ie». (3.10)

where βΛ = (0,cx)) if )8Λ = 1, and BΛ = (0,1) if j8Λ= - 1 (ft= 1, . . .,n). Notice that
singularities in (3.10) can arise from the square roots x^β^^^a^l +βhρh)
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when βh= — 1, i.e. when the integration interval is Bh = (0,1). Thus, setting

G« '(ρ 1,...,ρ I 1) = F(x«1

1(ί?i), ) Π ^ ^ ( l + ^ ) " 1 / 2

= 2-1{Gα'/?(ρ1 + zΌ,...,ρπ + zΌ) + G α ^(ρ 1 -zΌ,.. .,ρ M -ί0)} (3.11)

for any α and β9 for ρΛ ε Bh (h = 1,..., n), we can write each integral on (0,1) as a sum
of two integrals on (0, oo) exactly as in (3.5). This produces exponential factors

oo

e~g~2 to be fixed (g~2 = γ) in order to obtain a power series expansion Σ
k 0

with coefficients depending one~ y . Therefore (3.10) can be written as a finite sum of
integrals of the form

0 0
(3.12)
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where r e {0,1,..., n} and L has a singular dependence on σh either through
(l-σh)

1/2 or through (1-(1 + σ2)^)1/2. Therefore by scaling σh-+\g\σhe
iε, with

ε>0, (3.12) is a sum 2~1{φ(y,g) + φ(y,g)}, where

Thus we obtain the required bound

i ... f Lfl^KΛ ...,\g\σne
u)

0 0 / z = l

(3.13)
dn

^ B1B2(e)M Γ(l + 3m/2) uniformly
dgmYyι

dm

for - π / 4 + ε^arg(#)^π/4 by evaluating ——U\g\uu..., \g\un) with w l5...,wn

contained in analyticity domains for L, and Proposition 5 is proved.
(B) Let H(g) = 2~1p2 + x 2 (l — gx)2, g > 0, be the double-well Hamiltonian, as a

self-adjoint operator in L2(R). One can approximate the trace Tr(e~tH{9)), t > 0, by
means of the Trotter formula and the corresponding integral kernels K{n\x, y).
Setting t = g~2τ, Ύr(e~9~2χH{9)) is approximated by

τ/ny"l2 J expί-(2τ)-1n(x1-χ l l)
2

V.

- Σ 2-1n(x»_1-xΛ)2τ-1-0-
4τn-1 £ x 2 ( l-*

h=2 h=ί

.g-ndxx...dxn, (3.14)

where the K{n)'s are defined in [16, p. 6] and a scaling xh-*g~1xh (h = 1,..., n) has
been performed in the integral.

Now, for fixed τ and n5 Fn(τ, gf) has essentially the same form of the function
(3.3) discussed in (A). In fact, by a translation xh-^(xh + 1/2), x2, (1 — xh)

2 is replaced
by (x£ —l/4)2(ft=l,...,w) and the same arguments of (A) allow us to prove the
following analogous result.

Proposition 6. Any approximant (3.14) of Tr(e~g~2τH(9)), where H(g) is the double-
well Schrδdinger operator, as a function of g2, is a distributional Borel-he Roy sum
of order 1/2 of its power series expansion, obtained by fixing exponentially small
terms in the coefficients, as in Proposition 5.

Notice that the case n= 1 (i.e. the original model proposed by 'tHooft [11])
admits a remarkable simplification due to the fact that the "kinetic" part in (3.14)
disappears. In this case we can directly consider

ί K ( 1 )(x,x; -it)dx= j e~
tχ2{1~βx)2dx (3.15)

R IR

and sum its series expansion in powers of g (with coefficients independent of g) by
the distributional Borel-Le Roy method of order 1/2.

Indeed, by the substitutions ξ = g~1x and u = ξ(ξ — l), and noting that
(l-4(tt + zΌ))-1/2 + (l - 4 ( u - i 0 ) ) - 1 / 2 = 0 for u> 1/4, (3.15) turns out to be a sum
of the required type (φ(g) + φ(g))/2, and Theorem 4 applies with α = 1/2.
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