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Abstract. We consider the spectrum of the Laplacian in a bounded open
domain of R" with a rough boundary (i.e. with possibly non-integer dimension)
and we discuss a conjecture by M. V. Berry generalizing WeyΓs conjecture.
Then using ideas Mark Kac developed in his famous study of the drum, we give
upper and lower bounds for the second term of the expansion of the partition
function. The main thesis of the paper is to show that the relevant measure of
the roughness of the boundary should be based on Minkowski dimensions and
on Minkowski measures rather than on Haussdorff ones.

1. Introduction

Let n be an integer, let D be a fixed bounded open set in R", and let us denote by HD

(H when the domain in D is understood) minus one half the Dirichlet Laplacian in
D. If we consider HD as a self adjoint operator on L2(D, dx), its spectrum is discrete
and can be written down in the form

0<μ 1 < μ 2 ^ μ 3 ... oo .

We consider the counting function

With these notations, WeyΓs famous theorem states that:

as μ tends to oo, where &n denotes the usual Lebesgue measure in R", and where cn

is a universal constant depending only on the dimension n. Whenever the
boundary of D is smooth, it was even proven that:
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see for example [Seeley (1978)], and this last estimate is on the route of the so-
called WeyΓs conjecture:

ND(μ) = cnUD)μnl2 - c'n&n.x{dD)^^ + o(μ^ »<2), (1.1)

which is known to hold in many cases [see for example Kuznetsov (1966), Ivrii
(1980) or Melrose (1980)], but also to fail to be true in some other cases as it was
shown in Gromes (1966) and Berard (1983). Note that the existing counter-
examples are dealing only with curved manifolds while the ones we exhibit in
Sect. 2 below are flat since the domains D are subsets of IRA

As explained in Brownell (1957) the counting function ND(μ) may well have no
asymptotic expansion of the above form while some of its integral transforms do. A
commonly used one is the Laplace transform

It is called the partition function. WeyΓs theorem can be rephrased in terms of the
partition function as

Z(t)~(2πtyn'22n(D) (1.2)

when t tends to 0. In order to understand our choice of a title for this paper, let us
recall Kac's picturesque way to look at the problem and to interpret (1.1) and (1.2):
let us think of D as of an n-dimensional drum and let us assume that we have perfect
ears so that we can hear the fundamental tones of D, namely the eigenvalues μjm

Now, can one guess the geometry of the domain, that is the shape of the drum from
this knowledge? Formulae (1.1) and (1.2) tell us that one can hear the volume of the
domain. Finding the correction terms to (1.2) and identifying the coefficients and
the exponents should tell us more about the other geometrical characteristics of D.

This new point of view initiated a wave of interest which culminated in the
work (McKean and Singer, 1967) in which the interested reader will find other
references. As a final remark on this point we will mention that one cannot guess all
the characteristics of the drum as shown in Urakawa (1982).

Motivated by problems in physics related to the scattering of waves by fractals,
Berry introduced the concept of diffractal and made the following conjecture (of
which we will consider only a weaker form since we want our domain D to be a
subset of a Euclidean space with an integer number of dimension). Assuming that
the boundary oϊD is no longer smooth and that its Haussdorff dimension is equal
to the positive real number d, he conjectured in Berry (1979) and Berry (1980) that
the following should be true:

ND{μ) = cnΆnφ)μnl2 - < dd-m(dD)μd/2 + o(μd'2),

where cf

ntd is a universal constant depending only on the dimensions n and d, and
where d-m denotes the d-dimensional Haussdorff measure. This conjecture is a
generalization of WeyΓs one, and as such it cannot be true in full generality.
Nevertheless its form is so nice that it cannot but attract inquiring minds. In fact,
even though we did not find any evidence in print we know that many people
investigated this problem and related ones. For the same reasons as in the smooth
case, this problem may be too difficult and one may want to try to investigate the
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asymptotic of the partition function instead. A simple Abelian argument shows
that (1.1)' implies that:

Z(ί) = (2π)" n/2Zn(D)t -n/2 - < dd-m{dD)t ~dj2 + o(t"d/2) (1.2)'

for some other universal constant c"nά. Section 3 of the present paper is devoted to
the investigation of this pre-Tauberian form of the Berry-Weyl conjecture.

As we are about to demonstrate, another good reason to appeal to the partition
function is that it is well suited to the use of probabilistic techniques and this idea is
also due to Kac. Let us recall for example that the first few terms of the expansion of
the partition function have been explicitly computed in the cases of some plane
domains in Louchard (1968) by means of this very technique.

The functional calculus on operators tells us that Z(ί) is nothing but the trace of
the semigroup generated by the operator HD. Even for general domains D, this
semigroup is given by expectations over Brownian paths (see Simon, 1979) in the
sense that:

ίe-'Hn(x) = Έx{f(Xt);t<TD}, (1.4)

where Xt denotes the position of the Brownian path at time ί, TD the first time the
path exits D, i.e.

TD = M{t>0;XtφD}9

and Έx the expectation over the paths starting from x at time t = 0 (we will use the
notation Ψx for the corresponding probability). The above formula is true for
many functions / on D, in particular those in L2(D, dx), and for all points x in D.
Consequently the exponential operator (1.4) have the integral kernel:

which is, for each fixed t>0, a jointly continuous function of x and y according to
an old result of G. A. Hunt (see Port and Stone, 1978, for example). The partition
function can now be written in the convenient form:

Z(ί) - (2πί) ~n / 21 Ψx{t < TD\Xt = x}dx,
D

and this will be the starting point of our investigations in Sect. 3. To illustrate how
convenient this form can be, let's rederive WeyΓs theorem. Formula (1.3) above is
rewritten:

Z(t) = (2πtyl2&n(D)-(2πty>"2ίΨx{t>TD\Xt = x}dx, (1.5)
D

from which (1.2) easily follows. The latter will give WeyΓs theorem via use of a
simple Tauberian theorem "a la Karamata." The fact that the integral in (1.4) tends
to zero is what Mark Kac calls "not feeling the boundary." Consequently, in order
to estimate the second term in this pre-Tauberian form of WeyΓs conjecture, we
need to control the asymptotic behavior for small time t of the integral

ΪΨx{t>TD\Xt = x}dx. (1.6)
D

We end this introduction with a brief discussion of the content of this paper.
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In Sect. 2 we comment on Berry's extension of WeyΓs conjecture. We use two
examples to try to point out for which domains this conjecture cannot possibly be
true. In particular, our examples clearly demonstrate that the Haussdorff
dimension and the Haussdorff measure are not appropriate in all the cases we
would like to study. In fact, our Example 2 shows that we can have a continuum of
counterexamples to the conjecture (1.1)' and of its weaker form (1.2)' by exhibiting
plane domains for which (1.1)' essentially holds with any real number d between
Log5/Log3 and 1 while the Haussdorff dimension of δD remains equal to
Log5/Log3 when d varies. It also shows that we have to use another kind of
"content" for the boundary of the domain, and this family of counterexamples
seems to indicate that a good candidate is the so-called Minkowski one.

This point is carried over in Sect. 3 where we give some positive answers to the
questions we raised on the asymptotics of the partition function of fractal domains.
We prove a lower bound in the general case and we give an upper bound under
some very mild conditions on the roughness of the boundary. The fact that we need
some exterior regularity condition on the boundary to control the second term in
the asymptotics of the partition function Z(t) should not be surprising. Indeed, we
can remove a countable set of points from D without changing either N(μ) or Z(ί),
but if these points are judiciously chosen, we can vary the Minkowski dimension
and the Minkowski measure at will. We also show that our lower bound and our
upper bound are identical in the case of a C1 boundary. This yields formula (1.2)'
with d = n—l, and the surface area of the boundary instead of d-m(3D). We
believe this result is known but we could not find a published proof. Moreover it is
interesting to realize it as a by-product of our upper and lower bounds via some
elementary estimates on Brownian paths.

Unfortunately our results are not completely satisfactory for the general fractal
domains. They merely correct Berry's first attempt which was in a wrong direction
as we proved. They also shed some light on the very nature of the problem by
formulating and partially proving a conjecture which is more likely to be true. In
fact, they should be considered as a first step toward a better understanding of this
challenging and difficult problem.

2. Discussion of the Conjecture

We present two examples to show that formula (1.1)' does not stand a chance to be
true in general. Our examples are very simple. They are designed to lead to a better
statement of the conjecture.

Example 1. Let ZΓ be the closed disk centered at the origin of R 2 and whose
measure is 1, and let {xn n ̂  1} be a dense subset of the interior of D~. For each a > 0
we construct by induction a sequence {On(a);n^l} of open rectangles with
arbitrary orientation contained in the interior of D~ and such that each On(a)
contains xn, is of measure smaller than a2"n and intersects the union of the Om(a)
for m < n. Then we define the open set D(a) as the union of all the On(a) for n ̂  1.

D{a) is an open connected set. Its Lebesgue measure is at most α. Its boundary
is D\D(ά), which has Lebesgue's measure at least I — a. Consequently, the
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Haussdorff dimension of the boundary is 2 and

2-m{dD(a)) = β222(dD(a)) ^ j82(l - a)

for some positive constant β2 independent of a. This shows that the formula (1.1)'
cannot be true in the present situation because, by choosing a small enough one
can make the second term larger than the first one in absolute value and this would
force the number of eigenvalues to be negative.

The moral of this example is that the boundary of the domain cannot be too
big, at least not too much bigger than the domain itself.

Example 2. We now present our most important example. It will contain features
which will illustrate at the same time why the conjecture (1.1)' was thought to be
true and why it is actually false. Rather than trying to explain the construction in
full detail, we draw part of the domain D, simply commenting on the complete
construction. But we first pick a non-decreasing sequence {D (ή), n^l} of positive
integers.

I I Go generation 0

Gi generation 1

KB G2 generation 2

Tr G3 generation 3

Fig.l

The generation 0, say Go, contains 1 square of side 1.
The generation 1, say Gl9 contains 4 large squares, each of them being of side

1/3 and being divided into Π(l)2 identical small squares.
The generation 2, say G2, contains 4x5 large squares, each of them being of

side 3~2 and being divided into D(2)2 identical small squares.

The generation n, say Gn, contains 4 x 5"~ * large squares, each of them being of
side 3~n and being divided into Π(n)2 identical small squares.

The domain D is defined as the union of all the open small squares of all the
generations, the square of the 0th generation being considered as small as well as
large.

First, we compute the Haussdorff dimension of the boundary dD.
Let a > 0 be momentarily fixed (we may think of a as being very small, and in

particular smaller than 1) and let b be in (0, a). Let n = n(a) be the integer defined for
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the time being by [Log(l/α)/Log3]. Recall that we use the notation [x] for the
integer part of the nonnegative real number x. n is the smaller integer k satisfying
3~k<a. We construct a covering of dD by open sets with diameters at most a in
the following way.

First we put a square of side 3 ~n on each of the 3 active sides of any square of the
nth generation in the following way.

Fig. 2

These 3x4x5" x squares cover all the squares of the generations Gk with k > n.
Second, for each integer k < n, we cover the boundaries of all the squares of the

kth generation with open squares of side b. There are 4 x 5k~x large squares in the
kth generation, and since each of them is divided into Π(/c)2 small squares we need
at most 2[D(fc) + l]/ί?3fc of such squares of side b. Hence, if we call {Uj}j the open
covering so constructed, and if d> 1, we have:

Since we are interested in the infimum d-myj^iSD) of these quantities over all the
coverings by sets of diameters at most |/2α we can take the limit b-»0 in the right-
hand side, and this leaves us only with the first term because d > 1. If we recall that a
is of the same order as ί/3n~1 we obtain

but since lim n(a)= + oo this implies:
a-+O

if d = Log5/Log3

if J>Log5/Log3.

This shows that the Haussdorff dimension of 3D is not greater than Log5/Log3,
and that, its (Log5/Log3)-Haussdorff measure is at most 36/5 when we know the
Haussdorff dimension is exactly d = Log 5/Log 3, which we prove now by showing
that the limit above cannot be zero. By the way, this will also show that the
(Log 5/Log3)-Haussdorff measure of dD is not zero. If this limit was 0, for each
β>0, we could find an α>0 and a covering {Fl9..., Fn} by open sets of diameters
du...,dn less than a and such that

Since we believe no confusion is possible, we use the same notation n = n(a) as
before for a different integer. For each j we pick an integer k(j) such that 3 " mj) + *]
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^dj<3 kU\ and we choose an integer N larger than max {fc(l),..., k(ή)}. Let Cj be
a square of side 3~kU) which contains Fj. Each large square of the generation GN

intersecting Cj is contained in the union of at most two large squares of the grid
with mesh 3~*°λ

Fig. 3

Hence, out of all the large squares of GN, at most 2 x 4 x 5N k{j) 1 = 8 x 5N

x 3~[fct/) + 1^<^8 x 5N xdj of them intersect Cp and consequently, Fj intersects at
most 8 x 5N x dj large squares of the generation GN and (J Fj intersects at most
8 x 5^ x Σddj<8x5Nxβ large squares of GN. This contradicts the fact that
{Fl9..., Fn} is a covering if β is small enough. Indeed, iϊβ is smaller than 1/10, since
8/10 < 1, U Fj cannot even cover the boundary of GN.

Notice that this dimension is independent of the sequence { D (n) n ̂  1} which
is used in the definition of the domain and on which most of the characteristics of
the boundary depend heavily. We now compute the asymptotic of N(μ); the one of
Z(ί) will follow with the use of a simple Abelian theorem.

First we recall that if i ί = (— \/2)d2/dx2 on some interval [α, b~] with Dirichlet
boundary conditions at a and b, one has:

all the eigenvalues being simple, and if Hc is now one half the negative Dirichlet
Laplacian on a square C of side c we must have:

Σ(HC) = {(h2 + k2)π2/2c2 (Λ, k) e N * x N * } ,

since the variables can be separated. Now, if C is a small square of the nth

generation, its side is (3"D(n))~1, and hence the bottom of the spectrum of Hc is
π 2(3πD(n)) 2. Consequently, C does not contribute to N(μ) if μ<π2(3n[J(n))2.
Hence, if we set: n ( / i )
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we have:
N(μ) = Σ contribution of Gn.

For π ^ 1, the contribution of Gn is 4 x 5 M " ι x D(n) 2 times Nc(μ) for any square C
of side (3"D(n))~*. For such a square we have according to the Yarnik's formula
recalled on p. 722 of [Kuznetsov (1966)]:

Nc(μ) = # {(h, k) e N * x N * π2(3" D O))2(/i2 + k2)/2 ^ μ}

= {points of N * x N * in the disk of radius (2μ)1/2/[π3"D(n)]

centered at the origin}

= (l/2π) (3» D (n)) " 2 μ - 0 + [|/2(2/π + 1/2) (3W D (n))" V 7 2 ,

where we use the notation 0+[x] to denote a nonnegative number bounded above
by x. For w = 0 the contribution of Go is Nc(μ) for any square C of side 1, and, using
again Yarnik's formula we obtain:

N(μ) = μ/(2π) - 0 + l]/ΐ(2 + π/2)/π]μ112 + (2/5π) Σ

Γ2(4 + π)l/2/5π Σ

To make our life easier we now choose a particular sequence {•(«); n ^ 1} by

s e t t i n g : •(«)=[««]

for some fixed real number α ^ 1. This gives:

= μ/π - 0 + [|/2(2 + π/2)/π]μ1/2 - (l/2π) (5/9)"<">μ

- 2(4 + π)|/2/5πO+[5α/(5α - 3) {(5α/3)"(^ - 1 } - (5/2)0 +

If we use the notation /(μ)Xg(μ) whenever there exist two finite strictly positive
constants d1 and d2 such that d1f{μ)^g{μ)^d2f{μ) for all μ^O, we easily see
that:

Log(5/9)/2Log3«

Similarly:

°83 f l

and

(5/3)M ( μ )XμL o g ( 5 / 3 ) / 2 L o g 3 α

which finally gives:

μMI2χπ-iμ-N(μ) (2.1)

with:

= Log(5α2)/Log3α. (2.2)

Formula (2.1) does not show that N(μ) has an asymptotic expansion but it gives
the exponent of the first correction term in case such an expansion exists.
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Formula (2.2) contradicts Berry's conjecture according to which the exponent
should be given by the Haussdorff dimension which we already computed and
which coincides with d(a) only in the case a — 1. To explain this unexpected
exponent we now proceed to the introduction of the Minkowski contents (and of
the Minkowski dimension) of the boundary dD.

Let d be a fixed nonnegative function on D. We should think of d as some
distance from the point x in D to the boundary dD, and we are going to use this
distance to measure the roughness of the boundary.

For each positive number u we define the set Du as:

Du = {xeD;d{x)<u}. (2.3)

And for each positive number d we call lower Minkowski content of dD the
number {d)-mjβD) defined by:

(d)-m+(dD) = lim mίU-{n'd)2n(Du)

and the upper Minkowski content as the number (d)-m*(dD) defined by:

(d)-m*(dD)= lim s\xpu'(n'd)Qn(Du).
u->0

dD is said to have Minkowski dimension d if:

0 < (d)-mJβD) ^ {d)-m*(dD) < oo .

If this is the case we will say that dD is d-Minkowski measurable if:

the common value being denoted (d)~m(dD) and called the d-Minkowski measure
of dD.

We now show that the Minkowski dimension of our present domain D is

d(a) = Log (5α2)/Log 3α, (2.4)

if we choose for function d(x) the usual Euclidean distance from x to the boundary.
Equation (2.4) is identical to (2.2) and this shed some light on the asymptotic
behavior we got for N(μ) in (2.1). At this point it should be noticed that this
dimension d(ά), as a function of a varies from Log 5/Log 3 to 2 when a varies from 1
to + oo, while at the same time the Haussdorff dimension remains constant and
equal to Log5/Log3.

The interesting features of our example are thus twofold: first they prove that
Berry's conjecture cannot be true in general (and especially when the Haussdorff
and Minkowski dimensions of the boundary do not coincide) and second, they
strongly suggest that the roughness of the boundary should be measured with the
Minkowski contents rather than with the Haussdorff measures.

To prove (2.4) we first choose u>Q and we set:

φ ) = max{neN;2u<(3 Ϊ I D(«))~ 1 } .

For each small square C of the generation Gn we have £ 2 ( Q = ̂ ( Q ) if w > n(u),
while

£2(CM) = (3n(n)) ~ 2 - ((3» D (n)) ~ι-2uf
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if 1 <. n ̂  n(u). Consequently,

22(Du)=l-(l-2u)2

+ Σ 4x5"-1xD(n)2[(3πG(«))~2-((3"Π(n))~1-2w)2]

4 x 5 " - 1

= 4 M - 4 M 2

1 ^ n ^ n(«)

5"a(n)V+(5/9)"(u),

(5/3)" D(φ-(16/5)

and, for the same choice D(n) = [αn], it is not difficult to show that:

(2.5)

which proves that the Minkowski dimension of 3D is d(a). Even though the
constants which are implicit in (2.5) are very close, we could not prove that 3D was
actually d(α)-Minkowski measurable.

A simple abelian argument gives:

t-d(a)/2 (2.6)

which is the weaker form of (1.2)' we can get from (2.1).
The counter examples we constructed above are not connected open set, and

this could be regarded as a weakness of ours. We do not believe so because we can
easily modify a little bit the definition of the open set D to make it connected
without altering (2.6). Nevertheless we do not know how to control (2.1) in this
process.

In any of the large squares of each generation we open segments whose lengths
are equal to 106th of the length of the small squares of the same generation in the
way shown in the figure below. If d' denotes the union of D and these little
segments, D' is an open connected set which contains D and we show that the
asymptotic of its partition function is the same as for D.

Fig. 4
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We first note that TD^TD and consequently, for each x in D we have:

Fx{t > TD,\Xt = x} ί Ψx{t > TD\Xt = x}

and:

ί Ψx{t>TD,\Xt = x}dx^\Ψx{t>TD\Xt = x}dx.
D' D

On the other hand,

lFx{t>TD\Xt = x}dx= Σ ί
D n,CGn C

and:

ί Vx{t > TD\Xt = x}dx = f Px{ί > Tc\Xt = x}dx - 2 ί Ψx{t > Tc\Xt - x}dx
c c c

(by symmetry)

= 2 J Ψx{t > Tc, X(TC) G dC'\Xt = x} dx
c

+ 2 J Ψx{t > Tc, X(TC) e dσ\Xt = x} dx
c

c

c

^4i
c

and this shows that

J Ψx{t > TD,\Xt = x}dx X J Ψx{t > TD\Xt = x}dx.
D' D

3. Upper and Lower Bounds for the Partition Function

Let us first decide that the "distance function" d(x), with respect to which all the
Minkowski contents and dimensions are computed, is from now on, the Euclidean
distance from x to the boundary dD given by:

δ(x) = inf | |x-z | | . (3.1)
zφD

Now, for each α>0 we denote by c_(a) the infimum of the positive (and
possibly infinite) constants c for which there exists a positive number u = w(α, c)
such that:

Ψx{t>TD\Xt = x}Sce~aδ{x)2/t (3.2)

for almost every x in Du and all t > 0. Then, for each O^J^nwe define the constant
c_(M) by:

c_(n,d)=Mc^a)a-{n-d)/2. (3.3)
α>0
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We are now ready to state and prove our lower bound for the partition
function Z(ί).

Proposition 3.1. With the above notations we have:

d-m*(dD)Γd/2 + o(Γd/2). (3.4)

Obviously, this lower bound is empty if either c_(n, d) or the d-dimensional
upper Minkowski content of the boundary is not finite.

Proof Without any loss of generality we can assume that {d)-m*{dD) is finite.
Then, for each positive number α, setting w = M(α,c_(α)), we have:

J Ψx{t> TD\Xt = x}dx
Du D\DU

00

V^)μ+ J Vx{t>TD\Xt = x}dx
0 D\DU

by a simple integration by parts if one recalls the notation Du defined in (2.3).
Now, for x in D\DU we have:

\ sup IX

for some positive constant cγ independent of u and t. This implies:

limί" ("" d ) / 2 ί Ψx{
ί-*0 D\DU

Hence, using Fatou's lemma we obtain:

ί Ψx{t>TD\Xt = x}dx = 0. (3.5)
D\DU

ί->0

ί->0 0

g c _ (α)α ~(M" d)/2Γ( 1 + (w - ^)/2) (d)-m*(dD).

We could use the "limsup" version of Fatou's lemma because the function
u-+u~{n~d)/2Άn(Du) is bounded. Indeed, it is bounded near 0 because d^ n and it is
bounded near +oo because (d)-m*(dD) is finite. Consequently we have:

J } (
D

by minimizing over a, and this is (3.4) if we recall (1.5). D

Remark 3.2. It is easy to see that:

c^(n,d)S2-{n~d)/2. (3.6)

Indeed, if a is any positive number and if B(x) denotes the open ball centered at x
with radius d(x), for each x in D we have:

ί>T l ϊ (3e) |X f = x} = P o j sup
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by shifting and scaling, and this is easily seen to be bounded above by cg-*^*)2/* for
some finite constant c>0 independent of x and t provided 0<α<2.

To state and prove the upper bound we proceed similarly. For each positive
number a we let c + (a) be the supremum of all the nonnegative numbers c for
which:

6{x)2/t (3.5)

for almost every x in D and all £>0, and then we set:

" d ) / 2 , (3.6)
α>0

and in exactly the same way we prove:

Proposition 3.3. With the above notations we have:

Z(ή S (2πynl2Άn(D)Γn/2 -c + (n9 d) (2πΓn/2Γ(l + (n- d)β)
dl2 + o(Γd/2). (3.7)

As before, this bound has no interest unless both c+(n,d) and the
d-dimensional lower Minkowski content of the boundary are non-zero.

Proof. For each positive number a we have:

D D O

as before. Hence, using Fatou's lemma we obtain:

liminf Γ {n~d)l2 J Ψx{t> TD\Xt = x}dx
ί-+0 D

t->0 0

This shows that:

by taking the supremum of the right-hand side over a. D

The main drawback of this upper bound is that we do not know if the constant
c _ (n, d) is finite in general. We will show later that in the case of a C1 boundary, not
only this constant is finite, but it actually equals c + (n,d) (see Proposition 3.10
below).

For the time being, we give a sufficient condition under which the upper bound
(3.7) holds. It is satisfied by many domains with fractal boundaries and in
particular, it is satisfied by our main example in Sect. 2. This sufficient condition
requires the boundedness below of the so-called capacitary density of the
boundary 3D. This type of assumption seems to be of common use in potential
theory. See for example Vituskin (1967) or Oksendal (1972).
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Definition 3.4. We will say that the capacitary density of dD is bounded below
whenever there exists a constant c o > 0 such that for each positive number
r<diamD and for each y in dD we have:

Cap(dDnB(y, r)) £ c0 Cap(B(j;, r)), (3.8)

where Cap (A) denotes the Newtonian capacity of the subset A of ΊRn.
Note that this definition remains the same if the diameter diamδD is replaced

by any smaller strictly positive number r0.
From now one we use the notation τA for the first hitting time of the set A, i.e.

the first exit time TAC of the complement Ac of A.
Recall that, in dimension n ^ 3 , for each Borel set A, the function x-+Ψx{τA

< oo} is called the equilibrium potential of A because it is the Green potential of a
nonnegative measure called the equilibrium measure of A and denoted μA, i.e.

Ψx{τA«x>}=Sg(x,y)μA(dy) (3.9)

with:

g{x,y) = Cn\\x-y\\'(""2) (3.10)

for some constant Cn depending only on n. μA is concentrated on A and the
Newtonian capacity of A is nothing but the total mass of this equilibrium measure.

Note that, in dimension n ̂  3, the right-hand side of (3.8) is equal to c'§rn~ 2 for
some positive constant c'o independent of y and r. Moreover, the boundedness
below of the capacitary density of dD implies the existence of a positive constant c'ό
independent of x in D such that:

WX{?dDnB(x,2d(x)) < ̂ } ^ C0 (3-11)

Indeed, under this assumption we have:

Vx{*dDnBix.2d(x))< ° ° } = Cn ί \\* ~ y\\~ ̂  2^dDnB(x,2d(x))(dy)

^ Cnd(x) -{n~2) Cap(<9'DnB(x, 23(x)))

^ Cnd{x) -{n~2) Cap (dD nB(y, d(x)))

for any y in dD for which ||x — y|| =δ(x),

because of (3.8) and the above remark.
In dimension n = 2, the equilibrium measure is the unique probability measure

concentrated on A for which the function

with

g(x9y)=-π'1Log\\x-y\\

is constant on the set Ar of regular points for A. The function uA is called the
equilibrium potential of A and its value on A\ say R(A), is called the Robin
constant of A. The Newtonian capacity of A (also called the Logarithmic capacity
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of A) is then defined as

For more information the reader is referred to Port and Stone (1978) for
example.

Our key estimate is contained in the following:

Lemma 3.5. Let us assume that the capacitary density of dD is bounded below. Then,
there exist positive constants cγ and C such that we have:

( ( ) C 1 (3.12)

whenever t>0 and xeD are such that Cd(x)^yt.

Proof Let us assume momentarily the existence of a positive constant c2 such that:

*χ{τδDnB(x, 2d(x)) < 7B(X, 6δ(x))S =C2 (3.13)

for all x in D. Then, we set cί = c2/2 and we choose C > 0 such that

l (3.14)

for all ί > 0 and x in D such that Cd(x) ^ j/ί . Note that a simple scaling argument
shows that C is independent of t and x, and depends only o n q . Since we obviously
have:

\ = *χ{τδDnB{x, 2d(x)) < H^S + it χ{ TB(χ 6d(x)) =(x, 2d(x)) <• *B{x, 6δ{x))\ = *χ{τδDnB{x, 2d(x))

we must also have (3.12) if one recalls (3.13) and (3.14) and the definition of c1.
Consequently, the proof of the lemma reduces to the proof of (3.13). The latter

requires different arguments when w^3 and when n = 2.
We first assume rc^3. Using the strong Markov property one gets:

*x\τdDnB(x, 2d(x)) < °Ό } = *χ{τdDnB(x, 2d(x)) = ^B(x, 6d(x))S

+ *χ{τdDnB(x, 2d(x)) < ° ° ? τdDnB(x, 2δ(x)) = Tβ(χ, 6d(x))J

~*xlτdDnB(x,2d(x))= ^B(x,6d(x))J

+ !Eχ{ϊ>X(TB ( X ) 6d(x))) {τdDnB(x,2δ{x)) < ° ° } }

= *xlτdDnB(x, 2δ(x)) = Tβ(x, 6d(x))S

+ (l/2)P J C {τ a j D n J Ϊ ( : C i 2 S ( J C ) ) <oo}, (3.15)

if we notice that :

ΦyfrdDnBix, 2δ(x)) < ^ } = Cn | || y - Z \\

because || y — z || ^ 21] x — z || whenever || y - x || = 63(x) and z belongs to

Finally, (3.15) and (3.11) give (3.13).
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In the case n = 2, we note that our assumption implies:

R(dDnB(x,2d(x)))^π'1 [Log(l/2r) + Log(l/c0)] .

Fix m = π~1 Log(l/3r). Notice that:

SUP USDnB(x,2d(x))(x)^π~1Lθg(l/4r) J PdDnB(x,2d(x))(dy)
xe6B(x,6d(x)) dDnB(x,2d(x))

= π-1Log(l/4r),
and that:

R(dDnB(x, 2d(x)))^R(B(x, 2d(x)) = π-1Log(l/2r), (3.16)

so that:
sup udDnB(Xi 2d(X))(y) <m< R(dDnB(x, 2δ(x))).

yedB(x,6d(x))
The function

y-+ [R(dDnB(x, 2d(x))) -my1 [uδDnB{x, 2d{x))(y) - m\

is superharmonic (and hence finely continuous), harmonic on
B(x,6d(x))\{dDnB(x,2d(x))}, equal to 1 on Ar and negative on dB(x,6d(x)).
Consequently, for y in B(x, 6d(x))\{dDnB(x,2d(x))} we must have:

B(x, 2d(x))) -my1 \udDnB{x, 2d(x))(y) - m]

= [R(dDnB(x, 2d(x))) -my1

= ^y{r^6Dr^B{x,2δ{x))< ^β

and consequently,

Vχ{τdDnB(χ,2S(χ))< TB{x,6d{x))} ^ [ Λ ( δ D n B ( x , 2d(x)))-my1 [_udDnB(x,2d(x))(x)-m]

^ [Log(3/2) + Log(l/c0)] - ' Log(3/2)

if one uses (3.16), the fact that wδ i ) n β ( ; C 5 2 e ( J C ) )(x)^π~1Log(l/2r), and if one recalls

that m = π ~ 1 Log(l/3r). The proof is now complete. D

The previous lemma was intended to give the following:

Lemma 3.6. Let us assume that the capacitary density of 3D is bounded below. Then,
there exist positive constants c2 and C such that we have:

x}^c2 (3.17)

whenever t > 0 and x in D are such that Cd(x) ^ yt.

Proof. For each R>0 we have:

P,{ TD < t\Xt - X} ^ Ψχ{^DnBix, 26(x)) < tβ\Xt - x}

x, 2δ(x)) < t/2, \X ~ Xt/2\ S

^2«/ 2exp[-R 2IQΨ x{τ δ D n B ( x, 2 d { x ) )<t/2, \x-Xt/2\^R},
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and choosing R = α|/ί with α such that

where cx is the constant of Lemma 3.5, we obtain:

Ψx{TD < t\Xt = x}^ 2nl2 exp [ - a2ψx{xdDnB^ 2δ{x)) < ί/2, |x - Xt/2

as long as Cd{x)^γt because of Lemma 3.5. D

The upper bound we announced is now an easy consequence of these
estimates:

Proposition 3.7. Let us assume that the capacitary density of dD is bounded below.
Then, there exists a positive constants C such that we have:

Z(ή ^ (2π)" n/22n(D)t ~n/2 - (d)-m*(dD) Ct' m + o(t"dj2). (3.18)

Proof. If C and c2 are the constants of Lemma 3.6, we have:

ΪΨx{t> TD\Xt = x}dx ^ f Ψx{t > TD\Xt = x}dx
D {xeD;d^/JC}

so that:

liminf r ("~d ) / 2 J Ψx{t > TD\Xt = x}dx^c2C
{n'd)/2(d)-mJdD),

ί^O D

and we conclude the proof like in Proposition 3.3. D

We now show that the constants c + (n,d) and c_(n, d) are equal when the
boundary dD is C 1. But first we need the following estimate:

Lemma 3.8. // dD is C 1, for each ε>0, there exists dε>0 such that:

(l-φxp[-2(l+^(x)2/f]^PJ^

(3.20)

whenever d(x)^dε and f >0.

Proof We first prove the upper bound. Let ε > 0 and C > 0 be fixed. Without any
loss of generality we can assume that x is such that:

d(x)2/t> Cε = [Log(l +ε)]/[2(l - ε ) 2 ] (3.21)

since the upper bound is trivial otherwise.
Since D is bounded and dD is C 1, there exists d0 = do(ε, C) > 0 such that for each

x in D such that d(x) < d0 one can find y = y(x) in dD such that || x — y \\ = d(x) and
such that the hypercube R(x) containing x and which is the intersection of the In
half-spaces ΠuΠ2i ...,Π2n limited by the planes Pγ,P2, '.,P2n with Pi a n d P2

orthogonal to x — y while P 2 7 _ x and P2j are parallel for j = 2,..., n and orthogonal
to P2k _! and P2 / c if fe =K/\ and such that the distances δ ; (x) from x to the planes Pj



120 J. Brossard and R. Carmona

satisfy dι(x) = (l -ε)d(x) and d/x) = Cd(x) for j = 2,3, ...,2n. Now we have:

P,{ TD < t\Xt = x}ί FX{TR(X) < t\X, = x}

^ Σ Ψx{Tm<t\Xt = x}

^ exp [ - 2(1 - ε)2d(x)2/f] + {In -1) exp [ - 2C23(x)2/ί]

• exp [ - 2(C2 - 2(1 - ε)2)δ(x)2/ί]

if one recalls (3.21), and:

^ (1+ e) exp [ - 2(1 - β)2δ(x)2/ί]

if one chooses C large enough. This is the expected upper bound. To prove the
lower bound we note that, if we set S(x) = dR\x)/P1, where R'(x) is defined in the
same way as R(x) except for dγ{x) which we take now as d1(x) = {\ +ε)d(x), then
the boundedness of D and the fact that dD is C1 imply the existence of
d/

o = d/

o(s,C)>0 such that S(x) is always contained inZ)°. Consequently:

and the desired lower bound in an easy consequence of the following lemma and a
simple scaling argument

Lemma 3.9. Let x = (l,0, ...,0) and Π = {0}xΈin~K Then, for each ε>0 there
exists an α>0 such that the hypercube J(α) = {0} x [ — α, + α ] " ~ 1 in Π satisfies:

m x} = (l-ε)e-2lt (3.22)

for all ί>0.

Proof (3.22) rewrites:

Ψx{τm<t\Tπ<t,Xt = x}^(l-ε),

which is equivalent to:

) (3.23)

with y = (— 1,0,..., 0) because of the de Andre reflection principle. We first choose
α, T, and R such that:

where we set A = {τJ(a)<t, \\XT — y\\ ̂ R} Then, for all t> T and α ^ α we have:

vx{τm<t\x,=y}zVΛτm<tΛXτ-y\\£R\x,=y}

= [ί/(ί - T J I - ^ E ^ I Λ exp [ - \XT - y|2/2(ί - T)]}exp[|x -
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whenever t ̂  T" for some large enough constant T'. Consequently, we need only
prove (3.23) for ί< T" and a large enough. But we also have:

P,{τ,(β) < t\Xt = y}^ Ψx{ Tm >t\Xt = y},

where we set 7(α) = R x [ - α , + α ] n ~ 1 , and according to a calculation similar to a
one we already made, we have:

^ l -2(n- l )exp[-2α 2 / ί ]

^ 1 - 2(rc -1) exp [ - 2α2/T/]

provided α is large enough. This concludes the proof. D

In the very same way we proved Propositions 3.1 and 3.3 we obtain:

Proposition 3.10. If the boundary of D is C 1 we have:
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