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Abstract. We show that a sequence of dipole states of finite energy introduced
by Fredenhagen and Marcu is chargeless upon removal of one of the charges to
spatial infinity in certain subsets of the phase diagram of the U(l)-Higgs lattice
gauge theory. It is also explicitly seen how this phenomenon is related to the
existence of exponential clustering (i.e., of a mass gap). Related properties of
dipole states are briefly discussed.

I. Introduction and Summary

In a beautiful paper, Fredenhagen and Marcu [1] showed that a certain sequence
of dipole states of finite energy acquires a charge when one of the charges is
removed to infinity in a subset of the phase diagram of a Z(2)-Higgs lattice gauge
theory. They also proved that the same states are chargeless in certain subsets of
the confinement/screening regions of the model.

In this paper we prove the absence of charge for the same sequence of\dipole
states introduced in [1] in a subregion of the screening/confinement diagram of the
U(l)-Higgs lattice gauge theory. Our main motivation in so doing is that this
theory involves additive (in contrast to multiplicative in the Z(2) case, treated in
[1]) charges, implying a different structure, more akin to the more interesting
nonabelian gauge theories. In particular, the connection between the absence of
charges and exponential clustering (i.e., a mass gap) seems to appear more directly
in the present model (see Sect. III). This statement is related to a remarkable
theorem of Swieca [2] (a rigorous version of which was formulated and proved in
[3]), a general result in the framework of (continuum) relativistic quantum field
theory which roughly states that in abelian gauge theories with a mass gap there
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are no charged states. Swieca's theorem requires locality and is therefore not
applicable to nonabelian theories. It should therefore be especially interesting to
extend the results of [1] and the present paper to the nonabelian case. In view of
this aim, we present in Sect. II the transfer matrix formalism and the relevant
results (used in Sect. Ill) in the general (nonabelian) setting, specializing to the U(l)
case later. In particular, we study in the same section the dipole states analogous to
those introduced for the Z(2) model in [1], deriving their "finite energy property"
in Proposition ILL The latter property is universal, depending only on the
perimeter law of the Wilson Loop1, an important fact which, although not
explicitly stated in [1], is implicit in the proof given there2. Finally, we make some
remarks on the expected properties of other dipole states (finite energy property,
disjointness from vacuum representation). They are illustrated by a short and self-
contained discussion in the framework of the massless Schwinger model in
Appendix A, which presents a somewhat different, mathematically precise version
of arguments of Swieca [4] and Lowenstein and Swieca [5]. It should be remarked
that we are concerned here with the energy of dynamical charged states, not the
(potential) energy between static, external charges. The latter has a special, atypical
behaviour in the massless Schwinger model (due to the zero electron mass), but not
the former (see remarks in Appendix A).

Section III is the core of the present paper, based on [6]. There we present the
proof of absence of charge for the sequence of dipole states defined in Sect. II,
specialized to the U(l) model. It extends some results concerning polymer
expansions in [1]. The main results of [1, 8] which have been used are either briefly
stated in Sect. Ill or collected in Appendix B, which also presents a complete
derivation of the crucial formula (B.12)3. Section IV is a conclusion, with a brief
additional discussion of open problems.

II. The Model, Dipole States and the Finite Energy Property

Consider a spatial box ΛcZ^ where d^l is the number of space dimensions,
which we take as the time-zero slice of a space-time lattice A — A x ΊL. A point in A
will be denoted by n. Positively (respectively negatively) oriented links will be
written (rc,μ), where μ runs over the positive (negative) space directions fi = e(

(μ=Ji), i=l, . . . ,d, or over the positive (negative) time direction t = ed+ι

(~t= -ed+ί). We write B(A) for the set of positively oriented bonds (links) in Λ,
and P(A) for the set of positively oriented plaquettes in A. A special plaquette is
denoted PS9 a temporal plaquette Pt. To each bond (n, μ) e B(A) (respectively to
each neA)we associate a faithful representation U(n, μ) [respectively φ(n)'] of a
compact Lie group G. The U(n, μ) are interpreted as gluon fields, the φ(n) as Higgs
fields. Our Hubert space is

1 Which is expected whenever matter fields are present, due to pair creation [8,13,14]
2 See also [16] for similar remarks and a more extensive discussion of this point
3 We should like to thank Dr. K. Fredenhagen for showing us this derivation, and suggesting its
inclusion in the appendix
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where dμA = dμu®dμφ, with

dμu = (g) dμu(n> μ), dμφ=X dμφ{n)

(n,μ)eB(A) «eA

is the (product) Haar measure. We define the transfer matrix in the temporal gauge
as the integral operator on J^A defined by

TA = eAΛ/2FAe
A*/2, (ILla)

where ΛA is the multiplication operator given by

ΛA = 2βg Σ Re(Tr{[/P s-i})
PseP(A)

+ 2βh Σ R e f Γ r ^ - V + μ) U(n,μ)φ(n)-ί})9 (II. lb)
(n,μ)eB(A)

and FA is an integral operator with kernel given by

Σ Re{Trl7-1(n,μ)l7'(fi,At)-l}

Above,

where

βg and βh

+ 2βh Σ Re(Ti
neΛ

are the gluon and

(U(n,μ)

{u(-(n,μ)) = U-

' Higgs

(n,μ)ePs

'Hn,μ)

:{φ'-\n)φ{n)-t})\.

coupling constants and

if the orientations of (n, μ)
and Ps are the same

otherwise.

(Π.lc)

The above construction, with the Higgs fields as matrices, is not quite standard,
although the corresponding transfer matrix has a more symmetric form, and an
additional invariance (coming from the trace). In the more usual one, the Higgs
fields are elements of a vector space, and conditions ensuring "complete symmetry
breakdown [8, p. 57] must be imposed. We shall refer to the above cases as
"matrix" or "vector space" formulations, for brevity. The following properties of
TA are known [7,17]:

a) TA is a self-adjoint, trace class operator;
b) || 7^ || ^ 1 is a simple eigenvalue. The corresponding normalized eigenstate

ΩA is interpreted as the ground state (vacuum);
c) TA is invertible. The inverse TA

 1 is an unbounded self-adjoint operator. In
the matrix formulation this follows immediately from [7]. See [17] for a general
proof of invertibility of the transfer matrix in the thermodynamic limit.

If A is a local observable, i.e., a bounded operator on J^Λ, it follows that [1]

ωA(A) = (OA, AΩA) = Urn Tr{A(TAf ERKWq}/ZA.q9 (Π.2a)

where

f (Π.2b)
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is the "partition function" and E{

A

] is any bounded positive operator. Choose E(

A

}

as an integral operator with kernel

E<°X{U,φ},{U',φ'}) = exp{-Π2ββ) Σ Re(Tr{UPs-H})

+ 1 Σ (2βh)R&(ττ{φ-1(n + μ)U(
(n,μ)eB(\)

•expίi Σ (2/fβ)Re(Tr{[7ί,.-l})
1 P,eP{A)

+ i Σ (2βh)Re(ΐr{φ'-1(n + μ)U'
(«,μ)eB(A) j

This choice corresponds to imposing free boundary conditions. We suppose that
ATA may be written as an integral operator with kernel

oJ lU^φΛ), (Π.4a)

and define then the "second kernel" of A, denoted by \_A\, through the formula

(IL4b)

With the above choice of E{£\ we find then from (II.2):

ωA(A)= lim J Π ^ϋ(m)^(m)[^]({l7(O),^(o)};{t7(1),^(1)})

Ά M h (IL5a)

where

ί \ " l ( Π . 5 b )
AΛ= ί Π dμU(m)dμφ(m)exp\ "Σ

m=-q \_m=-q

Above, U{m) and φ{m) are the fields, and, correspondingly, dμϋ(m) and dμΦim) the Haar
measures restricted to the m'th time slice, and

Σ (2βg)Re(Ύτ{UPs(m)-t})
eP(Λ)

Σ (2βg) Re(Tr{[/(-l(n,μ) t/ (m+ υ(n, μ)-1})
(M,/t)eB(A)

« e Λ
e(Tr{φ[m\ 1}(n) ̂ (m)(n) -1}).

Let {ylb} be a basis of self-adjoint elements for the Lie algebra of G in the chosen
representation. In a way similar to [7], the generators of the (time-independent)
gauge transformations (in the vector space formulation)
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with Tn = Qxp[_-iS>b(n)λb], ί \ n ) e R , /e^fΛ, are given by

Gb(n)= _e Σi dlES(n,μ)-Eb(n-μ9μy]-Pb(ή)>

where

1

641

(II.7)

and

Similarly

where

and

with

(Et(n0, μo)f) ({U, φ}) = l im- [/({I7β,«) -/({ ϋ,

ft7(no,+/2o)^βλb if (n,fi)Hno,flo)
[/e(n, μ) = <

LU(n,μ) if (n,/2)φ(nθ5μo)

(Eb(n09 μo)f) ({17, ̂ }) = l im^ [/({[/; ̂ }) -/({t

'eiελbU(n0,μ0) if (n,μ) = (nΌ,μ0)
U(n,μ) if (n,/i)Φ(no,/io)'

1
(Pb(n0)f) ({V,φ})=lim-lf({U,φt})-n{V,φ})],

ε->0 18

'eiελbφ(n) if n = n 0

,^(n) if nφn0

We may decompose J^Λ into irreducible components relative to the product

group
neΛ

Gb(n) acts on the subspace J^τ n } according to the irreducible representation τM,
which is identified with the "external charge" at n. Let P { τ n } denote the orthogonal
projector onto ^{Tn}, and P o the projection operator onto the subspace of states
with zero external charge at each point.

Lemma ILL POΩX = ΩX.

Proof. The proof follows from the Peter-Weyl theorem, which provides an explicit
formula for P o . It is simplified by the choice of E^ in (II.2). D

It is easy to verify that

which means that the external charges are "static."

(II.8)
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We now consider dipole states. In the vector space formulation a suitable
definition of such states along the lines of [1] would be

v v
VrΛ= Σ Σ ΨaΛ, (Π.9a)

a=ί b=l

Ψad = Φί(O) Φb(Xr) TA(U(2r))ab TAΉA. (IL9b)

We assume that *Fr Λ φ 0 . This is expected, and verified in the cases G = Z(2) and
G=U(l). Above, O is the origin of the coordinate system, xr = (2r,0, ...,0) and

U(2r)= UφJi) x ... x U(O + (2r-l)eue1). (11.10)

Notice that ΏΛ belongs to the domain of TA

r, since \\TA\\ φθ. To each site n we
attach a copy Vn of a (finite-, say V-) dimensional vector space V carrying a faithful
unitary representation of G. The {Φα(n)} above are a basis of J^, Φ1" denotes the
adjoint of a vector Φ e F, and we assume that the Higgs measure ensures that
ΦfΦ = l, for simplicity, as in [8, p. 57]. Finally, a condition ensuring "complete
symmetry breakdown" [8, p. 57] is assumed.

We now wish to define (and prove) a property of the above sequence of dipole
states ensuring that the limiting charged state has, if it exists, "finite energy."
Unfortunately, for continuous groups, the (uniform in A) norm-boundedness of
the "automorphism" afi(A) = TA~

xATA, for A in the field algebra 3F [1], does not
follow as in the discrete case, because TA

 1 is unbounded (see also [17] for further
discussion). We therefore modify the definition of the "finite-energy property" [1,
Proposition 6.1] as follows.

By a) to c), there exists a positive self-adjoint operator SA such that

TA = e~SΛ.

For A'g A, let A e # ' A ' , the local subalgebra of 3F corresponding to region A'. Its
representative on 2tfA will also be denoted by the same symbol. We define S to be
the set of functions / of a real variable such that their Fourier transform / is in the
Schwartz space 3) of infinitely differentiable functions of compact support, and,
correspondingly, a "time-smeared" operator AA(f) associated to A by

ΛA{f) = 1 dtf(t)a£(A)9 fe$, (II. lla)
— 00

where

ocf(A) = eίtSχAe " ί f S A . (II. 11 b)

Since / is rapidly decreasing, the integral in (IIIla) exists in the strong sense. In
addition, given ε>0 and ψ e JίfA, one may show that there exists a positive feS)
such that

(Π.12a)
— oo

and

ε . (Π.12b)
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Lemma IL2. For any neZ+, ψ in the domain D(TA

n) of TA

n and feQ),
AA(f)ψ e D(TA

n), and there exists a constant C depending only on f and n such that

\\τA

nAA(f)ψ\\sc\\A\\ \\τA

nψ\\. (π.i3)

Proof. By the Paley-Wiener theorem, / is an entire analytic function and the
spectral theorem implies in a straightforward way that AA(f)eD(TA

n\ and

(11.14)
- oo

Again by the Paley-Wiener theorem, VmeZ+, 3Cm<oo, α > 0 such that

Hence

J
— oo

and by (II.l ib) and (11.14):

which implies (11.13) for ψ e D(TA~
n). D

Choose, now, the operator A above as A = Aa^b = Φ](O) Φb{xr) {\\Aa>b\\ ^ 1) and
define

A > (Π.15a)

, (Π.15b)

Ψr,A(f)= Σ Σ Ψ'r ΪV). (II.15C)
l b l

By (IL15a), Qab^D(TA

n) if r ^ π (which we assume henceforth), and by (11.15) and
Lemma II.2,

By (11.12), Ψr,A(f) + 0 for suitable / if *Fr,A + 0. We may therefore define the
quantity:

We have that TA

n = enSA, where SA is the Hamiltonian in the limit of continuous
time (studied in [7] for the pure case). By (11.12), for Ψ e 2tfA and a suitable delta
sequence {fm}meZ+C@, lim Aa

/i
b(Jm)Ψ = Aa'bΨ. We expect that Ψa

r;
b

AeD(TA%
Ω-^oo

TA

nΨa

rι
b

A(fm) converges, and then necessarily to TΛ~
n*F?;Λ, because (TA

 x) is a closed
operator. These facts would imply that
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We are presently, however, unable to prove even that ΨrX e D(TΛ~"). Nevertheless,
the energy of the string ραb, as well as that of the fields at the endpoints, is
independent of r (see the forthcoming proof). These remarks may render the
following definition plausible:

Definition ILL The sequence of states Ψr Λ has the finite-energy property (f.e.p.) if,
for each positive integer n and fe 3) satisfying (II. 12a) there exists a constant Cn(f)
independent of Λ and r such that

The basic element of the following proof is the assumption that the Wilson loop
has perimeter decay. This is expected whenever βh > 0, but the proof sketched in [8,
Theorem 3.14 (4)] is inconclusive: while a proof along the lines of [20] might be
feasible, it is, as yet, open (we thank the referee for these remarks). We therefore
state a

Perimeter Assumption. There exists a subset A of the screening/confinement
region of the (βg, βh) phase diagram, such that if (βg9 βn) e A,

where α>0 is independent of Λ, r, but depends on A. Above, Wκ{Mr) denotes the
expectation value of the Wilson loop observable, which will be defined shortly. We
also make the simplifying assumption (as in [8, p. 57]) that G acts transitively on
the unit sphere in <Cy.

Proposition 11.1. Under the above Perimeter Assumption, Ψr Λ has the f.e.p. if

Proof. By the Schwartz inequality for both the scalar products and the sums over
the indices, together with (11.16), we find

where

V \l/2

Σ \\U~n(U(2r))abΩJ2

a,b=l

Σ \\Ti(U(2r))abΩJ2

a,b=l

2 V 1 / 2

\ _ L _ 1

fr.A = V

a,b=l

The numerator in /r Λ is bounded by

v. ||ϊ;(I/(2i-))βo,6oΩA|| =».sup||7ϊ([/(2r)) r tβA | |.
a,b
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By assumption, G acts transitively on the unit sphere in (Cy, and hence there exists a
(r-dependent) gauge transformation yielding:

φa(O) = l if a =

φb(xr) = ί if b =

= 0 if

= 0 if

In this gauge the denominator of frΛ equals \\Ίl(U(2r))aoboΩA\\, by (II. 12a). By
gauge invariance of both numerator and denominator of fr>A, we thus get

We now apply the Schwartz inequality for both sums and scalar products to grA

successively in the manner of [1, Proposition 6.1] obtaining, together with the
above estimate for frA:

EA n r(f) ^ const [WΛ(M,.)] ~ n l r, (II. 18a)

where

a,b

is the expectation value (in spatial volume Λ) of the Wilson-loop observable
corresponding to the oriented loop Mr in Fig. 1, which will occur many times in the
sequel:

Fig. 1. The oriented loop Mr

By the "Perimeter Assumption" there exists a subset of the screening/confinement
region of the (βg,βh) phase diagram where the Wilson loop has perimeter decay:

WA(Mr) ^ exp (— ocr), (II. 18b)

where α>0 is independent of Λ,r (but depending on A). Inequalities (II. 18a) and
(II. 18b) together yield the f.e.p. D

We may interpret the above result physically: placing the string as far away in
time as the spatial separation between the charges involves distributing the flux
lines of the electric field spatially in such a way that the energy is uniformly
bounded, avoiding the formation of a permanent "linear flux tube." The important
point is that this phenomenon is universal depending only on the perimeter law.
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This was not explicitly stated in [1], but is implicit in their proof.4 What happens if
the string is chosen to lie at t = 0? It is hard to prove that Proposition II. 1 does not
hold. Since the state is now charged, it may be expected that the corresponding
representation be disjoint from the vacuum representation, and that the f.e.p. does
not hold, with the formation of a permanent linear flux tube. These properties are
illustrated in the Schwinger model in Appendix A, which is a mathematically more
precise version of arguments of [4, 5].

We shall now specialize some results to G = U(1),writing

u(n, μ) = exp [iθ(n, μ)~\, φ(ή) = exp pτ(n)] ,

with -π<θ(n,μ)^π V(n,μ)e£(Λ), and — π<τ(rc)^π VrceA. There are essen-
tially no modifications, except for the normalization in the nonabelian case,
tr(λaλb)=^δab, which is no longer valid here. Hence all expressions involving a
trace in the group representation should be multiplied by a factor 1/2. It is also
convenient to evaluate the Euclidean integrals in the unitary gauge, defined by the
change of variable

U(xm, μ) = 0(n, μ\m) + τ(n) ( m )-τ(n + μ\m), U(xm, t) = τ(n\m+1)-τ(n\m),

where, now, xm = (n, m)eZd+ί, with neA, and m denotes the time-slice. The
vacuum expectation value of gauge-invariant operators A is, in the unitary gauge,
given by

f ... f Π dU(x,μ)[Al({U})exp(SΛq)
ωx(A) = lim -" ; π <*f e * W , (11.19)

ί ... ί Π dU(x,μ)exp(SΛJ
— π —π (x,μ)eB(Aq)

with

SAq = ββ Σ (cosUP-l) + βh Σ {cos[t/(x,μ)]-l}. (11.20)
PeP(Aq) (x,μ)eB(Λq)

Above, (x, μ) is an oriented link in the region

B(Aq) denotes the set of positively oriented links in Aφ P(Aq) the set of positively
oriented plaquettes in Aφ and

t/p= ΣepU(x,μ)y(JC,μ), PeP(Aq),

where

p f + * if the orientations of (x, μ) and P agree,
(x,μ) | _ i otherwise.

We shall also frequently write Ub = U(x, μ), where b denotes a bond (x, μ\ and

Π dU{x9μ)\dlΓ\B(Aqy
(x,μ)eB(Λq)

4 See also [16]
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The generator G(n) corresponding to (II.9) is written

From (11.21) we see that the operator

Qn=-id/dτ(ή) (IL22a)

should be interpreted as the charge density operator of the matter field at site n.
The self-adjoint operator

Qv=ΣQn (Π.22b)

measures therefore the charge in a volume V of space. It is easy to verify that QyTA

(ΛDV) is a bounded operator. In fact, its "second kernel" is given by

= iβh [ϊ Σ ?(„, ϋ) sin [τ(n) - τ(n + μ) + θ(n9 μ)~\
(n,μ)eB(\)

+ 1 if ne\,
_ ! if

neV

where

Lemma Π.3. ΩA lies in the domain of Qy (ADV) and

ωΛQv) = (ΩA,QyΩA) = 0. (11.23)

Proof. Since ΩA is the eigenvector of TA corresponding to eigenvalue \\TA\\, and
QyTA is a bounded operator, ΩA belongs to the domain of β v . The same usual
proof then yields

ωA(Qv)= Mm i{TAfQy(T
q—* oo

Hence, passing to the unitary gauge

where

%^zι\ ί ... f
— π — π

Σ 7(n, μ)/2sin[l/(n, μ)] + Σ sin[C/(«, M es™,
(n,μ)eδB(V) ne\ j

where δB(\) denotes the boundary of V (i.e., the set of all bonds with only one
vertex in V). But 0̂  = 0 because SΛq is even under the change of variable U(x,μ)
-> — U(x, μ), while the rest of the integrand is odd.

A version of (II.9) in the U(l) theory is

Ψr.A = Ffix> (Π.24)
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where

Fr = φ^)φ{xr)TAV2rTA

r. (11.25)

Above, the star denotes complex conjugate, and U2r is defined as in (11.10). Note
that in U(l) case T^"1 is well-defined. Define the operator φy which measures
the flux of the electric field on the boundary of V:

Φv^ΣΦn, (Π.26a)
«eV

h^\ (IL26b)

Lemma II.4. Ψr A is gauge-invariant and lies in the domain of both φy and Qy.
Further,

(Ψr.Λ,QvVr.ld = V'r.A,ΦvVr.ld. (Π-27)

Proof. It follows from definitions (11.22), (11.24), and (11.25) and the fact that QnTx

(n e A) is a bounded operator that Ψr x belongs to the domain of Qn. Similarly ΦnTx

is also a bounded operator and ΨrA is in the domain of φn. Hence, by (11.21), Ψr A

belongs to the domain of G(n) (we A). By Lemma II. 1 and (11.10),

, (11.28)

By the above remarks, (11.28) may be differentiated at α = 0 yielding

from which (11.27) follows.

III. Absence of Charge and Exponential Clustering in the U(l ) Theory

Now we consider the flux operator defined in (11.26) and the expected value of φv in
the states ΨrJ\\Ψr,J defined in (11.24), (11.25),

ωr(φy) = (FrΩA, φyFrΩA)/(FrΩA! FrΩA)

= Σ (-i)s(n,v)
(n,v)edV

(TY(U)Ω^l (ΩA, (U2rH • TA)
2\U2r)ΩA),

where

+ 1 if neV,
sin, v)= i . .. Λ ,,v ' ' - 1 if n + v ε V ,
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In the unitary gauge we have:

π

ωr(φv)= lim Σ s(n,v) J
«->oo (n,v)eav - π

where

P3(«,v)

J cos(UM),

if P is a spatial plaquette,

1 if P is temporal in the direction
of increasing time,

0 if P is temporal in the direction
of decreasing time

and

uMr= Σ y£;v)t/(«.v),
(«,v)eMr

where M r is the oriented loop shown in Fig. 1, and

+ 1 if the orientations of (n, v) and M r agree,

- l otherwise. ( 1 1 L 4 J

In expression (III.2) we arrive at cos UMr in the denominator and at the sin UMr

in the numerator using the fact that the remaining functions under the integrations
are even (respectively odd) under the change of variables Ub-+ — Ub for all
beB(Λq+r).

In the numerator of expression (III.2) we find the sum

Σ Σ s in([/ P s ) S (n,vy>,v), (III.5)

which may be written as

Σ sin(I/ps)ί Σ s(n,v)ypinj)\, (III.6)
L(n,v)eδ\ )

where P* is the set of all the spatial plaquettes which have at least one bond in d\.

Lemma III.l. // P s is a spatial plaquette, then

(n,v)eδV

Proof. The proof is a simple verification of each possible case.
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This lemma says that in the sums in expression (III.2) only temporal plaquettes
in the direction of increasing time contribute.

Hence, expression (III.2) may be simplified to

f ίdΌ~\B{Λ) exp {SΛ} sin UMr sin UL

= Σ ^L<sin UMr sin UL}J (cos UMr>Λ, (III.8)
L

where UL reads to Upin)^ or [/(„,$,/>(„,$) being a temporal increasing time plaquette
which contains the bond (n, v) e δV and # L is the corresponding factor, which may
be ±βgovβh/2.

It is obvious that we may write (III. 8) as

From this point, our aim is to consider the limit r-> oo of the expression above and,
therefore, attempt to provide a polymer expansion of expression (III.9). The action
SΛ may be written (by a trivial addition of a constant) as

SΛ = βg Σ (cost/P + l) + j8Λ Σ cost/,. (IILIO)
PeP(Λ) beB(Λ)

We define for each (n, v) e 5(^1) the measure

dU*(n,v) = dU(n,v)eβhCOsUin>v) f dUexp(βhcosU), (III.ll)

so that f d[7* = 1. We define also for each
— π

ρP(t7) - exp [^(cos UP +1)] - 1 , (III. 12)

so that ρP(U)t0.
With the use of these definitions we write

CCP(Λ) [_PeC J

(III. 13)

Since the measure dl/* is normalized to one, we may write simply

CCP(Λ) [_PeC

. c o s ( £ / M r + t / L ) , (111.14)

where δC is the set of all the bonds of CcP(Λ) and [d l/*] ( i l ) means Π dU$, A
being a set of bonds. &e74

Let H be a set of bonds. |£Γ| denotes the number of elements of H. For βh > 0 we
define

[ π ~]\H\

ί d[/*cos(7 (III. 15)
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which is a positive, monotonically increasing function of βh, satisfying

l ; lim

We now consider the ratio

Let b E MJdC be a bond. Then, from the definition of UMr,

<cos(UMr+UL))Λ

N(\Mr\)

CCP(Λ) [PeC J iV(|Λί r | )

(111.16)

cos(t/L+ l7Mf} = cos(I/L+ C/Mr/{b}± I7b)

= cos(17L+ C/Λfr/{ft})cosl7&±sin(l7L + [7Mr/{6})sinl76.

(111.17)

(The sign depends on the orientation of b alone Mr) Since

W o = \AU*-]iMr/dQm x dl/? and f dU% sin 17, = 0,
— π

it follows that

ί s(U Mrl{h) + UL)

=

N(\Mr\)

(III. 18)

Repeating the process for all fe's e MJdC, we conclude that
J ίdU*\Mr/eo cos(UMr + UL) = cos(UMrndC + UL)

N(\Mr\) N(\MrndC\) " l ' '

So, we have

S ^ = z ; ' Σ Sldu*] Σ \ΠeP(V)]
CCP(Λ) (dCvL)lPeC J

+Uΰ ( I Π 2 0 )

N(\MrndC\)

In analogous fashion,

CCP(Λ)

cos(UMrndC) mi on
'NQMrndC\Y [ ]



652 J. C. A. Barata and W. F. Wreszinski

Definition (III.l). CONN(L) = {BeP(Λ) all the connected parts of dB have a
non-empty intersection with L (L understood as a set of bonds)}.

Through Definition (III.l), (111.21) may be written as

JV(|Λfr|)

= ZΛ X Σ ί ίdU%dB<jL) Σ ί ldU*\δC) ί Π QP(U)
Be CONN (L) CeP(Λ) [PeC

6CndB = φ
dCnL = φ

n(dCvdB)+ UIJ

From the fact that C and B are disjoint, it follows that Mrr\{dC\jdB)
= (MrndC)v(MrndB), a disjoint union. So we find that

-sm(UMrnSC) sm(UMrnSB+UL). (111.23)
But we have

Π QP(U)Um(UMrn8C)sm(UMrneB+UL)
PeCvB J

= j Π Qp(U)\sm(UMrnSB + UL)ίldU%dC)\U QP(U)
(PeB j [PeC

sin(t/M r n, c) = 0. (IΠ.24)

In addition, N(\Mrn(dCvjdB)\) = N(\MrndC\)N(\MrndB\), and we arrive at

<cos(C/Mr+l/ί)>VJV(|M,|)

- Z Λ Σ J [^*]pυDi π (ί/)
BeCONN(L) [PeB

Σ ί [dt/*](*o I Π QP(U)\ cos(UMrnδC)/N(\MrnδC\)} .
P ( l ) [PC J II

< ( ) [PEC

[δCnL = φ J Ull.Zj;

Each set C may be decomposed in the set of its connected parts (two plaquettes
are said to be connected if they have a common bond), which we denote by {Cy}.
We therefore have

Π Qp(U)\cos(UMrndC)
PeC j

= J Π {ίdU%dCγ)} f Π QP(U)\ cos (Σ UMrndCγ). (111.26)
y [PeC j \γ J

Again we decompose

cosΣ UMrndCγ= Πcos( ί/ M r n a C v )
y y

+ (terms with at least one factor ήn(UMrndC )),

and we conclude that

Π QP(U)\cos(UMrnΰC)/N(\MrndC\) = Π μr(Q, (111.27)
PεC j {Cy)
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where

f j } ^ ^ . (IH.2S)

Now we are able to express (111.25) in terms of a polymer expansion. Two
plaquettes are said to be connected if they have a common bond. The polymers of
our model are connected sets of plaquettes. Two polymers are said to be
"incompatible" if they have, at least, one bond in common and "compatible"
otherwise. To each polymer γ we associate an activity given by μr(Cγ) defined in
(111.28), Cy being the set of plaquettes which forms y. (In Appendix B we present
some general results on polymer expansions which will be used here.) Hence, we
conclude from (111.28), (IΠ.27), and (111.25) that

Λ

,cos(UMrndB+UL) Γ

N(\MrndB\) ΓhΛ

 { M ' ( j

Γ~B
ΓnL = φ

where ΓnL=φ means ynL = φ for all γeΓ. For all notation used above see
Appendix B.

According to (111.29) we also have

(cos(UMr)}Λ/N(\Mr\) = Z^ Σ (μ r)
Γ. (ΠL30)

Γe9Λ

Using (111.30) and (111.29) we finally arrive at

= Σ

Mr)Λ βeCONN(L)

COS(UMrndB+Ul)r v (u\ΓhΓ I y / xΓΊ

where

0 if y^B or if y n L φ O ,

otherwise.

According to Definition (B.2) we may write

Γ Σ (μfbΓB,Ll Σ (μ/Ί=ρ(5uL).
\_Γe9Λ \Tε<SΛ J

Using Lemma B.5 we write (111.31) as

<cos(UMr)}Λ

μr) ( * . , , - D j ,
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provided the series Σ CΓ(μr)
Γ(bβ L— 1) is absolutely convergent. This point may be

seen as follows. Γ

We have

ΣCΓ(μr)
Γ(bΓ

B,L-l)\ ^Σ
r \ r

(111.33)

The sets Γ which contribute in the right side of (111.33) are those for which
3yeΓ, such that either y^B or ynL = φ. The set of y's which satisfy these
conditions is contained in the set of y's which satisfy either y ̂  B or y * PL, where PL

is the smaller set of plaquettes such that dPL D L. So, using Γo = BvPL, we conclude
that

ύ Σ \cΓ\\μΓ

r\ύσ oi l 9 (111.34)

CΓ π ~\-(\MrndCγ\/\Cy

= (e2βd— l)sup<M J dU*cosU\
y lL-π J

Using \MrndCy\/\dCy\S\δCy\/\Cy\ύ4, we arrive at

\\μr\\ύ(ljU*cosU'

and the condition ||μr|| ^ ||μj| is obtained if

π \

where C" is a constant independent of Γo.
According to Appendix B (Lemma B.6) the last inequality in (111.34) holds if

We have

| |μj = supfί [dl/*] ( a c J Π βP(U)UoS(UMrnaCγ)/N(\MrndCγ\)γ^

(111.35)

(111.36)

(111.37)

In Fig. 2 we show a region of the phase diagram of the model where we have,
according to our naive estimate, the condition \\μr\\ ^ | |μ j satisfied uniformly in r.

Fig. 2

In Fig. 2, j?* = 1/2111(1
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Now our interest is to consider the limit r-^co of expression (111.32). The first
step is to search for an upper bound, independent of r for the exponential in (111.32).
It follows from Lemma B.3 (Appendix B):

i], (111.38)

where

ω = (e2β° - l ) \ j

We therefore obtain from (111.32) the estimate

<COS([/M,.+

Be CONN (L)

Γ π Ί - \Mrr

I dU*cosU(e2β°-l)\ j dU*cosU
<cos(UMr))

• exp {F1 [ - Inω] (\B\ + \PL\)}. (111.39)

Again, as \MrndB\^4\B\, it follows that

<cos(UMr+UL)>
(cosUMr)

^explF1{-hiω)\PL\] Σ
5eCONN(L)

ω ^ F l ( - l n ω ) n + k n ,

(111.40)

where K is a constant which does not depend on r, but depends on the dimension.
The last series (111.39) converges if

or

a>F1(a) + K, (111.42)

where a= —lnω. From the fact that F^a) is decreasing there exists α*, solution of
a*=zFγ(a*) + K, such that inequality (111.42) is always satisfied for α>α*. The
condition a > a* means

dU*cosU] <e-a* = ω*(<l), (111.43)

or

( f dU* cos U ) < [_(e2β* - l ) /ω*] 1 / 4 . (111.44)
\-π /

Collecting (111.43) and (111.37) we arrive at the following theorem.

Theorem III.l. There is a sub-region of the phase diagram of the model, namely, the
region given by

J dU*cosUj >[max(efl*, I ^ I Γ 1 ) ] ^ " ' - ! ) , (ΠI.45)
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where the following estimate holds uniformly in r:

BeCONN(L) [PeB

ω w exp[(F 1 (- lnω) + K)n]. (111.46)
n = 0

Remarks. 1) Region (111.45) has the same form of the one shown in Fig. 2, replacing
)8*for3;=l/21n[min(e-^||^| |)+l].

2) Above we used |PL | = 1 and \L\= ^4.

Corollary III.1. For the region given in Theorem 11 I.I the limit
lim <cos(ί/M r+l/L)>/<cos((7M r)> exists and is given by
r->oo

Γ <cos([/M r+[/L)>
l i m / 777—ϊ\

<cos((7M r)>

, / (ΠL47)
Γe \ j

){ Π

and M^ is the time axis with origin at 0.

Proof. We begin defining

; t ( β , Mr) = exp ΓΣ C r (μ r )
Γ (^, L )Ί, (111.49)

so that

< c o s ( l ί M + L Γ J > = Σ i L ( B n M M B M r ) ( I Π 5 0 )

<̂ COS U M r > BeCONN(L)

Now, we rewrite (III.50) in the form:

<cos(ί/ ^ = Σ

\COS LJM) BeCONN(L)
\B\<1

+ Σ ίL(BnMr)jL(B,Mr). (111.51)
Be CONN (L)

II
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According to Theorem III.l,

Σ ίL(BnMr)jL(B,Mr)
BeCONN(L)

657

(111.52)

The bound given by (III. 52), again, does not depend on r.
Since the sum Σ *s finite we have

Be CONN (L)
l |

- Σ lim ί(BnMr)KB,Mr)
BeCONN(L) r-κx>•oo < C 0 S ί / M r >

(111.53)

The limit lim ί(BnMr) is clearly given by ^(BnM^).
r-+oo

For limit lim j(B, Mr), we need a more careful analysis. The square Mr may be

written as the union Mr = LrκjMn where Lr = MrnMQ0. The series
Σ CΓ(μr)

Γ(bΓ

BL~ 1) was proven to be absolutely convergent in the region given in

Theorem III.l, and we may write

"r)Γ(i>5.L-l)= Σ CΓ(μr)
Γ(bΓ

B,L-l)
Γ Γ

ΓnM rΦ0

+ Σ
ΓnMr = 0

But

VI |Cr||(μ/|,

(111.54)

(IIL55)

where P M r is the smallest set of plaquettes such that PMrDMr. From Theorem B.I,
-given in Appendix B, we conclude that the sets Γ which contribute in the right side
of (111.55) satisfy | |Γ | |>d r , dr being the smallest distance from B\JL to Mr.
Hence, using Corollary B.2 (see Appendix B) we arrive at

CΓ(μr)
Γ(biL-l)\ (111.56)

Since in the region given in Theorem III.l we have ||μ r | |/| |μc | | < 1, uniformly in r,
we conclude that

lim CΓ(μr)
Γ(bΓ

B,L-l) = 0

and

lim j(B, Mr) = exp {Σ CΓ(μJΓ(bΓ

B< L-l)\.
r->oo I Γ Γ

(111.57)

(111.58)
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Therefore, Corollary III.l arises from (III.53) upon taking the limit ί-> oo. D

Returning from (111.47) to (III.9) we conclude for the region given in Theorem
III.l,

lim ωr(φy)= Σ Σ 9L) ίdU*\eBυL)\ Π QP(U)\
r-*oo L BeCONN(L) {PeB j

Σ bΓ

B,L(μjΓ IΣ (μJΓ\-
S? I Γ& j

(πi.59)

Theorem III.2. Under the conditions in which (111.59) holds,

lim Γlim ω r(<^v)Ί = 0 .
V T Z d [ - r V r V / J

Proof. Due to the factors sin(L7Moon^)sinl/L which appear in the integrals in
(III.59) the only sets B which contribute are those for which we have simulta-
neously ΘBnL + Φ (which already occurs) and dBnM^ + 0. Since all the connected
parts of dB, which we denote by dBa, satisfy dBanL Φ 0, we conclude that the sets B
which contribute in (111.59) satisfy I d ^ D I S T ^ M J ; DIST(L,MJ being the
smallest distance from L to M^. Hence, proceeding as before, we have

lim ωr(φy)

Σ
n = DIST (L, Moo)

j
(111.60)

with f(ω) defined as in (III. 52).
Since the number of terms being summed in Σ increases only with the area of

L

V, we conclude that the last expression in (111.60) converges to zero when V f TLd

and DIST^M^J-xx), with decay governed by an exponential clustering with
mass gap given by m> — (lnω-f F ^ — \nω) + K). D

IV. Conclusion and Open Problems

There is a central point in the proof presented in Sect. III. In the limit r->oo, the
expression ωr(φv\ given by (111.59), is such that the support of the integrand/
summand occurring there has the following geometrical structure:

(> 0

en
en

en
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The number of sets L which are summed grows, as V / Έd, as the area of V, and
hence the existence of a mass gap in the model provides sufficient fall-off to
compensate for this growth, implying at the same time the absence of charges. A
very similar effect happens in connection with the Goldstone phenomenon in
nonrelativistic theories (where locality, as here, plays no role). Let jμ(t, x) be a
conserved current, and QRit) = \ dxfR{x)j0{t,x\ the associated charge, where
fR e 3) is a regulator function such that (A > 0, independent of R)

JO if

Define
qR(t) = (Ω,lQR(t),A]Ω), (IV.l)

where A is an observable and Ω the ground state. Then, formally (see also [15] for a
more careful discussion)

J dx(Ω,[f(t,x),A]Ω)-VfR(x). (IV.2)

It may be expected from (IV.2) that, if the truncated vacuum expectation value
(ΩJ(t, x\AΩ) — {Ωj(t, x)Ω)(Ω, AΩ), and, hence, the expectation value of the
commutator (£2, \J(t, x\ A]Ω) falls off faster than |x| ~ 2 (Coulomb case), compensat-
ing in this way for the area growth which results from integration over the region
R ζ\x\^R + A, the limit be time-independent (if it exists). In addition, if, for some
observable, q φ 0 (spontaneous symmetry breakdown), the forces must be long-
range, i.e., the commutator cannot decay faster than Coulomb (Goldstone
theorem). Rigorous proofs of the Goldstone theorem for quantum spin systems
which follow this intuition have been given ([19], see also [20]). Our proof may
also be viewed as a version of Swieca's theorem mentioned in the introduction to
continuous gauge theories on a lattice, in the following restricted sense: due to the
existence of a mass gap, the states associated to a special sequence of dipole states
of finite energy are chargeless. Although other, possibly charged, states cannot be
ruled out, we believe that the "universal" finite-energy property of these states
conveys them a fundamental role, as discussed in the introduction, Sect. II and
reference [16]. An open technical problem of some interest is to eliminate the
"time-smearing" in Definition II. 1 and Proposition II. 1.

What is the main difference in behaviour of the dipole states in the screening-
confinement and charged regions? In the charged sector of the Z(2) model [1] the
same setting depicted in Fig. 2 occurs, but there the "memory" that {Mr} (see
Fig. 1) is a sequence of squares is not lost. In the screening/confinement regions of
both the U(l) and Z(2) models, only M^ "remains." These differences are
intimately connected with the order of the limits involved: firstly A / Zd, then
r->oo, and finally V/Z d . A discussion of the difference in behaviour of the
dipole states in the screening and confinement regimes of the Z(2) model, which
also strongly depends on the above sequential order of the limits, may be found
in [1].
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Finally, it remains an interesting problem to formulate similar criteria to
characterize charged states in nonabelian gauge theories. In any case, we expect
from Proposition II. 1 and further refinements that the sequence of dipole states
introduced in Sect. II might be suitable for this formulation.

Appendix A

In this appendix we study dipole states in the massless Schwinger model [5,9,10],
with the string placed at the line t = 0, illustrating the points at the end of Sect. II. It
may be viewed as a mathematically precise version, somewhat different in form, of
the arguments in [4,5]. In a special (noncovariant) gauge ([5]; eventual
mathematical gaps may be filled in as in [9]), the theory is isomorphic to a massive
Boson field theory in Fock space #", with the formal Hamiltonian

* = If Λc : [ π ^ , 0 ) + ( M ^ ) + ^(*,0)] :, (A.I)

where the dots denote Wick ordering, e is the electric charge in the original model,
and φ is a free Boson field (of mass e/j/π), with π its conjugate momentum. The
formal charge-density operator at zero time is [5]

), the Schwartz space of real-valued infinitely differentiable functions of
fast decrease, then φ(f) and π(/) are essentially self-adjoint on the dense subset 3)
of 3F consisting of finite particle vectors, and their self-adjoint closures (on Qj) will
be denoted by the same symbols. Let gRε and fs denote infinitely differentiable
functions of compact support, such that

1 if O^x^R,
0 if x<-ε or --*-» • - ( A ' 3 '

If Ω is the Fock vacuum, we define a dipole state (corresponding to the string at
ί=0[4,5])by

^ , . = ^ . . 0 , (A.5)

where

TR,ε = expU\/ππ(gRtJ] . (A.6)

(In contrast to [5] we keep ε fixed as R^oo.) Define a (self-adjoint) charge
operator by

^ (A.7)
j/π

where the prime denotes first derivative.
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Consider, now, the family of states [11]

on the Weyl (CCR) algebra 91 [11], generated by the operators U(f)=
and V(g) = exp[_iπ(g)~] (f,geSfJR)), which satisfy the CCR in Weyl form:

(A.8)

'-i(f,gW(g)U(f),
00 _

where (/,#) = J dxf(x)g(x).
- oo

By usual compactness arguments there exists at least one limit (possibly along
a net [11])

ω β = t t l im"ω Λ t β . (A.9)
jR->oo

We assume that exp(iαβs) G 91 for α G R [which is verified in the case at hand by
(A.7)], and say that a state ω on 91 is charged [with respect to the vacuum, which we
assume to have zero charge, a fact which holds in the present case, by (A.7) and the
following definition] if

T — ω(eiaQ%=0 =ω(Qs) (A.10)

exists for each S < oo and

3\imω(Qs)Φ0. (A. 11)

S-+oo

Proposition A.I. Any state ωε( ) of the form (A.8) has unit charge. Further,

Γ e2 Ί
(Ψ HΨ ϊ — •£ f ήx\ nf

 (ΎΛ2 J- n (Ύ\2

- o o L π J
Proo/. By (A.8), if 0 < ε < S and S + (5 < R,

where 11/111 = (/,/). Hence, for any state ωε given by (A.9)

where gε is an infinitely differentiable function such that

gε(χ)=\ Y % < ' ( A 1 4 )

By (A. 13) and (A. 14)

i da ε

hence, by definitions (A.10) and (A.ll), ωE has unit charge. Equation (A. 13) is a
standard Fock space computation. D
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This proposition shows that ωε is charged and has infinite energy, because the
first term in (A. 12) is bounded as R-* oo (for ε > 0 fixed) and the second one diverges
linearly with R. Both properties lead us to expect that the corresponding
representation be disjoint from the vacuum representation (a fact which was not
completely established for the finite-energy charged sector in the Z(2) theory for
technical reasons [1]). In fact, the representation for R, ε fixed is defined by the map

VR,ε(f)Ξ TR,tU(f)TR-} = V(f).

Hence ωε( ) corresponds to the representation (U\ V'\ defined by

where gε is given by (A. 14).

Proposition A.2. The representation (U\ V) defined by (A. 15) is disjoint from the
Fock representation (I/, V).

Proof. Suppose [/, W unitarily equivalent. Then there exists a unitary operator
T : # ' - • # ' such that

U'(f) = TU(f)T*. (A.16)

Choose a sequence

f n ( x ) = l - e - χ l ^ 2 g 1 / n ( x ) , n Z l , (A.17)

with gt=llH as in (A.14). Then /„ € S^(R\ and ||/J|2 > 0. Hence φ(fn) , 0
«-> oo

on 3) and therefore

U(fn)-+t (A.18)

on &. It follows that

7T/CQΓ* >t (A.19)
n—*- oo

on y. By (A. 15)

i |/^ f fn(x)dx] U(fn) > exp(iπ)i= - 1 (A.20)

by (A. 17) and (A. 18). Hence, (A. 18) and (A.20) contradict (A. 16). The same proof
shows disjointness. D

The infinite energy of charged dynamical states is expected in both massless
(such as the model treated in this appendix) and massive models, in the
screening/confinement region (which covers the whole phase diagram in the case of
two-dimensional systems). The situation is different if one is concerned about the
(potential) energy V of static, external charges, as a function of their separation /.
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There, due to polarization effects (pair creation), V rises linearly until / is of order
the inverse mass of the particles (matter fields), and saturates for larger /. A
semiclassical calculation in the massive Schwinger model yields this result ([13];
see also [14] for a similar calculation in lattice gauge theories). In this latter
respect, the massless Schwinger model is, of course, pathological, because there the
potential rises linearly with distance, without saturation.

Appendix B. Polymer Expansions

This appendix is devoted to present some of the basic results concerning the
method of polymer expansions. We follow in part the notation used in [1]. The
proofs which are not presented here were onlined in [1, 8].

We consider a set Ψ of geometric elements called polymers. Among the
polymers we establish a symmetric relation called "compatibility" (or "incom-
patibility") denoted by y ~ yf (respectively y * y'\ where y, y' e Ψ. The relation holds
for all pairs of polymers and we also have γ <+> y: each polymer is incompatible with
itself. In all the proofs we will suppose Ψ is a finite set.

A set of polymers Γ is said to be "admissible" if y ~ yr for all y,y¥eΓ with y Φ /.
We denote by <3 the set formed by all the admissible sets of polymers.

To each polymer we associate an "activity" μ(γ), in principle a complex number,
and we denote

μΓ=Π(μ(y))Γiy\
yeΓ

where Γ(y) is the multiplicity of y in the set Γ (not necessarily an admissible one).
Notation: if Γ is a multi-index [8], Γ!= ΓΊ Γ(y)\ and n(Γ)= Σ Γ(y)-

yegc ye<gc

If Γ and Γ' are two sets of polymers, we denote Γ ~ Γ' if y ~ y' V y e Γ, y' e Γ' and
Γ<+<Γ' otherwise. For ΓE^WQ define CONN(Γ) = {Γ 'e0 |/~Γ V/eΓ'}.

The partition function of a polymer model is given by

Z=ΣμΓ. (B.I)

and we define

ρ(Γ) = Z-1 Σ μr. (B.2)

Γ'~Γ

To each polymer y we associate a conveniently defined size denoted by \y\,
\y\ G N. We define ||Γ|| = Σ Γ( y)|y|. Following [1] we assume there exists a convex

y

differentiable monotonically decreasing function F0:(b0, oo)->R+, boeHί, such
that for each Γe& and b > b0,

Σe-b^^F0(b)\\Γ\\. (B.3)

We will consider here polymer models for which the following property holds:
iϊΓe^ and N(Γ, s) denotes the number of polymers of size s incompatible with Γ,
then there exists C such that

(B.3a)
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It's straightforward to prove that in this case we may choose F0(b)
= Ce-\l-Ce-hY\ bo = \nC.

It is a well known fact that (B.3a) holds for the polymer model which occurs in
this paper.

We define ||μ|| = sup|μ(y)|1/M, so that \μ(γ)\£ | |μ||M.
7

Lemma B.I. Let ac be the smallest solution of F'0(αc) = — 1 provided it exists, and
ac = b0 otherwise, and suppose

Then

as a convergent series.

Proof. May be found in [1]. D

Note. For the models in which (B.3a) holds we have

) < l . (B.4a)

Definition. Fί: (ac + F0(ac), oo)-^]R+ is such that

F1(α + F0(α)) = F0(fl). (B.5)

Lemma B.2. i7! is monotonically decreasing.

Proof. Follows easily from the definition of Fλ and the assumed properties

ofFo D

Lemma B.3. // ||μ|| ̂  \\μc\\, then the following bound for ρ(F0) holds:

IρCΓo^expCF^-lnllμlDHΓoll]. (B.6)

Proof. Follows from Lemma B.I, Definition (B.3) and Definition (B.5). D

Let us define the function g: (SC x <̂ c-•{(), — 1} by

_? \7f. (B 7)

It follows easily that the partition function (B.I) may be written as

Z= Σ μΓΦ(Π, (B.8)
rcyc

where

= Π li+g(7i>Vj)l. (B.9)

Let / 1 ? / 2 : {Fc^J-><C be functions defined on multi-indices. We define a *
product between fγ and f2 by

= Σ /l ίAΌΛί^). (B.iO)
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Definition.

[0 otherwise.

We denote by #o the set of functions on multi-indices satisfying fo(φ) = 0
and by # i the set of functions on multi-indices satisfying /1(Γ) = 1(Γ) + /O(Γ)
for some f0

Definitions.

a) (Exp/)(X)= Σ f-~^~ for
n^o n\

b) (Log/)(X)= Σ i-:^—f*\X) for
n^i n

where /*°(X) = H(X).

Properties. Exp(Logf1)=f1; Log(Exp/0)=/0 for ^ e ^ and / o e # o We note
that in definitions a) and b) above the sums are finite.

Let <̂ (Γ) be as defined in (B.9). We define the "Ursell function" φτ(Γ) by

φτ(Γ) = (Logφ)(Γ).

Following [1] we will prefer sometimes to use the symbol CΓ for φτ(Γ).
Given a set Γ of polymers we may define a graph which we call "graph of

incompatibilities," in the following way: we attribute to each polymer in Γ a vertex
and join two vertices by a line provided the corresponding polymers are
incompatible.

Theorem B.I. CΓ = 0 if the ''graph of incompatibilities" which corresponds to Γ is
not connected. (The proof is outlined in [8, Lemma 3.5~].)

Lemma B.4. Let Fbea function on multi-indices and ω a function on polymers. Then

, (B.ll)( (
\x ) x

provided J]F(X)ωx is an absolutely convergent series, i.e., Σ 1-̂ (̂ 011̂ *1 <°°
x x

oo I

Proof. Qxp(ΣF(X)ωx\ = Σ ~;ίΣF(X)ωx\n. Since the series in parenthesis is
\x ) n = o n\\χ )

absolutely convergent, we may rewrite the right-hand side above as

Σωx[ Σ (ί/nϊ)F*n(X) - Σωx(ΈxpF)(X). D
X \n=0 J X

Corollary B.I.

provided Σ ^rMΓ z s absolutely convergent,
r

Proof. Follows from Lemma B.4, putting F(X) = φτ(X) = Cx. D
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Lemma B.5. Let &c be a finite set and b a function on polymers. Then

:φ{X)b*μΛI(Σ l
\X

provided Σ CχΦx ~~ l)μx l 5 absolutely convergent.
x

T(X)ΦX l)μ xProof. Since ΣΦT(X)ΦX — l)μ x is absolutely convergent, we may write
x

ΣΦT(X)(bx-ί)μx= lim ΣΦT(X)I{γ}(X)Ψx-l)μx,
X {Y} X

where / is the characteristic function of the set {Ύ}, a subset of the set of all multi-

indices. The limit lim means the limit whereby {7} converges to the set of all multi-

indices. Since the series is absolutely convergent, this limit may be taken in an

arbitrary way.

Now, using Lemma B.4

= lim

= Σ μxbxlΣ μX- •
Xef I Xe&

Lemma B.6. There exists a constant c independent of Γo such that

Σ |C r | |μ
Γ |5Ξc| |Γ 0 | | . (B.12)

Proof. (The details given below, which were omitted in [1], were communicated to
us by Dr. K. Fredenhagen.) From (B.2) we obtain as in [1, p. 110]

e(O= Σ (-μfoiΠ (B.13)
Γ'eCONN(Γ)

(formula (A.4) of [1]). We now use identity (A.13) of [1] (the sign is incorrect there):

Σ C r μ
Γ ' = lnρ(Γ) = lnZ(O)-lnZ(l)

Γ':^c->]N
Γ'~Γ

= ]dλ Σ μ{y)Qx({l)), (B.14)
0 γe&c,γ*Γ

where Z(λ) and ρλ are partition function and correlation functions, respectively,
corresponding to the activities μλ(γ) = λμ(γ) for γ^Γ, and μλ(y) = μ(y) otherwise,
ye^c. Since \\μλ\\ ^ \\μ\\ and Fί is decreasing, it follows that F^ — ln\\μλ\\)
^F^ — In||/i||). From the inequality

which follows from (B.6), we obtain

\Qλ({y})\^xpίF1(

Let the activities be negative: μ(y)= —\μ(y)\- Then by (B.4) we obtain
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Inserting (B.I3) into the right-hand side of (B.14) there results a power series in
\μ(γ)\ with just negative coefficients. By comparison with the left-hand side of (B.14),
it then follows that

_ c Γ - ( - l ) Γ | c Γ | . (B.16)

Inserting now (B.16) into (B.14), and using (B.3), (B.15) and the definition of Fu we
arrive at (B.12), with c = F 1 (- ln | |μ | | ) . D

Corollary B.2. // ||μ|| ̂  ||μc|| there exists a constant c such that

Σ |CrlMΓ^cΓπlVoll (B.i7)
r~ro LllμJJ

Proof.

Σ | c r | | / | g Γ | 4 T Σ \cΓ\ \\μc\\"r"

lT Σ |Crll|μc | l | Γ | 1

c = F1(-ln\\μc\\) = F0(ac). D

Acknowledgement. We are very much indebted to Dr. K. Fredenhagen for his interest and, in
particular, for several very useful suggestions, as well as for pointing out an error in a previous
version of the manuscript.

References

1. Fredenhagen, K., Marcu, M.: Charged states in Z 2 gauge theories. Commun. Math. Phys. 92,
81-119(1983)

2. Swieca, J.A.: Charge screening and mass spectrum. Phys. Rev. D13, 312-314 (1976)
3. Buchholz, D., Fredenhagen, K.: Charge screening and mass spectrum in abelian gauge

theories. Nucl. Phys. B154, 226-238 (1979)
4. Swieca, J.A.: Solitons and confinement. Forts. Phys. 25, 303-326 (1977)
5. Lowenstein, J.H., Swieca, J.A.: Quantum electrodynamics in two dimensions. Ann. Phys.

(N.Y.)68, 172-195(1971)
6. Barata, J.C.A.: M.Sc. Thesis, Institute of Physics, University of Sao Paulo (unpublished)
7. Borgs, C, Seiler, E.: Lattice Yang-Mills theory at nonzero temperature and the confinement

problem. Commun. Math. Phys. 91, 329-380 (1983)
8. Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical

mechanics. Lecture Notes in Physics, Vol. 159. Berlin, Heidelberg, New York: Springer 1982
9. Becher, P.: The Schwinger model: a view from the temporal gauge. Ann. Phys. (N.Y.) 146,

223-261 (1983)
10. Raina, A.K., Wanders, G.: The gauge transformations of the Schwinger model. Ann. Phys.

(N.Y.) 132, 404-426 (1981)
11. Bratelli, O., Robinson, D.W.: Operator algebras and statistical mechanics. I, II. Berlin,

Heidelberg, New York: Springer 1981, 1982



668 J. C. A. Barata and W. F. Wreszinski

12. Swieca, J.A.: In Cargese lectures in physics, Vol. 4. D. Kastler (ed). New York: Gordon and
Breach 1970

13. Rothe, H., Rothe, K.D., Swieca, J.A.: Screening versus confinement. Phys. Rev. D19, 3020
(1979)

14. Dosch, H.G., Mueller, V.F.: Vacuum polarization effects in lattice gauge theories. Nucl. Phys.
B158, 419(1979)

15. Requardt, M.: About the poor decay of certain cross-correlation functions in the statistical
mechanics of phase transitions in the static and dynamical regime. J. Stat. Phys. 29,117 (1982)

16. Fredenhagen, K., Marcu, M.: A confinement criterion for QCD with dynamical quarks.
DESY preprint 85-028 (January 1985)

17. Fredenhagen, K.: On the existence of the real time evolution in Euclidean lattice gauge
theories. DESY preprint 85-028 (April 1985)

18. Streater, R.F.: The Heisenberg ferromagnet as a quantum field theory. Commun. Math. Phys.
6, 233 (1967)
Wreszinski, W.F.: Goldstone's theorem for quantum spin systems of finite range. J. Math.
Phys. 17, 109 (1976)

19. Requardt, M.: Dynamical cluster properties in the quantum statistical mechanics of phase
transitions. J. Phys. A13, 1769 (1980)

20. Bricmont, J., Frόhlich, J.: Statistical mechanical methods in particle structure analysis of
lattice field theories (I). General theory. Nucl. Phys. B 251 [FS13], 517 (1985); and II. Scalar
and surface models. Commun. Math. Phys. 98, 553 (1985)

Communicated by K. Osterwalder

Received July 1, 1985; in revised form September 10, 1985




