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Abstract. We show that a sequence of dipole states of finite energy introduced
by Fredenhagen and Marcu is chargeless upon removal of one of the charges to
spatial infinity in certain subsets of the phase diagram of the U(1)-Higgs lattice
gauge theory. It is also explicitly seen how this phenomenon is related to the
existence of exponential clustering (i.e., of a mass gap). Related properties of
dipole states are briefly discussed.

L. Introduction and Summary

In a beautiful paper, Fredenhagen and Marcu [1] showed that a certain sequence
of dipole states of finite energy acquires a charge when one of the charges is
removed to infinity in a subset of the phase diagram of a Z(2)-Higgs lattice gauge
theory. They also proved that the same states are chargeless in certain subsets of
the confinement/screening regions of the model.

In this paper we prove the absence of charge for the same sequence ofydipole
states introduced in [ 1] in a subregion of the screening/confinement diagram of the
U(1)-Higgs lattice gauge theory. Our main motivation in so doing is that this
theory involves additive (in contrast to multiplicative in the Z(2) case, treated in
[1]) charges, implying a different structure, more akin to the more interesting
nonabelian gauge theories. In particular, the connection between the absence of
charges and exponential clustering (i.c., a mass gap) seems to appear more directly
in the present model (see Sect. III). This statement is related to a remarkable
theorem of Swieca [2] (a rigorous version of which was formulated and proved in
[3]), a general result in the framework of (continuum) relativistic quantum field
theory which roughly states that in abelian gauge theories with a mass gap there
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are no charged states. Swieca’s theorem requires locality and is therefore not
applicable to nonabelian theories. It should therefore be especially interesting to
extend the results of [1] and the present paper to the nonabelian case. In view of
this aim, we present in Sect. Il the transfer matrix formalism and the relevant
results (used in Sect. ITI) in the general (nonabelian) setting, specializing to the U(1)
case later. In particular, we study in the same section the dipole states analogous to
those introduced for the Z(2) model in [1], deriving their “finite energy property”
in Proposition IL.1. The latter property is universal, depending only on the
perimeter law of the Wilson Loop!, an important fact which, although not
explicitly stated in [1], is implicit in the proof given there 2. Finally, we make some
remarks on the expected properties of other dipole states (finite energy property,
disjointness from vacuum representation). They are illustrated by a short and self-
contained discussion in the framework of the massless Schwinger model in
Appendix A, which presents a somewhat different, mathematically precise version
of arguments of Swieca [4] and Lowenstein and Swieca [5]. It should be remarked
that we are concerned here with the energy of dynamical charged states, not the
(potential) energy between static, external charges. The latter has a special, atypical
behaviour in the massless Schwinger model (due to the zero electron mass), but not
the former (see remarks in Appendix A).

Section III is the core of the present paper, based on [6]. There we present the
proof of absence of charge for the sequence of dipole states defined in Sect. II,
specialized to the U(1) model. It extends some results concerning polymer
expansions in [17]. The main results of [ 1, 8] which have been used are either briefly
stated in Sect. ITI or collected in Appendix B, which also presents a complete
derivation of the crucial formula (B.12)3. Section IV is a conclusion, with a brief
additional discussion of open problems.

IL. The Model, Dipole States and the Finite Energy Property

Consider a spatial box ACZ’, where d=1 is the number of space dimensions,
which we take as the time-zero slice of a space-time lattice A=A x Z. A point in A
will be denoted by n. Positively (respectively negatively) oriented links will be
written (n, 1), where u runs over the positive (negatlve) space directions A=¢;
(Ai=¢é), i=1,...,d, or over the positive (negative) time direction t—e,H1
(—f=—é,, 1) We write B(A) for the set of positively oriented bonds (links) in A,
and P(A) for the set of positively oriented plaquettes in A. A special plaquette is
denoted P, a temporal plaquette P,. To each bond (n, 1) € B(A) (respectively to
each ne A) we associate a faithful representation U(n, u) [respectively ¢(n)] of a
compact Lie group G. The U(n, u) are interpreted as gluon fields, the ¢(n) as Higgs
fields. Our Hilbert space is

e}fA = Lz(dﬂA) >

1 Which is expected whenever matter fields are present, due to pair creation [8, 13, 14]

2 See also [16] for similar remarks and a more extensive discussion of this point

3 Weshouldlike to thank Dr. K. Fredenhagen for showing us this derivation, and suggesting its
inclusion in the appendix
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where du, =dp,®du,, with

d“u = duu n 5 d = d n
(n,m@;m (1, 1) Ko n)€<A Hom)
is the (product) Haar measure. We define the transfer matrix in the temporal gauge
as the integral operator on #, defined by

Ty=e"s/?F a2, (IL.1a)
where A4, is the multiplication operator given by

4,=2, ¥ Re(Tr{Up—1})

PseP(A)

+2B, X Re(Tr{¢ ™ '(n+p) U, p) ¢(m)—1}), (IL.1b)

(n,n)e B(A)

and F, is an integral operator with kernel given by

FA({U, ¢}, {U", ¢'}) =exp [2Bg Y Re{TrU '(n,p) U'n,p)—1}

(n, n)e B(A)

+2f 2 Re(Tr{g" () g(n)— 11})]- (IL1c)

Above, f, and f, are the gluon and Higgs coupling constants and

Up,= ® Yo wU s

(n,p)ePs
where

U(n, 1) if the orientations of (n, u)
Von,wU = and P, are the same

U(—(n,w)=U"Yn,n) otherwise.

The above construction, with the Higgs fields as matrices, is not quite standard,
although the corresponding transfer matrix has a more symmetric form, and an
additional invariance (coming from the trace). In the more usual one, the Higgs
fields are elements of a vector space, and conditions ensuring “complete symmetry
breakdown [8, p. 57] must be imposed. We shall refer to the above cases as
“matrix” or “vector space” formulations, for brevity. The following properties of
T, are known [7, 17]:

a) T, is a self-adjoint, trace class operator;

b) ||T,|| =1 is a simple eigenvalue. The corresponding normalized eigenstate
Q, is interpreted as the ground state (vacuum);

c) T, is invertible. The inverse T, * is an unbounded self-adjoint operator. In
the matrix formulation this follows immediately from [7]. See [17] for a general
proof of invertibility of the transfer matrix in the thermodynamic limit.

If A is a local observable, i.e., a bounded operator on J#,, it follows that [1]

W5(A)= (24, AQY) = lim Tr{A(Ty)* EQ(TY)}/Zn o (I1.22)

where
Z s, =Tr{(TY EQ(T))% (IL.2b)
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is the “partition function” and E{ is any bounded positive operator. Choose E{
as an integral operator with kernel

EQ({U,4},{U’,¢'})=exp {— %(2ﬁg)P EZP(A) Re(Tr{Up,—1})

+3 3 (2B)Re(Tr{g™"(n+u) Un, 1) g(m)— 11})}

(n,n)e B(A)

© €Xp {% > (2B)Re(Tr{Up,—1})
PsEP(A)

+2 X (2B)Re(Tr{¢" (n+p) U’(n,u)¢’(n)—11})}~ (IL3)

(n, p)e B(A)

This choice corresponds to imposing free boundary conditions. We suppose that
AT, may be written as an integral operator with kernel

(AT ({Uo, ¢o};{U1, 41}), (IL4a)
and define then the “second kernel” of A, denoted by [ 4], through the formula

[A] ({Uo, 6o} {U 1, 6:)=(ATY) ({Uo, bo}; {U1, 911/ Ta({Uo» $o}; {U 15 413) -

(IL.4b)

With the above choice of E{, we find then from (IL.2):

. 4
wA(A)= qlirg ) l—[_q dﬂU(m) dﬂ¢(m,[A] {U oy 00y} {Uq1y» 81)})
a-1 (IL5a
exp { > sm} / Zao )
m=—q
where
q q—1

Zy,= I T1 \ AUy iy Ay exp[ > SA(m)] . (IL.5b)

m= — m=—q

Above, U, and ¢, are the fields, and, correspondingly, duy,,, and du, the Haar
measures restricted to the m’th time slice, and

Sxm) | 3 () Re(Tr (U, ~1})

+ 2 : (2B Re(Tr{ ) (n+ 1) U y(1, 1) Piy(m) — 1)

(n, p)e B(A
+ o Z CBYRETHUg (1 1) U 0= 1))
+ ZA (2B Re(Tr {f ' 1)(1) Py() —1}). (IL.6)

Let {4,} be a basis of self-adjoint elements for the Lie algebra of G in the chosen
representation. In a way similar to [7], the generators of the (time-independent)
gauge transformations (in the vector space formulation)

G NUU, )= f{ T4, U ) T, Td(m)})
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with T, =exp[ —i6%(n)J,], 8°(n) e R, fe H#,, are given by

Gm=_ X TEHn @~ Eyn—fi )]~ Plo), aL7)
where
(Ex(no, flo) /) {U, ¢})= lglglls L/{U.¢})—f{U, ¢},
and
[ Ulng, +fig)e™™ if  (n, f)=(no, o)
Us(”a :u) - ~ . " AN
U(l’l, .u) lf (na /“t) :': (n0> #O)
Similarly
(Ey(nos fio) /) ({U, ¢3) = 11113% /(U ¢)—f{U, 411,
where
Uln, )= { et UA(nO, £o) %f (n, ﬁ:‘) =(n,, /-:‘o) ’
U(n7 :u) lf (Vl, :u) ='= (nO’ .uo)
and
(Py(no) /) (U, 80) = lim [ /(1U, 4.1)~ F((U. )],
with

e*Mrg(n) if n=n,
&(n) if n+n,

We may decompose 5#, into irreducible components relative to the product
group ( X G,,):
neA

Po(n) = {

H = @%tn}'

Gy(n) acts on the subspace #,,, according to the irreducible representation t,,
which is identified with the “external charge” at n. Let P, , denote the orthogonal
projector onto #,,,, and P, the projection operator onto the subspace of states
with zero external charge at each point.

Lemma IL1. P,Q,=0Q,.

Proof. The prooffollows from the Peter-Weyl theorem, which provides an explicit
formula for P,,. It is simplified by the choice of EQ’ in (IL2). O

It is easy to verify that
[P, TA1=0, (IL.8)

which means that the external charges are “static.”



642 J. C. A. Barata and W. F. Wreszinski

We now consider dipole states. In the vector space formulation a suitable
definition of such states along the lines of [1] would be

Vv v
Vo= 2 > ¥iL, (IL9a)
a=1b=1
PrA=0J(0) @y(x,) T(UQ21)ay Ty "2y (IL9b)

We assume that ¥, , +0. This is expected, and verified in the cases G = Z(2) and
G="U(1). Above, O is the origin of the coordinate system, x,=(2r,0,...,0) and

UQr=U©,6,) % ... x UO+(2r—1)é,,6,). (IL.10)

Notice that 2, belongs to the domain of T, ", since || T, || 0. To each site n we
attach a copy V, of a (finite-, say V-) dimensional vector space V carrying a faithful
unitary representation of G. The {®,(n)} above are a basis of V,, @' denotes the
adjoint of a vector @€V, and we assume that the Higgs measure ensures that
@'® =1, for simplicity, as in [8, p. 57]. Finally, a condition ensuring “complete
symmetry breakdown” [8, p. 57] is assumed.

We now wish to define (and prove) a property of the above sequence of dipole
states ensuring that the limiting charged state has, if it exists, “finite energy.”
Unfortunately, for continuous groups, the (uniform in A) norm-boundedness of
the “automorphism” a}(4) =Ty ' AT,, for A in the field algebra & [1], does not
follow as in the discrete case, because T, ! is unbounded (see also [17] for further
discussion). We therefore modify the definition of the “finite-energy property” [1,
Proposition 6.1] as follows.

By a) to c), there exists a positive self-adjoint operator S, such that

_,-S
T ,=e >4.

For A’CA, let Ae #*, the local subalgebra of # corresponding to region A’". Its
representative on #, will also be denoted by the same symbol. We define & to be
the set of functions f of a real variable such that their Fourier transform £ is in the
Schwartz space 2 of infinitely differentiable functions of compact support, and,
correspondingly, a “time-smeared” operator A,(f) associated to A by

AN= 1 difyap4),  fed, (IL11a)
where
aMA)=eSr e Sh (IL11b)

Since f is rapidly decreasing, the integral in (IL.11a) exists in the strong sense. In
addition, given ¢ >0 and y € J#,, one may show that there exists a positive fe ¥
such that

jf def(®)=1 (IL.12a)

and
1(AA(N)—AD P <e. (IL.12b)
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Lemma IL2. For any neZ., vy in the domain D(Ty") of Ty" and fe3,
A (e D(T "), and there exists a constant C depending only on f and n such that
ITS" AN PN = CIA T (IL13)

Proof. By the Paley-Wiener theorem, f is an entire analytic function and the
spectral theorem implies in a straightforward way that A4,(f)e D(T, "), and

TomAL(f) Tl = _T dtoM(A) f(t +in). (IL.14)

Again by the Paley-Wiener theorem, VmeZ ., 3C,, < 00, a>0 such that
/@IS Cp(1+1zl) ™exp(eImz)  zeC.

Hence
T dtlf+m)<Cre™ | di(l+62) 1 =Cln, f)=C,

and by (IL.11b) and (I1.14):
ITC" AN TR = cll 4]
which implies (I.13) for wye D(T, "). O

Choose, now, the operator A above as A= A%"=®}(0) D,(x,) (| 4*®| <1) and
define

0y =TX(U(2r)ay T "2, (I.15a)
PR =AR() 0w » (IL15b)

14 14
¥, A(N)= a; b; PeR(). (IL.15¢)

By (IL.15a), g, € D(T, ") if r = n (which we assume henceforth), and by (I1.15) and
Lemma I1.2,

1T RO S 1T "0us - (IL.16)
By (IL12), ¥, o(f)#0 for suitable f if ¥, ,40. We may therefore define the
quantity:
(glr,A(f)a TA_MPr,A(f))
1Y, ANI?

We have that T "=¢"", where S, is the Hamiltonian in the limit of continuous

time (studied in [7] for the pure case). By (IL.12), for ¥ € #) and a suitable delta

sequence {f,}mez, CZ, lim AY(f,)¥=A%"¥. We expect that Y&} e D(T, "),
-

Ty P& (f,) converges, and then necessarily to T, "¥P%, because (T, ') is a closed
operator. These facts would imply that

EA,n,r(fm)W (lPr,As TA‘nlpr,A)/” qlr,AHZ .

Exnif)= (I1.17)
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We are presently, however, unable to prove even that ¥, , € D(T, "). Nevertheless,
the energy of the string g,, as well as that of the fields at the endpoints, is
independent of r (see the forthcoming proof). These remarks may render the
following definition plausible:

Definition I1.1. The sequence of states ¥, , has the finite-energy property (f..p.) if,
for each positive integer n and f € & satisfying (I.12a) there exists a constant C,(f)
independent of A and r such that

ExnAN=CAS).

The basic element of the following proof is the assumption that the Wilson loop
has perimeter decay. This is expected whenever f3,> 0, but the proof sketched in [8,
Theorem 3.14 (4)] is inconclusive: while a proof along the lines of [20] might be
feasible, it is, as yet, open (we thank the referee for these remarks). We therefore
state a

Perimeter Assumption. There exists a subset 4 of the screening/confinement
region of the (8,, B,) phase diagram, such that if (8,, 8,) € 4,
WA(M,) 2 exp(—ar),

where o> 0 is independent of A, r, but depends on 4. Above, W,(M,) denotes the
expectation value of the Wilson loop observable, which will be defined shortly. We
also make the simplifying assumption (as in [8, p. 57]) that G acts transitively on
the unit sphere in C".

Proposition IL1. Under the above Perimeter Assumption, ¥, 4 has the f.e.p. if
(B, Br) € A.

Proof. By the Schwartz inequality for both the scalar products and the sums over
the indices, together with (I1.16), we find

EA,n,r(f)é V.gr A" hr,A s

where

[

1/2
1T (U 2r)a 24 )

(z
a,b=
<ab

14

14
12 172 >
2 . [ TA(U(2r))p 24l 2>

1/2

) ITX(U2r) o 24l 2)

L2

14
2
b

1

AR () TU(21))ap 24

Jra=

a, 1

The numerator in f, , is bounded by

0 | TRV @))ao, 00 24| =0- 5UP [ TRURr))ap 2l -
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By assumption, G acts transitively on the unit sphere in C”, and hence there exists a
(r-dependent) gauge transformation yielding:

0 0)=1 if a=ay,, ¢0)=0 if a=aq,,

d(x,)=1 if b=by, ¢yx,)=0 if b=£b,.

In this gauge the denominator of f, , equals | T{(U(2r)),,5,24ll, by (IL.12a). By
gauge invariance of both numerator and denominator of f, ,, we thus get

AV,

We now apply the Schwartz inequality for both sums and scalar products to g, 4
successively in the manner of [1, Proposition 6.1] obtaining, together with the
above estimate for f, 4:

Ep  (f) Sconst[Wy(M,)]™"", (IL.18a)
where
Wi(M,)= Py TX(U@)aQall?

is the expectation value (in spatial volume A) of the Wilsontloop observable
corresponding to the oriented loop M, in Fig. 1, which will occur many times in the
sequel:

2r €,

Fig. 1. The oriented loop M,

By the “Perimeter Assumption” there exists a subset of the screening/confinement
region of the (f,, ;) phase diagram where the Wilson loop has perimeter decay:

Wi(M,)Zexp(—ar), (IL.18b)

where o> 0 is independent of A, r (but depending on A). Inequalities (I11.18a) and
(I1.18b) together yield the fe.p. [J

We may interpret the above result physically: placing the string as far away in
time as the spatial separdtion between the charges involves distributing the flux
lines of the electric field spatially in such a way that the energy is uniformly
bounded, avoiding the formation of a permanent “linear flux tube.” The important
point is that this phenomenon is universal, depending only on the perimeter law.
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This was not explicitly stated in [ 1], but is implicit in their proof.* What happens if
the string is chosen to lie at t=07? It is hard to prove that Proposition IL.1 does not
hold. Since the state is now charged, it may be expected that the corresponding
representation be disjoint from the vacuum representation, and that the f.e.p. does
not hold, with the formation of a permanent linear flux tube. These properties are
illustrated in the Schwinger model in Appendix A, which is a mathematically more
precise version of arguments of [4, 5].
We shall now specialize some results to G=U (1), writing

u(n, w)=exp[ib(n, w1,  $n)=expliz(m)],

with —<0(n, u) <7 V(n, u) € B(A), and —n<t(n)<n Vne A. There are essen-
tially no modifications, except for the normalization in the nonabelian case,
tr(A,4y) =33,, which is no longer valid here. Hence all expressions involving a
trace in the group representation should be multiplied by a factor 1/2. It is also
convenient to evaluate the Euclidean integrals in the unitary gauge, defined by the
change of variable

U(x, ))=0(n, ﬁ)(m) + T(”)(m) —t(n+ ﬂ)(m) > U, 0 = T(n)(m+ 1H— T(n)(m) 5

where, now, x,,=(n,m)e Z*!, with ne A, and m denotes the time-slice. The
vacuum expectation value of gauge-invariant operators 4 is, in the unitary gauge,
given by

| AUGx LAV exp(S.,)

wp(4)= lim —°—_ " &1, ,  (IL19)
e [ L, UG mexp(Ss,)
-T —n (x,u)e q

with
SAq=,BgPZ )(cosUP—1)+ﬁ,, > ){cos[U(x,,u)]—l}. (I1.20)

eP(d4q (x,u)eB(Aq
Above, (x, p) is an oriented link in the region
— d
quAx[_qa q] CZ 1 s

B(4,) denotes the set of positively oriented links in 4,, P(A4,) the set of positively
oriented plaquettes in 4, and

UP = Z U(X, :u)y(x,,u) ’ Pe P(Aq) s

(x,u)eP
where

» _ |+* if the orientations of (x, u) and P agree,
Tew= 1 _1  otherwise.

We shall also frequently write U, = U(x, u), where b denotes a bond (x, u), and
IT dU(x,w [dU]B(A,,)-

@, K)eB(Ay)

4  See also [16]
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The generator G(n) corresponding to (IL.9) is written

0 0 0
=—i - i . 11.21
Go=—i & . d[ae(n, i 0—g, ,z)] o ar21)
From (IL.21) we see that the operator
Q,= —i0/0t(n) (IL.22a)

should be interpreted as the charge density operator of the matter field at site n.
The self-adjoint operator

Ov= X 0, (I1.22b)

neV

measures therefore the charge in a volume V of space. It is easy to verify that Qy T,
(ADYV) is a bounded operator. In fact, its “second kernel” is given by

[OvI{U, ¢}, {U",¢})
=i, {% 2 Yo,y SInLT(n) =+ )+ 6(n, )]

(1, 2)€B(A)
+ X Sin[f(n)—f’(n)]},
neV
where
_J+1if neV,

Twd=Y 1 i (4 p)eV.

Lemma IL.3. Q, lies in the domain of Qy (ADV) and
0A(Qy)=(24, Qv€24)=0. (I1.23)

Proof. Since Q, is the eigenvector of T, corresponding to eigenvalue || T, |, and
QvyT, is a bounded operator, £, belongs to the domain of Qy. The same usual
proof then yields

04(Qv)= lim [(T)*Qv(T'ER)/Zy, o
Hence, passing to the unitary gauge
wa(Qv) = thg Og 5

where

=2y

j [dU]B(Aq)(lﬂh)
S y(n, A)/2sin[U(n, 2)]+ nezv sin[U(n, E)]} &S

{(n,ﬁ)e dB(V)

1
q

Je—a

where 5B(V) denotes the boundary of V (i.e., the set of all bonds with only one
vertex in V). But «, =0 because S ,_is even under the change of variable U(x, )
- —Ul(x, u) while the rest of the 1ntegrand is odd.

A version of (IL.9) in the U(1) theory is

Y, A=FL,, (I1.24)
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where
Fr = ¢*(0)¢(xr) TI(UZrTA— ’ . (1125)

Above, the star denotes complex conjugate, and U,, is defined as in (IL.10). Note
that in U(1) case T, ' is well-defined. Define the operator ¢y which measures
the flux of the electric field on the boundary of V:

Dy = nEZV 2,, (IL.26a)
— 0 0
h=(=D L E [69(n, 0~ d00n—4, ﬂ)] : (IL26b)

Lemma I14. ¥, , is gauge-invariant and lies in the domain of both ¢y and Qy.
Further,

(er, A Qv lPr, A) = (lPr, A> ¢v qlr, A) . (IL.27)

Proof. Tt follows from definitions (I1.22), (I1.24), and (I1.25) and the fact that Q, T,
(ne A)isabounded operator that ¥, , belongs to the domain of Q.. Similarly &, T,
is also a bounded operator and ¥, , is in the domain of ¢,. Hence, by (IL21), ¥, 4
belongs to the domain of G(n) (n€ A). By Lemma II.1 and (I1.10),

Y, =¥, x, neA, acR. (I1.28)
By the above remarks, (IL.28) may be differentiated at « =0 yielding
b A=, n, MEA
from which (I1.27) follows.

III. Absence of Charge and Exponential Clustering in the U(1) Theory

Now we consider the flux operator defined in (IL.26) and the expected value of ¢y in
the states ¥, /||, Al defined in (IL.24), (TL.25),

[ (¢v) = (F, Q0 dvF,Q4)/(F, Q0 F,24)
= 2 (—0s(n7)

(n,v)edV
0

: (Qm (UZr)T(TA)rM (TW'( UZr)QA> / (40 (U2)'(- TY*(U,,)24),
(IL.1)

where

N +1 if neVv,
SIN=V_1 if ntvev.
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In the unitary gauge we have:

op)=lm 2 sn9) ] [V, .

g—> o (n,v)edV

-exp{Sy,..} {ﬁg (-2, U] - brsinuin, v))}

.sin(UMr)/_j [dU]p4, . exP{S4,.,} c0s(Uy,), (I1L.2)
where
36, if P is a spatial plaquette,
Tonp=1 1 if P is temporal in the direction
of increasing time,
0 if P is temporal in the direction
of decreasing time
and
U= X Yoy U s)s (TIL.3)
(n,9)eM,

where M, is the oriented loop shown in Fig. 1, and

M {+1 if the orientations of (n,¥) and M, agree, (1114)

To9= ) _1 otherwise.

In expression (II1.2) we arrive at cos U, in the denominator and at the sin U,
in the numerator using the fact that the remaining functions under the integrations
are even (respectively odd) under the change of variables U,— —U, for all
be B(4,4,)

In the numerator of expression (I11.2) we find the sum

> sin(Ups(n, ¥)yPs(n,7), (IIL5)

(n,9)edV PsO(n,?d)

which may be written as

> sin(Up) { > s(n,iyP(n, v)}, (11L6)
PseP* (n,9)ePs
(n,%)edV

where P* is the set of all the spatial plaquettes which have at least one bond in V.

Lemma IIL1. If Pgis a spatial plaquette, then
> s(n, V)yPe(n, 9)=0. (IIL.7)

(n,9)ePs
(n,¥)edV

Proof. The proof is a simple verification of each possible case.
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This lemma says that in the sums in expression (I11.2) only temporal plaquettes
in the direction of increasing time contribute.
Hence, expression (I11.2) may be simplified to
J[AUT g4 exp{S}sinU,, sinU,
, = £
(@v)a ; g I [dU]B(A) exp{S,} cos Uwu,

=2 9.{sinUy sinU>,/{cosUy >4, (I1L.8)
L

where Uy reads to Up,, g or U, 5. 5w, 5) being a temporal increasing time plaquette
which contains the bond (n, ¥) € 0V and g, is the corresponding factor, which may
be + B, or f,/2.

It is obvious that we may write (111.8) as

<COS(UM,‘“UL)>A <COS(UM,+ Ua
cosU 04 <cosUp 04

From this point, our aim is to consider the limit r— oo of the expression above and,
therefore, attempt to provide a polymer expansion of expression (111.9). The action
S, may be written (by a trivial addition of a constant) as

Sa=Py, 2 (Cos Up+D+hi Z jcosUy. (I11.10)

. (IILY)

0, (¢v)=2.(9./2) —2.(9,/2)

We define for each (n, v) € B(A) the measure

dU*(n, ¥) =dU(n, ¥)ePncost ”’/ | dUexp(B,cosU), (IIL.11)

so that [ dU*=1. We define also for each P € P(A)

op(U)=exp[f,(cosUp+1)]—-1, (IT1.12)

so that gp(U)=0.
With the use of these definitions we write

cos(Upy, +Uos=2Z;" % [[dU*]B(A)[H QP(U):\ cos(Uy,+Up).
cPla) PeC

(ITL.13)
Since the measure dU* is normalized to one, we may write simply
Ceos(Uy, +Up))s =z;' ¥ | [dU*](aCuM,‘uL)[ IT QP(U)]
CCP(4) PeC
-cos(Uy, +Uy), (I11.14)

where 0C is the set of all the bonds of CCP(A4) and [dU*],,, means H au,
being a set of bonds.

Let H be a set of bonds. |H| denotes the number of elements of H. For f,>0 we
define

N(H|) = [f dU* cos U]IHI (ITL15)
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which is a positive, monotonically increasing function of 8, satisfying
N(H)<I1; ﬂlignm N(H)=1; N(Hlg,=0=0.

We now consider the ratio
Let be M,/0C be a bond. Then, from the definition of U,,,

{cos(Up, +Up))y

N(IM,)
- N cos(Uy, +Up)
=24 3 T4U Necom,on| ITesO) ] gar=>

_ {[dU*] cos(Uy. +Uy)
=71 dU* U (M,/0C) M, L
A cc%‘ZA)“: Jecor [Ec op( )]{ N(M,))
(II1.16)
cos(Up+ Uy, )=cos(Uy+ Uy, £ Up)
=c08(Up+ Uy, py) cosU, 28in(Uy + Uy ) sin U, .
(IIL.17)
(The sign depends on the orientation of b alone M,.) Since
it follows that
frau *Toa,joc)€08(Unpg, +Up) _ frd U™, 00y €08 (U pg, iy + UL
N(IM,)) N(IM,|-1)
(ITL.18)
Repeating the process for all b’se M,/0C, we conclude that
-f [dU*](M,./aC) COS(UMr + UL) — COS(UMrr\ac + UL) (III 19)
N(IM,)) N(IM,naCl)
So, we have
cos(Uy + Uy _
- =Z;! dUu* U
N(M,) 3 v 2 e O]
cos(Upy,nact UL
. r I1L
N(M,noC)) (111.20)
In analogous fashion,
{cos (U, 0a -1
Tt = 7 aUu* U
N(IM,)) 4 cc%i/x)“: ](aCUL) [PEIC 2n( )]
€08 (Unt,00) (ITL.21)

"N(M,naC)
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Definition (I111.1). CONN(L)={B e P(A) all the connected parts of 6B have a
non-empty intersection with L (L understood as a set of bonds)}.
Through Definition (IIL.1), (II1.21) may be written as

<cos(Up, +Up))y
N(M,|)
=ZZI > I[dU*](aBuL) > j[dU*](aC){H QP(U)}
BeCONN (L) CEP(4) PeC
6CAOB=¢
daCnL=¢

€08 (Un,n@cuony+ UL
N(IM,ocuom))

From the fact that C and B are disjoint, it follows that M,n(6CU0OB)
=(M,n0C)u(M,n0B), a disjoint union. So we find that

(I1L.22)

€08 (U, nocuomy+ Ur) =€08(Upy, noc) €08(Upy,nop+ Up)

—sin(Uyy, noc) SIN(Upy, o5+ UL - (I11.23)
But we have

I [dU*] 50 {Plz[u . Q,,(U)} $in (U, noc) SIN(Upg, nop + Uy)

= {PI;[B QP(U)} Sin(UMmaB +Uyp) j [d U*](aC) {Pl;[c 2x( U)}

-sin(Upy, nac)=0. (I11.24)
In addition, N(|M,n(0CudB)|)=N(M,nOC|)N(|]M,ndB|), and we arrive at
<cos(Uy, + UL)24/N(IM, )
B U +U))
=71 dU* U co8(Upg,nop+ Uy
A BeC(%N(L)j [ Jesory {PEIB on( )} N(M,~3B|)
{ > [AU*Jac) { IT QP(U)} COS(UM,mﬁC)/N(IMrnaCI)} .
CeP(4) PeC
aacc.?\a’fzz—f (I11.25)

Each set C may be decomposed in the set of its connected parts (two plaquettes
are said to be connected if they have a common bond), which we denote by {C,}.
We therefore have

f [d U*](aC) {PIZIC QP(U)} cos(U M,nac)
= [T{T4U* e} { I eP(U>} cos (z UM,nacy) : (I11.26)

Again we decompose
€083 Uy, noc, = [ Tcos (UM,nacy)
Y Y
+(terms with at least one factor sin(Uy, noc,)) s

and we conclude that

frau*1c {Pl;IC 2s( U)} €0s(Unt,nac)/N(IM,nOC]) = {IC_I} u(Cy),  (I127)
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where

_ * 08 (U, naoc,)

€)= T LU (T esW)] 25768 (I1128)
Now we are able to express (II1.25) in terms of a polymer expansion. Two
plaquettes are said to be connected if they have a common bond. The polymers of
our model are connected sets of plaquettes. Two polymers are said to be
“incompatible” if they have, at least, one bond in common and “compatible”
otherwise. To each polymer y we associate an activity given by u,(C,) defined in
(ITL.28), C, being the set of plaquettes which forms y. (In Appendix B we present
some general results on polymer expansions which will be used here.) Hence, we

conclude from (I11.28), (I11.27), and (ITL.25) that

Ceos(Un, + UL _ 4 .
NOL) 2 e [V oo { T e

cos(Up, o+ Up) r
. . , T11.29
N(M.AGB) 12, & (II1.29)
e

where I'mL=¢ means ynL=¢ for all yel. For all notation used above see

Appendix B.
According to (II1.29) we also have
eos(Up, 2a/N(IM,)=Z7" rZy ()" (IIL.30)
Using (IT1.30) and (II1.29) we finally arrive at
Ccos(Up, +Up)s
2 = au* U
{cosUp, 4 BeCONN (L)I (U N aory {Plgs ol )}
cos(Up, o+ UL) rir r
. r b ,
N(ermaBD [FQZ@A (:u'r) B’L/I‘;g (:u'r) }
(IIL.31)
where
)0 if y~B orif ynL=+0,
by, (1) = {1 otherwise.

According to Definition (B.2) we may write
[ 2 (ur)rbﬁ,L/ 2 (ur)r] =o(BUL).
Te%4 I'e%a
Using Lemma B.5 we write (II1.31) as

Ccos(Up, +Ups _ .
CosUM,)~ pecitnay LU denon {1 U]
.cos(UMmaB-;- U,)

N(IM,n0B)

exp [Z Cr(u,)" (bg,,— 1)] ,
! (I1L.32)
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provided the series 3 C(y,)" (b, . — 1) is absolutely convergent. This point may be
seen as follows.
We have

;Cr(ur)r (bp,.— 1) = 2Crl r (1= b, ). (I1.33)

The sets I" which contribute in the right side of (IIL.33) are those for which
dyer, such that either y~B or ynL=¢. The set of y’s which satisfy these
conditions is contained in the set of y’s which satisfy either y ~ B or y ~ P;, where Py,
is the smaller set of plaquettes such that 0P, D L. So, using I, = BUP;, we conclude
that

2 Cr(p) (g, —1)| < 2 |Gl I 1= C" Il (ITL.34)

where C” is a constant independent of I,
According to Appendix B (Lemma B.6) the last inequality in (IT1.34) holds if

) = N el
We have

H,u, ” = Sup <I [dU*](an) {Pl_g QP(U)} COS(UM,m@Cy)/N(IMrmacy')>1llcyl
v €ly
b —(IM,naC,|/ICy])
=(e*fs—1)sup {[ | dU* cos U] } . (TIL.35)
Y -n
Using |[M,n3C,|/|0C,|£[0C,|/|C,|=4, we arrive at

I ( | dU* cos U)

4
(e?Ps—1), (IT1.36)

and the condition ||y, | < | .| is obtained if
< _j dU* cos U) =[(e?Ps—1)/|| I T4 (I11.37)

In Fig. 2 we show a region of the phase diagram of the model where we have,
according to our naive estimate, the condition ||y, || < ||, satisfied uniformly in .

i

B

Fig. 2 £
o Ay

Q@ *

In Fig. 2, 5 =1/2In(1+ | ).
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Now our interest is to consider the limit r— oo of expression (II1.32). The first
step is to search for an upper bound, independent of r for the exponential in (IT1.32).
It follows from Lemma B.3 (Appendix B):

lo(BUL)| =exp[F;(—In|u|)(|BUL()]
Sexp[Fi(—Inw)(B|+|PL))], (IT1.38)

where
. 4
wz(ez”g—l)/l: | dU*cos U} .
We therefore obtain from (IIL.32) the estimate

KeosWi, +UD| _ 5 (ezﬂg_l)[fdU*COw]-WmaB.

| <cos(Uy)) |~ Becdinm
-exp{F,[—Inw](|B|+|P.])} . (IT1.39)
Again, as [M,n0B|<4|B, it follows that
[<cos (U, + UL))| <
- < F,(—1 P (5] F, (-1 B
sl | SOPIR(0IP] | oexplF,(~Inw)B]

= eXp [Fl(—lnw)|PL|] ]L] Z weFi1(~nwntkn ’
n=0
(ITL.40)

where K is a constant which does not depend on r, but depends on the dimension.
The last series (II1.39) converges if

Inw+F,(—lnw)+ K<0, (I1L.41)
or
a>F (a)+K, (I11.42)

where a = —Inw. From the fact that F,(a) is decreasing there exists a*, solution of
a*=F,(a*)+K, such that inequality (II.42) is always satisfied for a>a*. The
condition a>a* means

(ePs— 1)(_? dU* cosU)% <e Tz=w*(<1), (IIL.43)
or
< { aU* cos U) <[(e2s—1)jr*]14. (I1L.44)

Collecting (IIL1.43) and (II1.37) we arrive at the following theorem.

Theorem IIL.1. There is a sub-region of the phase diagram of the model, namely, the
region given by

(_j dU* cos U>4 > [max (e, ||~ )] (e?s—1), (ITL45)
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where the following estimate holds uniformly in r:

\ cos(Up,nop+Uy)
L R R e v Ty Rap o

BeCONN(L)
x5 Crln) (s~ 1)}’
<dexp[F(—Inw)] § o"exp[(F{(—Inw)+ K)n]. (IT1.46)
n=0

Remarks. 1) Region (I11.45) has the same form of the one shown in Fig. 2, replacing
B for y=1/2In[min(e™*, || )+ 1].
2) Above we used |P;|=1 and |L|= <4

Corollary IIL1. For the region given in Theorem III.1 the limit
lim {cos(Uy, + Up)y/<cos(Uy,)) exists and is given by

. {cos(Uy, + U

rl-l-*rg <cos(Uy,)p
_ * COS(UanaB‘F Uy
= pecingy) [0 omon {ﬂ; QP(U)} N(M_dB))
{ Y (k) bh L / > (”oo)r}ﬁ (ITL.47)
Ie¥% I'e¥
where
o) = U1, { 11 V)] jﬁ’,ﬁﬁ“;g"’g )) (I1L48)

and M , is the time axis with origin at 0.

Proof. We begin defining

Uy.nogt+U
W(BAM,)= 40 an iy [ V)] et ),
(B M) =exp| 31 0F.)] (149
so that
(cos(Uy, +Up)y _ .
LeosUp> = BecoZNN o ir(BnM,)j(B,M,). (IIL.50)

Now, we rewrite (IIL.50) in the form:

Ccos(Up, + UL . ,
. = BAM,)j,(B,M,
{cos UM,> BG?O‘ENN(L) ir( el )
Bl <l
+ > ilBAM,)j(B,M,). (II1.51)
BeCONN(L)

Bl 21
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According to Theorem IIL1,
> i(BAM,)j(B,M,) S4exp[F (~Inw)] ¥ a'efH-ner*in
n=1

Be CONN (L)
|Bl 21
=exp[(Inw+F,(—Inw)+ K)[l4exp[F(—Inw)] ¥ w"e®1(-ne)+Kn
n=0
=N (e). (IIL52)

The bound given by (IIL.52), again, does not depend on r.
Since the sum > is finite we have

BeCONN(L)
|B| <1
. CeosU, +Up> . . _
lim ————=~ — lim i(BNAM,)j(B, M,) | <e ™) f(w).
T CeosUp pecing r2 ( i )| f(w)

|B| <1

(I11.53)
The limit lim i(BnM,) is clearly given by i(BAM ).

r—w

For limit lim j(B, M,), we need a more careful analysis. The square M, may be

written as the union M,=L,uUM, where L,=M,nM,. The series
> Cr(u,)"(bf, . — 1) was proven to be absolutely convergent in the region given in
r

Theorem IIL.1, and we may write
; Cr(p) (b, —1)= ; Cr(u,) (bg,.—1)
nM,

r +0
+ X Crp)(bg—1). (I11.54)
r
nM,=

r [}

But
; Cr(u,)" (bf, . —1)

I'nM,+9
where Py, is the smallest set of plaquettes such that Pz D M,. From Theorem B.1,
-given in Appendix B, we conclude that the sets I” which contribute in the right side

of (IILSS) satisfy |I'||>d,, d, being the smallest distance from BuUL to M,.
Hence, using Corollary B.2 (see Appendix B) we arrive at

= X G (TR (ITL.55)

Ir+ Psz, UBUPL

<(IPg.|+IB|+|L) (””’” )dr c’.  (IILS6)

ropt
; Cr(:u'r) (bB, L 1) “:uc ”

I'nM,+0

Since in the region given in Theorem I11.1 we have ||, | /|| 4|l <1, uniformly inr,
we conclude that

lim

r—o

> crm,)’“(b’.s,rl)‘ =0 (ITL57)
I"r\IVII—r +0

and
lim j(B, M,) =exp {Z Cr(te) (b5 L — 1)} . (II1.58)

r— o r
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Therefore, Corollary IIL.1 arises from (II1.53) upon taking the limit [->c0. [

Returning from (II1.47) to (II1.9) we conclude for the region given in Theorem
IIL1,

. i UMoor\ i UL
,ILIB, o (py)= ; Bech:vN(L) QLI [dU*](aBuL) {Ig QP(U)} SmI(V(|M (f?fz;;l)
'{Z b, (ko) / > (uoo)r}- (IT11.59)
I'e9 I'e¥9

Theorem IIL2. Under the conditions in which (111.59) holds,
Jlm [hm w,(q}v)} =0.

1Z4| r> o
Proof. Due to the factors sin(U,,_.o5)sinU, which appear in the integrals in
(ITL.59) the only sets B which contribute are those for which we have simulta-
neously dBn L=+ (which already occurs) and 60BN M , = §. Since all the connected
parts of 9B, which we denote by 0B, satisfy 0B, L+ ), we conclude that the sets B
which contribute in (I11.59) satisfy |0B|=DIST (L, M ,); DIST(L, M ) being the
smallest distance from L to M. Hence, proceeding as before, we have

im0,

<exp[F,(—~Inw)] ggLILI =DIS”IZL )exp[(lnw+F1(—lnw)+K)n]

s Moo

Z4exp[F,(—Inw)] {Z grexp[(Inw+F,(Inw)+ K) DIST(L, Mw)]f(w)}

) (II1.60)
with f(w) defined as in (II1.52).

Since the number of terms being summed in Y increases only with the area of
L

V, we conclude that the last expression in (IIL.60) converges to zero when V 1 Z4
and DIST(L, M ,)— o0, with decay governed by an exponential clustering with
mass gap given by m> —(lnw+ F,(—lnw)+K). O

IV. Conclusion and Open Problems

There is a central point in the proof presented in Sect. I11. In the limit r— co, the
expression o,(¢,), given by (II1.59), is such that the support of the integrand/
summand occurring there has the following geometrical structure:

dovooa
]
] 3

3 —J
(I

1
Fig. 3 00000
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The number of sets L which are summed grows, as V ~ Z¢, as the area of V, and
hence the existence of a mass gap in the model provides sufficient fall-off to
compensate for this growth, implying at the same time the absence of charges. A
very similar effect happens in connection with the Goldstone phenomenon in
nonrelativistic theories (where locality, as here, plays no role). Let j(t, %) be a
conserved current, and Qg(t)= | d%fr(X)jo(t, %), the associated charge, where
JrE 2 is a regulator function such that (4 >0, independent of R)

{1, IF<R,
fR(x)‘{o if [RI=R+A.

Define
qr(0)=(2, [QRr(1), 419Q), IVv.1)

where A4 is an observable and Q the ground state. Then, formally (see also [15] fora
more careful discussion)

% [ A3 oD@, Tiolt, ), A1)
= | duQ,[j(t %), A1Q) - Vfr(%). (Iv.2)

R<|#sR+4
It may be expected from (IV.2) that, if the truncated vacuum expectation value
(Q,](t, %), AQ)—(Q,j(t, H)Q)(Q, AQ), and, hence, the expectation value of the
commutator (2, [j(t, %), A1Q) falls off faster than |%|~ 2 (Coulomb case), compensat-
ing in this way for the area growth which results from integration over the region
R Z %] £ R+ 4, the limit be time-independent (if it exists). In addition, if, for some
observable, g0 (spontaneous symmetry breakdown), the forces must be long-
range, i.e., the commutator cannot decay faster than Coulomb (Goldstone
theorem). Rigorous proofs of the Goldstone theorem for quantum spin systems
which follow this intuition have been given ([19], see also [20]). Our proof may
also be viewed as a version of Swieca’s theorem mentioned in the introduction to
continuous gauge theories on a lattice, in the following restricted sense: due to the
existence of a mass gap, the states associated to a special sequence of dipole states
of finite energy are chargeless. Although other, possibly charged, states cannot be
ruled out, we believe that the “universal” finite-energy property of these states
conveys them a fundamental role, as discussed in the introduction, Sect. I and
reference [16]. An open technical problem of some interest is to eliminate the
“time-smearing” in Definition II.1 and Proposition IL1.

What is the main difference in behaviour of the dipole states in the screening-
confinement and charged regions? In the charged sector of the Z(2) model [1] the
same setting depicted in Fig. 2 occurs, but there the “memory” that {M,} (see
Fig. 1) is a sequence of squares is not lost. In the screening/confinement regions of
both the U(l) and Z(2) models, only M, “remains.” These differences are
intimately connected with the order of the limits involved: firstly A ~Z¢ then
r—o0, and finally V #Z% A discussion of the difference in behaviour of the
dipole states in the screening and confinement regimes of the Z(2) model, which
also strongly depends on the above sequential order of the limits, may be found

in [1].
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Finally, it remains an interesting problem to formulate similar criteria to
characterize charged states in nonabelian gauge theories. In any case, we expect
from Proposition II.1 and further refinements that the sequence of dipole states
introduced in Sect. II might be suitable for this formulation.

Appendix A

In this appendix we study dipole states in the massless Schwinger model [5, 9, 10],
with the string placed at the line ¢ =0, illustrating the points at the end of Sect. II. It
may be viewed as a mathematically precise version, somewhat different in form, of
the arguments in [4,5]. In a special (noncovariant) gauge ([5]; eventual
mathematical gaps may be filled in as in [97]), the theory is isomorphic to a massive
Boson field theory in Fock space &, with the formal Hamiltonian

=3 Ui :|:1t2(x, 0)+ <d“’(x 0)> € o(x 0)] (A1)

where the dots denote Wick ordering, e is the electric charge in the original model,

and ¢ is a free Boson field (of mass e/]/E), with 7 its conjugate momentum. The
formal charge-density operator at zero time is [5]

1 do(x,0)

ﬁdx

If f e #x(R), the Schwartz space of real-valued infinitely differentiable functions of
fast decrease, then ¢(f) and n(f) are essentially self-adjoint on the dense subset 2
of # consisting of finite particle vectors, and their self-adjoint closures (on 2) will
be denoted by the same symbols. Let g, , and fs denote infinitely differentiable
functions of compact support, such that

1 if 0=ZxZR,
gR,E(x)={0 if x<—¢& or x=R+e, (A3)

J'0)= (A2)

fi)= 1 if —S£x<8,
=0 if x=S+6 or x<—S—8.

If Q is the Fock vacuum, we define a dipole state (corresponding to the string at
t=0[4, 5]) by

(A.4)

¥Yre=Tr L2, (A.5)

where

Tr. . =exp[il)/nn(gr,.)]. (A.6)

(In contrast to [5] we keep ¢ fixed as R—o0.) Define a (self-adjoint) charge
operator by

Q0s=7°(f3)= — # o(f). (A7)

where the prime denotes first derivative.
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Consider, now, the family of states [11]

CUR,s( : )=(TR,sa : lPR,s)

on the Weyl (CCR) algebra 2L [11], generated by the operators U(f)=exp[io(f)],
and V(g)=explin(g)] (f, g € Sx(R)), which satisfy the CCR in Weyl form:

U(fi +2)=U()U(f),
V(g1+92)=V(g)V(g,), (A.8)
U(f)V(g)=exp[—i(f, 9)1V(9)U(f),

where (f, g)= _Ojio dxf(x)g(x).

By usual compactness arguments there exists at least one limit (possibly along
anet [11])
w,= “lim” wg ,. (A.9)
R—

We assume that exp(inQg) € U for o € R [which is verified in the case at hand by
(A.7)], and say that a state w on 2 is charged [with respect to the vacuum, which we
assume to have zero charge, a fact which holds in the present case, by (A.7) and the
following definition] if

10 .
i on @(e2%)],= o = (Qs) (A.10)

exists for each S< oo and
3 lim o(Qs)+0. (A.11)

Proposition A.1. Any state w,(-) of the form (A.8) has unit charge. Further,

0 eZ
('PR,s, HlPR,s) = % _.f dx |:g;{,t:(x)2 + ;gR,s(x)z] . (Alz)
Proof. By (A.8),iff 0<e<S and S+J<R,
g s(ei“QS) — eia(fé,gn,a)(g’ e~ im/Ww(fs’)Q) = @l MS$:0R,0) . o= 0?27l f 5]l 3 ,

where || f||3=(f, f). Hence, for any state w, given by (A.9)
ws(ei{sz)=eia(fs’,ga)efal/hllfs’ll%, ) (A.13)

where g, is an infinitely differentiable function such that

1 if x>0,
gg(x)={0 i x=—s. (A.14)
By (A.13) and (A.14)
1o
2 Y (e —(f )=
30 =Uha)=1,

hence, by definitions (A.10) and (A.11), @, has unit charge. Equation (A.13) is a
standard Fock space computation. [
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This proposition shows that w, is charged and has infinite energy, because the
first term in (A.12)is bounded as R — oo (for ¢ > 0 fixed) and the second one diverges
linearly with R. Both properties lead us to expect that the corresponding
representation be disjoint from the vacuum representation (a fact which was not
completely established for the finite-energy charged sector in the Z(2) theory for
technical reasons [1]). In fact, the representation for R, ¢ fixed is defined by the map

U(N)=Ur,{N=Te U Tt =explil/n(f. g1,
V()= Vo, )= Tr Ui s =V(f).
Hence w,( - ) corresponds to the representation (U’, V'), defined by
U'(f)=expli)/n(f, 91,
V(N =vf),

(A.15)

where g, is given by (A.14).

Proposition A.2. The representation (U’, V') defined by (A.15) is disjoint from the
Fock representation (U, V).

Proof. Suppose U, U’ unitarily equivalent. Then there exists a unitary operator
T: % —% such that

U(f)=TU(f)T*. (A.16)

Choose a sequence

1 2 2
S0 = L g (), nzl, (A.17)

with g, -, as in (A.14). Then f, € x(R), and || £, , —— 0. Hence ¢(f,) —— 0
on & and therefore now =

U(f,)—~1 (A.18)
on &% . It follows that
TU(f)T* — 1 (A.19)

on #. By (A.15)

U'(f,)=exp [q/E _f f,,(x)dx] U(f,)—— exp(inl= 1 (A.20)

by (A.17) and (A.18). Hence, (A.18) and (A.20) contradict (A.16). The same proof
shows disjointness. [

The infinite energy of charged dynamical states is expected in both massless
(such as the model treated in this appendix) and massive models, in the
screening/confinement region (which covers the whole phase diagram in the case of
two-dimensional systems). The situation is different if one is concerned about the
(potential) energy V of static, external charges, as a function of their separation L
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There, due to polarization effects (pair creation), V rises linearly until [ is of order
the inverse mass of the particles (matter fields), and saturates for larger I A
semiclassical calculation in the massive Schwinger model yields this result ([13];
see also [14] for a similar calculation in lattice gauge theories). In this latter
respect, the massless Schwinger model is, of course, pathological, because there the
potential rises linearly with distance, without saturation.

Appendix B. Polymer Expansions

This appendix is devoted to present some of the basic results concerning the
method of polymer expansions. We follow in part the notation used in [17]. The
proofs which are not presented here were onlined in [1, &].

We consider a set ° of geometric elements called polymers. Among the
polymers we establish a symmetric relation called “compatibility” (or “incom-
patibility”) denoted by y ~ 7’ (respectively y ~y’), where y, y” € °. The relation holds
for all pairs of polymers and we also have y ~y: each polymer is incompatible with
itself. In all the proofs we will suppose ¥° is a finite set.

A set of polymers I is said to be “admissible” if y ~y" for all y,y" e I" with y+y".
We denote by ¢ the set formed by all the admissible sets of polymers.

To each polymer we associate an “activity” u(y), in principle a complex number,
and we denote

u = yI"Ir (u(y)'?,

where I'(y) is the multiplicity of y in the set I" (not necessarily an admissible one).
Notation: if I' is a multi-index [8], I'! = 1_[ I'(y)! and n(I') = Z ().

S
If I and I'” are two sets of polymers, we denote F~I"ify~y \/y el,y el and
I ~TI" otherwise. For I' € ¥ we define CONN(I)={I"e¥%|y’~T Yy el"}.
The partition function of a polymer model is given by

Z= 3 u". (B.1)
I'e9
and we define
onN=z"1 3 u". (B.2)
I'e%
r'~r

To each polymer y we associate a conveniently defined size denoted by |y|,
lyie N. We define | I'|| = 3. I'(y)|y]. Following [1] we assume there exists a convex

Y
differentiable monotonically decreasing function F,:(b,, c0)—»R,, b, e R, such
that for each I'€ %9 and b>b,,

Y e < FoB) 1] (B.3)

We will consider here polymer models for which the following property holds:

if I'e 9 and N(I', s) denotes the number of polymers of size s incompatible with I,
then there exists C such that

N(I,s) ||| Cs. (B.3a)
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It’s straightforward to prove that in this case we may choose Fy(b)
=Ce ¥(1—Ce 1, by=InC.
It is a well known fact that (B.3a) holds for the polymer model which occurs in
this paper.
We define [u] = sup |u(y)|*", so that [u(y)| < |||
7

Lemma B.1. Let a, be the smallest solution of Fy(a,)= —1 provided it exists, and
a,=b, otherwise, and suppose

“ﬂ“ é ”:uc” = e_(a‘3+F0(ac)) .
Then
o(Ilp)= lim > (— )it (B.4)

n— o Iy,..., I,e%
IieCONN(I;-1),i=1,..., n

as a convergent series.
Proof. May be found in [1]. O
Note. For the models in which (B.3a) holds we have

lucll=C 143 —}/5)e 12V D <1, (B.4a)
Definition. F,:(a.+Fo(a,), 0)—IR is such that
Fi(a+Fy(a))=Fy(a). (B.5)

Lemma B.2. F, is monotonically decreasing.

Proof. Follows easily from the definition of F, and the assumed properties
of F,, [

Lemma B.3. If ||u| < |u.ll, then the following bound for o(I;) holds:
le(To)| <exp[Fy(—Inpul) o)1 (B.6)
Proof. Follows from Lemma B.1, Definition (B.3) and Definition (B.5). [
Let us define the function g: 9, x 9.—{0, —1} by

wn={_{ § (B)
It follows easily that the partition function (B.1) may be written as
Z= 2 c W), (B.9)
where
o= l:[} [1+9g(sy)]- (B9)
Viyyel

Let f,f,:{I'C%.}—C be functions defined on multi-indices. We define a *
product between f; and f, by

(fixL)X)= ¥ (X )AEX,). (B.10)
Xi+X2=X
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Definition.

1 if X=0,

0 otherwise. (B.102)

1X)= {

We denote by &, the set of functions on multi-indices satisfying fo(4)=0

and by &, the set of functions on multi-indices satisfying f;(I")=1(I")+ fo(I")
for some f, € %,

Definitions.
9 @)= 3 % for fez,,
(__1)n+1 .
b Logn0= £ TV po) for ges,

where f*°(X)=1(X).

Properties. Exp(Logf,)=f:; Log(Expfy)=/f, for f; € #, and f,e %, We note
that in definitions a) and b) above the sums are finite.
Let ¢(I') be as defined in (B.9). We define the “Ursell function” ¢”(I') by

¢"(I)=(Logg)(I).

Following [1] we will prefer sometimes to use the symbol C for ¢7(I).

Given a set I' of polymers we may define a graph which we call “graph of
incompatibilities,” in the following way: we attribute to each polymerin I a vertex
and join two vertices by a line provided the corresponding polymers are
incompatible.

Theorem B.1. C=0 if the “graph of incompatibilities” which corresponds to I is
not connected. (The proof is outlined in [8, Lemma 3.5].)

Lemma B4. Let F be a function on multi-indices and w a function on polymers. Then
exp (ZF(X)wX> =Y (ExpF)(X)w*, (B.11)
X X
provided > F(X)w* is an absolutely convergent series, i.e., 3 |F(X)||o*|< co.
X X
1 . . ..
Proof. exp (X F(X )wx) =3 m(Z F(X)w*\". Since the series in parenthesis is
X n=0 N\ X
absolutely convergent, we may rewrite the right-hand side above as
Za)x< > (1/n!)F*"(X)> =Y o*(ExpF)(X). O
X n=0 X
Corollary B.1.
Z=exp (Z Cr/tr),
r
provided Y Cru® is absolutely convergent.
T

Proof. Follows from Lemma B.4, putting F(X)=¢"(X)=Cy. [
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Lemma B.5. Let 9, be a finite set and b a function on polymers. Then
< 2 ¢(X)bxﬂx>/< )y ¢(X)#X> =exp {Z Cx(b*— 1)#"},

Xe¥ Xe¥ X

provided Y Cx(b* —1)u* is absolutely convergent.
X

Proof. Since Y ¢T(X)(b¥ —1)u* is absolutely convergent, we may write

X

§¢T(X)(bx— Du¥= Ig? ; T (X r(X)(b* — ¥,
where I is the characteristic function of the set {Y}, a subset of the set of all multi-

indices. The limit lggl means the limit whereby { Y} converges to the set of all multi-

indices. Since the series is absolutely convergent, this limit may be taken in an
arbitrary way.
Now, using Lemma B.4

exp (; PTX)(* I)MX>
= lg})] {[; Exp(¢”1 {Y}) 0.4 ),Uxbx] / [; Exp(¢”I )X )#X]}
- Xze:@ 'quX/xze:fe who O

Lemma B.6. There exists a constant c independent of I, such that
Y CH W=l (B.12)
I'+Iy

Proof. (The details given below, which were omitted in [ 1], were communicated to
us by Dr. K. Fredenhagen.) From (B.2) we obtain as in [1, p. 110]

o= ¥ (—w e (B.13)

I''e CONN(T)
(formula (A.4) of [1]). We now use identity (A.13) of [ 1] (the sign is incorrect there):
> Crpl'=Ing(I)=InZ(0)—InZ(1)
N

r’:gc—
r'~r

={di ¥  umely), (B.14)
0 ye¥%c,y*T

where Z(4) and g, are partition function and correlation functions, respectively,
corresponding to the activities u,(y) =Au(y) for y~ I, and u,(y)=u(y) otherwise,
ye%, Since |u;|<|ull and F, is decreasing, it follows that F,(—In|u,l)
<F,(—In|py|). From the inequality

leA({yhl Sexp[Fy(—Inu; )y,
which follows from (B.6), we obtain

les({yhl =exp[Fi(—In]u)iy/]. (B.15)
Let the activities be negative: u(y)= —|u(y). Then by (B.4) we obtain o(I')=0.
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Inserting (B.13) into the right-hand side of (B.14) there results a power series in
|u(y)| with just negative coefficients. By comparison with the left-hand side of (B.14),
it then follows that

—cr=(=1)el. (B.16)

Inserting now (B.16) into (B.14), and using (B.3), (B.15) and the definition of F, we
arrive at (B.12), with ¢c=F(—In|ul). O

Corollary B.2. If |u| < |\u.|l there exists a constant ¢ such that

3k nurgc[]:';":l] Il (B.17)
Tl 2n ¢
Proof.

S el Mlg[”“” ] S lerl o] 171

r 1 lull | rer,

Ifllzn Il zn
<Clal/lid ] S ler] a0

I'+TIp

</l I°F o (~1n Hﬂcll)=0['1lﬁll'| ] 1A}

c=F(=In|ul)=Fola). O
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